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Abstract: Autonomous lane-change, a key feature of advanced driver-assistance systems, can enhance
traffic efficiency and reduce the incidence of accidents. However, safe driving of autonomous vehicles
remains challenging in complex environments. How to perform safe and appropriate lane change
is a popular topic of research in the field of autonomous driving. Currently, few papers consider
the safety of reinforcement learning in discretionary lane-change scenarios. We introduce safe
hybrid-action reinforcement learning into discretionary lane change for the first time and propose the
Parameterized Soft Actor–Critic with PID Lagrangian (PASAC-PIDLag) algorithm. Furthermore, we
conduct a comparative analysis with Parameterized Soft Actor–Critic (PASAC), which is an unsafe
version of PASAC-PIDLag. Both algorithms are employed to train the lane-change strategy to output
both discrete lane-change decisions and continuous longitudinal vehicle acceleration. Our simulation
results indicate that at a traffic density of 15 vehicles per kilometer (15 veh/km), the PASAC-PIDLag
algorithm exhibits superior safety with a collision rate of 0%, outperforming the PASAC algorithm,
which has a collision rate of 1%. The generalization assessments reveal that at low traffic density
levels, both the PASAC-PIDLag and PASAC algorithms are proficient in attaining zero collision rates.
However, at high traffic density levels, although both algorithms result in collisions, PASAC-PIDLag
has a much lower collision rate than PASAC.

Keywords: safe reinforcement learning; lane change; autonomous vehicle; hybrid action spaces

1. Introduction

Nowadays, lane changing is a challenging task that necessitates precise maneuvers to
ensure it is conducted safely, comfortably, and swiftly. Lane change include both mandatory
and discretionary scenarios [1]. Mandatory lane change refer to the motion planning of lane
changing in situations where it is imperative to do so. Scenarios for mandatory lane change
include merging from entrance ramps and changing lanes in the presence of obstacles
ahead [2]. Discretionary lane change are decisions made by a vehicle to change lanes
when it is not demanded due to road conditions, but rather motivated by factors such as
speed optimization, driving efficiency, or driver preference. Unlike mandatory lane change,
which occur because of immediate necessities such as road obstructions, construction, or
merging, discretionary lane change offer an additional layer of complexity to autonomous
vehicle algorithms.

Current scholars have provided two research methodologies for decision making in
autonomous vehicle lane change: (1) rule-based methods [3–6] and (2) learning-based
methods [7,8].

Rule-based decision models use a set of predefined, hand-crafted rules to simulate
the decision-making process of drivers. These rules may include adherence to traffic
regulations, such as stopping at red lights and proceeding at green lights. The model is
highly interpretable because the rules are clear and straightforward, making them easy to
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understand and maintain. However, rule-based models may lack flexibility when dealing
with complex driving environments and unknown situations because hand-crafted rules
may not easily adapt to such complexities and uncertainties [3,6].

Learning-based decision models rely on training models on large-scale driving data
to autonomously learn and adapt to different driving conditions. These methods employ
deep learning techniques that utilize neural networks and machine learning algorithms to
address complex driving decision problems. Although this approach excels in adapting to
varied driving scenarios, it has relatively poor interpretability, and there is little guarantee
of safety.

Most current learning-based articles are dedicated to using deep reinforcement learning
techniques for discretionary autonomous lane-change control of self-driving vehicles [9–14].
In [9], the authors proposed a framework that integrates deep reinforcement learning
with Q-masking to enhance the efficiency of autonomous lane change. In [8], the authors
enhanced the efficiency of the deep Q-learning algorithm and applied it to the autonomous
lane-change scenario [15]. In [10], the authors introduced an automated lane-change
method based on reinforcement learning, designing a Q-function approximator with a
closed-form greedy policy capable of achieving smooth and efficient driving strategies in
various and unpredictable scenarios. In [11], the authors developed a deep reinforcement
learning agent capable of robustly executing automated lane change in dynamic and
uncertain highway environments, demonstrating superior performance over traditional
heuristic-based methods. In [12], the authors applied deep reinforcement learning to
address the challenge of successful merging or lane changing for autonomous vehicles in
high-density traffic, establishing a benchmark for driving in high-density traffic conditions.

The majority of the literature currently employs discrete reinforcement learning for
implementing autonomous lane change [8–14], where the high-level control outputs lane-
change decisions using discrete reinforcement learning, and the low-level control uses
car-following models such as the Intelligent Driver Model (IDM) [16] to output vehicle
acceleration. The decision-making and motion-planning modules, as two closely adjacent
and important functional modules of autonomous vehicles, are highly interrelated in terms
of functionality and ultimate performance. Therefore, the design of the decision-making
process should take into account the feasibility of motion planning. Likewise, motion
planning should be formulated based on the decision made [17]. Therefore, in our work,
we have adopted a hybrid action space to simultaneously address discrete lane-change
decisions and continuous longitudinal acceleration control.

To apply deep reinforcement learning to the autonomous lane-change scenario, ensur-
ing the safety of decision making is essential. There is a paucity of literature considering
the safety aspects of autonomous lane change. Given the absence of research using safe
reinforcement learning to ensure the safety of discretionary lane change, our paper uses the
PID Lagrangian-based hybrid-action reinforcement learning approach [18] to implement
autonomous lane change. In [19], the authors proposed a decision-making framework for
autonomous vehicles in lane-change scenarios based on deep reinforcement learning with
risk awareness. In [20], the authors used a human-driving lane-change decision model
combined with regret theory to improve the safety and efficiency of autonomous vehicles
in mixed traffic. In [21], the authors introduced a safe reinforcement learning algorithm
into the field of autonomous driving, combining the Proximal Policy Optimization (PPO)
algorithm with a PID Lagrangian approach to enhance the traffic compliance of motion
planners for self-driving vehicles [22].

Safe reinforcement learning [23] is a type of reinforcement learning that incorporates
the concepts of safety or risk. Specifically, safe reinforcement learning emphasizes not only
pursuing long-term maximum returns during the learning and implementation phases
but also adhering to established safety constraints while ensuring reasonable system
performance. Compared to Constrained Policy Optimization (CPO) algorithms [24] and
safe reinforcement learning algorithms based on Lyapunov functions [25], the Lagrangian-
based safe reinforcement learning algorithm performed equally well or even better in
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tests within the Safety Gym environment [26]. The oscillations and overshooting observed
during the learning process can lead to constraint violations by the agent when applied in
practice. Therefore, the PID-based Lagrangian method was proposed [18]. From a control
perspective, traditional Lagrange multiplier updates behave as integral control, whereas
the PID-based approach introduces proportional and differential controls to stabilize the
learning process of the agent.

To the best of our knowledge, there are no existing studies that apply safe hybrid
action space algorithms in the domain of discretionary lane change. Previous works have
applied hybrid-action reinforcement learning to the discretionary lane-change scenario
but have not considered safety [27–30]. In [31], the authors adopted the safe proximal
policy optimization algorithm to train the mandatory lane-change policy of an autonomous
vehicle. Although the algorithm was designed with safety in mind, the lane-change strategy
still exhibited a collision rate of 0.5% in the simulation tests.

The contribution of this paper includes the introduction of a novel safe hybrid-action
reinforcement learning algorithm, PASAC-PIDLag, and its application to the discretionary
lane-change scenario. We conducted a comprehensive and quantitative comparison be-
tween PASAC-PIDLag and its unsafe version PASAC, demonstrating that PASAC-PIDLag
outperforms PASAC in terms of both safety and optimality.

Regarding the structure of the paper, Section 2 presents the PASAC-PIDLag and PASAC
algorithms, Section 3 discusses the application of the algorithms to lane-change scenarios,
Section 4 presents the experiments and results, and Section 5 presents the conclusions.

2. Reinforcement Learning Preliminaries

Reinforcement learning is a computational approach to learning from interaction. In
this paradigm, an agent takes actions based on the current state of the environment at each
time step. As a result, the environment transitions to another state in the next time step,
and the agent receives a reward based on the action taken. Both the actions taken by the
agent and the rewards provided by the environment are probabilistic. The goal of an RL
algorithm is to maximize the expected discounted cumulative reward.

The framework used to model the environment and the agent’s interactions within it
in RL is the Markov Decision Process (MDP). An MDP is defined as a tuple (S, A, R, P, γ),
where S is a finite set of states of the environment. A is a finite set of actions that the
agent can choose from. P is the state-transition probability matrix. P(s′|s, a) represents
the probability of transitioning from state s to state s′ after the agent takes action a. R is a
reward function. R(s, a) represents the immediate reward the agent receives after taking
action a in state s. γ is the discount factor, typically within the range 0 ≤ γ ≤ 1, which
determines the present value of future rewards.

The agent’s objective is to discover a policy π, which maps states to the probabilities
of selecting each possible action, denoted as π : S→ A, that maximizes the expected sum
of discounted rewards. The optimal policy π∗ can be formally defined as:

π∗ = arg max
π

E
[

∞

∑
t=0

γtR(st, at)|s0 = s, at = π(st)

]
, (1)

2.1. Soft Actor–Critic

The Soft Actor–Critic (SAC) algorithm [32] is an off-policy, actor–critic reinforce-
ment learning algorithm that incorporates the principles of entropy maximization to bal-
ance exploration and exploitation. SAC employs two types of neural networks: soft
Q-networks that approximate the soft Q-functions, and policy networks that generate prob-
ability distribution over actions. The policy network is trained to maximize the expected
reward and entropy. The SAC algorithm optimizes the following entropy-augmented
objective function:
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J(πθ) =
T

∑
t=0

E(st ,at)∼ρπ
[r(st, at) + αH(π(·|st))], (2)

where π is the policy, θ represents the parameters of the policy, r(st, at) is the immediate
reward for action at in state st, ρπ is the distribution over states and actions under policy π,
H is the policy entropy, and α is the entropy coefficient.

SAC uses two Q-networks, Qϕ1 and Qϕ2 , to evaluate the policy. The objective of the
Q-network, JQ(ϕi), is defined as the expected squared error between the current Q-function
and the target:

JQ(ϕi) = E(s,a,r,s′)∼D

[(
Qϕi (s, a)− y(r, s′, γ)

)2
]
, (3)

y(r, s′, γ) = r + γ

(
min
i=1,2

Qϕ′i
(s′, ã′)− α log πθ(ã′|s′)

)
, (4)

where ã′ is the action sampled from the current policy.
To stabilize learning, SAC employs soft target updates to slowly update the target

network parameters ϕ′i :

ϕ′i ← τϕi + (1− τ)ϕ′i , (5)

where τ is a small number close to 0, indicating the rate at which the target network
parameters are updated.

In the SAC algorithm, actions are selected according to a stochastic policy. This policy
is typically parameterized as a Gaussian distribution, allowing the model to capture a range
of possible actions. At each timestep t, an action is sampled from this distribution, which is
conditioned on the current state st:

at ∼ πθ(·|st) = N (µθ(st), Σθ(st)), (6)

where µθ(st) and Σθ(st) are the mean and covariance of the policy’s Gaussian distribution,
respectively, and are functions of the current state st parameterized by θ. This stochastic
policy approach facilitates exploration of the action space, which is an essential aspect of
effective reinforcement learning.

2.2. Parameterized Soft Actor–Critic

Building upon the conventional SAC algorithm, we introduce the Parameterized Soft
Actor–Critic (PASAC) algorithm, which is designed to operate within environments that
have both discrete and continuous action spaces. In the PASAC algorithm, the policy’s
output consists of continuous actions along with the probabilities of discrete actions. Let
Ad = {a1, a2, . . . , ak}, where each discrete action ai ∈ Ad is associated with a set of continu-
ous parameters pai = {pa1, pa2, . . . , pak} ⊆ Rk. Therefore, the action space is represented
as A = {ac1, ac2, . . . , ack} ∪ {a1, a2, . . . , ak}, where ack represents continuous actions, and ak
represents discrete actions.

2.3. Parameterized Soft Actor–Critic with PID Lagrangian

The Constrained Markov Decision Process (CMDP) [33] extends the MDP framework
by augmenting it with constraints restricting the set of feasible policies. The CMDP is
characterized by the expanded tuple (S, A, R, P, γ, c, d), where c is the cost function and d
is the corresponding cost limit.
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The objective of the CMDP is to optimize policy π, yielding the highest expected sum
of discounted rewards over trajectories while keeping the expected sum of discounted costs
within the cost limit. Formally, in a CMDP formulation, the RL problem finds the optimal
policy π∗ that solves

π∗ = arg max
π

JR(π) s.t. JC(π) ≤ d, (7)

where JR(π) represents the expected reward for the policy π and JC(π) denotes the cost
associated with the policy π.

In this study, we address the constrained problem by employing the Lagrangian
method, which allows us to convert a constrained problem into an unconstrained problem.
Lagrangian techniques are a well-established approach for tackling optimization problems
that include constraints. Given the CMDP, the unconstrained problem can be written as

min
λ≥0

max
θ

L(λ, θ) = min
λ≥0

max
θ

[JR(πθ)− λ(JC(πθ)− d)], (8)

where L is the Lagrangian and λ ≥ 0 is the Lagrangian multiplier (a penalty coefficient).
In the traditional Lagrangian multiplier method, updates consider only integral control,

which is related to the accumulation of constraint violations. Such updates can be conducted
within the framework of the Lagrangian method by solving the dual problem, in which the
multipliers are adjusted over time to satisfy the constraints.

The Lagrangian multiplier update formula can be represented as

λk+1 = max(λk + αλ(JC(πθ)− d), 0) (9)

where αλ is the learning rate of λ.
In the PID method, the dual update rule is enhanced by adding proportional (P) and

derivative (D) controls to the existing integral (I) term, with the goal of reducing oscillations
in the system output and providing a quicker response to safety constraint violations. The
new PID Lagrangian update rule is expressed as

λnew = λold +

(
Kpe(t) + Ki

∫
e(t) dt + Kd

de(t)
dt

)
(10)

where e(t) = JC(πθ) − d is the constraint violation at time t, with d being the target
value for the constraint. Kp, Ki, and Kd are the proportional, integral, and derivative
gains, respectively. The proportional term Kpe(t) accounts for the current magnitude
of the constraint violation, the integral term Ki

∫
e(t) dt considers the accumulated error

over time, and the derivative term Kd
d
dt e(t) takes into account the rate of change of the

error. This combination helps to satisfy the constraints more quickly and smoothly dur-
ing the learning process. The pseudocode of the PASAC-PIDLag algorithm is shown
in Algorithm 1.
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Algorithm 1 Parameterized Soft Actor–Critic with PID Lagrangian

1: Algorithm:
2: Initialize θ, ϕ1, ϕ2, ϕ′1 ← ϕ1, ϕ′2 ← ϕ2,D ▷ Init parameters and replay buffer D
3: Initialize PID gains Kp, Ki, Kd, Lagrangian multiplier λ, target cost d
4: Initialize Jc,prev ← 0, I ← 0 ▷ Init cost and integral term
5: for each iteration do
6: for each environment step do
7: acont, adisc ∼ πθ(·|s)
8: s′, r, c ∼ Env(s, acont, adisc)
9: D ← D ∪ {(s, acont, adisc, r, c, s′)} ▷ Store transition

10: end for
11: for each gradient step do
12: {s, acont, adisc, r, c, s′} ∼ D ▷ Sample batch
13: ϕi ← ϕi −∇ϕi JQ(ϕi) for i ∈ {1, 2} ▷ Update Q-function parameters
14: θ ← θ −∇θ Jπ(θ) ▷ Update policy parameters
15: ϕ′i ← τϕi + (1− τ)ϕ′i for i ∈ {1, 2} ▷ Update target network parameters
16: e← Jc − d
17: I ← I + e
18: ∆e← Jc − Jc,prev
19: λ← max(λ + Kpe + Ki I + Kd∆e, 0) ▷ Update λ using PID controller
20: Jc,prev ← Jc
21: end for
22: end for

3. Lane-Change Problem Formulation
3.1. Lane-Change Environment

The lane-change environment was created in the Simulation of Urban Mobility (SUMO) [34]
driving simulator. We used a two-lane road with a length of 1 km as our training road, and
subsequently, testing was conducted on this road. In this paper, the perception range of
the vehicles is represented by a circle with a radius of 200 m, and we assume that the ego
vehicle can accurately perceive the status of all vehicles within this range. The surrounding
vehicles on the road have an initial speed of 8.33 m/s and a maximum speed of 16.67 m/s,
and they use the IDM [16] model for longitudinal control and the SL2015 [35] model for
lateral control. In this study, we trained with a traffic flow density of 15 veh/km. As shown
in Figure 1, the red vehicle represents the ego vehicle, and the green vehicles represent
other vehicles.

Figure 1. Lane-change environment created using SUMO. vego is the speed of the ego vehicle and vF1

is the speed of the F1 vehicle. dF1 is the distance between ego vehicle and F1 vehicle, and dR0 is the
distance between ego vehicle and R0 vehicle.

3.2. Environment State

In this paper, the state is characterized by ten variables: the distance dF0 between
the ego vehicle and the vehicle in front, the distance dR0 between the ego vehicle and the
vehicle behind, the distance dF1 between the ego vehicle and the vehicle in front on the
target lane, and the distance dR1 between the ego vehicle and the vehicle behind on the
target lane. Additionally, the speeds vF0 , vF1 , vR0 , and vR1 of these four vehicles, as well as
the speed vego and acceleration aego of the ego vehicle, are considered.
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s = {vF1 , dF1 , vR1 , dR1 , vF0 , dF0 , vR0 , dR0 , vego, aego}, (11)

3.3. Control Action

In this study, the continuous action of the control output is acceleration, and the
discrete action is the lane-change decision. Vehicle dynamics and latency are not considered;
hence, the vehicle instantaneously executes upon receiving an acceleration command or
a lane-change decision. In training, the updates of the vehicle’s velocity, position, and
lane-change decision occur at a time step of 0.1 s, whereas in testing, the lane-change
decision is output every 1 second. Moreover, accounting for the actual vehicle’s limits, the
limit for continuous actions is defined as [amin, amax] = [−9.8, 5.0]m/s2, where amin and
amax represent the minimum and maximum accelerations, respectively.

The action space is defined as a tuple A = (acontinuous, adiscrete), where acontinuous
represents the continuous control of the vehicle’s acceleration, bounded by a ∈ [amin, amax].
adiscrete is the discrete lane-change decision, where adiscrete = 1 indicates changing to
another lane, and adiscrete = 0 signifies maintaining the current lane.

3.4. Reward

In the context of autonomous vehicle control, reward functions are designed to pro-
mote safe, efficient, and comfortable driving behavior. These functions are itemized
as follows:

(1) This reward function aims to reduce meaningless lane change caused by the
ego vehicle.

rlc =

{
−4, if dfront < 25 m and lane change is decided
−20, if dfront ≥ 25 m and lane change is decided

(12)

(2) dsafe represents the safe following distance from the vehicle ahead in the same lane,
which is set to 25 m in this study. vlimit denotes the minimum speed limit for the lane when
the distance to the vehicle ahead exceeds the safe distance.

rspd =

{
0.1× |vego − vlimit|, vego ∈ [13.89 m/s, 16.67 m/s] and d f ≥ dsafe

−0.1× |vego − vlimit|, vego /∈ [13.89 m/s, 16.67 m/s] and d f ≥ dsafe
(13)

(3) To facilitate the ego vehicle’s acquisition of car-following behavior and to mitigate
the risk of collisions, we devised the following reward function predicated on the vehicle-
to-vehicle distance metric:

rdis =

{
−1 · (dsafe −min(dF0, dR0)), if dF0 ≤ dsafe or dR0 ≤ dsafe

0, otherwise
(14)

where dR0 represents the distance to the rear vehicle in the same lane and dF0 denotes the
distance to the forward vehicle in the same lane.

(4) To instruct the ego vehicle to autonomously navigate lane change while mitigating
collision occurrences, a penalty of rcollision = −200 is incurred following each collision event.

(5) To reduce the jerk during the ego vehicle’s motion, we defined the following reward
function:

rjerk = −0.005× |at − at−1| (15)

where at represents the acceleration of the ego vehicle at the current time step and at−1
represents the acceleration of the ego vehicle at the previous time step.

(6) For safe reinforcement learning, we employ the TTC as a cost metric. The TTC is
expressed as
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TTC =
vego − vother

drelative
(16)

where vego represents the velocity of the ego vehicle, vother denotes the velocity of other
vehicles, and drelative indicates the relative distance between the ego vehicle and other
vehicles. When the TTC between the ego vehicle and either the leading or following vehicle
is less than 2.7 s but greater than 0, the cost is incremented by 1; if the TTC is equal to or
greater than 2.7 s or the TTC is not calculable (due to no vehicle being present), the cost
remains at 0.

For the PASAC algorithm, the total reward at each timestep is given by

rtotal = rlc + rspd + rdis + rjerk + rcollision (17)

For the PASAC-PIDLag algorithm, the total reward and cost at each timestep are given by

rtotal = rlc + rspd + rdis + rjerk

Cost =

{
Cost + 1 if 0 < TTC < 2.7 s
Cost if TTC ≥ 2.7

(18)

We do not include collisions in the cost calculation because the safety policy derived
from safe RL may sometimes approach the collision constraint too closely, potentially
resulting in collisions.

4. Experiments and Results

In this section, we present the training results under a traffic density of 15 veh/km.
The PASAC-PIDLag algorithm outperforms the PASAC-Lag in terms of rewards and costs.
The PASAC-Lag method is the traditional Lagrangian method that focuses solely on integral
control. Therefore, we did not conduct tests on it. We analyzed both PASAC-PIDLag and
PASAC algorithms under a traffic density of 15 veh/km. Additionally, we conducted a
generalization analysis of these two algorithms under traffic densities of 10 veh/km and
18 veh/km.

4.1. Training

Our training setup consisted of an NVIDIA RTX 3060 GPU and an Intel i7-12700F CPU,
with each training session running for approximately 5 h and covering 400,000 timesteps.
The timestep interval was set at 0.1 s to better reflect real-world scenarios. Additionally, we
initialized vehicles on the main road within a 50 m buffer zone at the start of each episode.
The initial speed of the ego vehicle was set to 8.33 m/s. At the beginning of each episode,
the lane for ego vehicle departure was randomly chosen from the two-lane road. During
the training process, we evaluated ten episodes for each training episode, and we selected
the best-performing policy as the model for subsequent testing.

The hyperparameter configurations for the PASAC-PIDLag, PASAC-Lag, and PASAC
algorithms are listed in Table 1. Figure 2 illustrates the training curves for these algorithms.
From the training curves, it is evident that the PASAC-PIDLag algorithm demonstrates
superior performance compared to both the PASAC-Lag and PASAC algorithms. The
training curve of the PASAC-PIDLag algorithm outperforms that of the PASAC-Lag, as the
incorporation of PID control in PASAC-PIDLag has successfully reduced the oscillation
amplitudes of the cost, leading to more stable performance. Consequently, the PASAC-Lag
algorithm was not considered for further testing.
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Figure 2. The training progress of the PASAC-PIDLag algorithm compared to the PASAC-Lag and
PASAC algorithms.

Table 1. The hyperparameter values for the PASAC-PIDLag, PASAC-Lag, and the PASAC algorithms.

Hyperparameter PASAC-PIDLag PASAC-Lag PASAC

Discount factor γ 0.99 0.99 0.99
Temperature parameter α 0.2 0.2 0.2
The learning rate of the Actor network 0.0001 0.0001 0.0001
The learning rate of the Critic network 0.0003 0.0003 0.0003
Initial learning steps 10,000 10,000 10,000
The size of the batch 256 256 256
The size of the replay buffer 1,000,000 1,000,000 1,000,000
The soft update coefficient 0.005 0.005 0.005
The Kp of the PID controller 0.000002 - -
The Ki of the PID controller 0.0000002 - -
The Kd of the PID controller 0.0000001 - -
Tolerance of constraint violation 0 0 -
Initial Lagrange multiplier value 0.001 0.001 -
Initial value of Lagrangian multiplier - 0.000002 -

4.2. Testing

In our experiments, we evaluated the performance of the trained policy over
400 episodes under a traffic density of 15 veh/km, encompassing approximately
300,000 timesteps. At the onset of each episode, the initial velocity of the ego vehicle
was set to 8.33 m/s (equivalent to 30 km/h). Moreover, to assess the generalizability of
our approach, we also conducted tests on the aforementioned strategy at traffic densities of
10 veh/km and 18 veh/km.

4.3. Comparison and Analysis

Based on the results obtained from the dataset of 400 test episodes, as shown in Table 2,
it is evident that the PASAC-PIDLag algorithm outperformed the PASAC algorithm on
multiple evaluation metrics. The PASAC-PIDLag algorithm exhibited a notably lower
collision rate, indicating a safer driving policy adept at mitigating the risk of accidents more
effectively. In addition, this algorithm necessitated fewer lane-change maneuvers, suggest-
ing more stable and efficient driving behavior with the potential to diminish disruptive
actions within the traffic flow. In terms of velocity, the PASAC-PIDLag algorithm achieved a
higher average speed, a pivotal factor in enhancing the rate of transport. Moreover, the jerk
metric was significantly reduced for the PASAC-PIDLag algorithm. Upon comprehensive
consideration of these performance indicators, the PASAC-PIDLag algorithm surpassed
the PASAC algorithm in terms of both optimality and safety.
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Table 2. The results under a traffic flow density of 15 veh/km.

400 Episodes PASAC-PIDLag PASAC

Average reward 26.35 −53.13
Collision rate 0% 1%

Average speed (m/s) 14.36 14.04
Average jerk (m/s3) 0.315 0.415
Lane-change times 137 146

Figure 3 depicts an analysis of a lane-changing episode under the PASAC-PIDLag
algorithm. Subsequent to this lane-change event, there was an immediate and discernible
change in the distance to the preceding vehicle, indicative of the completion of the lane
change. The graph detailing relative distance demonstrates that the vehicle initiated the
lane-change maneuver when it was at a safe following distance of approximately 25 m.
Moreover, the velocity graph depicts a modest escalation in the ego vehicle’s speed follow-
ing the lane change, which was shortly followed by a decrease. Figure 4 presents the SUMO
scene of the successful lane-change maneuver executed by the PASAC-PIDLag algorithm.
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Figure 3. The velocity, acceleration, and distance of the lead vehicle under the regulation of PASAC-
PIDLag algorithmic controls. A black dashed line traverses the graphs, symbolizing the execution of
a successful lane change by the ego vehicle.

Figure 4. The figure illustrates the successful lane-change maneuver executed by a vehicle under the
control of the PASAC-PIDLag algorithm in SUMO, where the red vehicle is denoted as the ego car
and the green vehicles represent the surrounding traffic.

Figure 5 depicts an episode of collision occurrence within the PASAC algorithm
framework, in which the ego vehicle collided after executing a lane change. The data
presented in the figure reveal that the ego vehicle was steadily closing in on the vehicle
ahead until the following distance diminished to 19 m, which triggered a decision to change
lanes. At this juncture, the presence of another vehicle in the target lane led to a collision.
Figure 6 displays the instance of a lane-change maneuver resulting in a collision in SUMO,
as directed by the PASAC algorithm.
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Figure 5. The velocity, acceleration, and distance of the lead vehicle during a collision event due to
lane changing under the PASAC algorithm.

Figure 6. A collision incident during a lane-change maneuver controlled by the PASAC algorithm
in SUMO, where the red vehicle represents the ego car and the green vehicle represents other
traffic participants.

Figure 7 illustrates another scenario in which a collision occurred under the PASAC
algorithm, where the ego vehicle collided during the car-following process. The data and
the figure show that due to the presence of a vehicle in the adjacent lane, the ego vehicle
was unable to change lanes, resulting in a collision during car following. Figure 8 presents
an example of a collision involving an ego vehicle trained using the PASAC algorithm in a
car-following scenario in SUMO.

A comparison of lane-changing decisions between the PASAC and PASAC-PIDLag
algorithms demonstrated that the strategy derived from the PASAC algorithm was some-
times incapable of effectively balancing the decision related to lane changing and car
following under certain conditions.
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Figure 7. The velocity, acceleration, and distance of the lead vehicle during a collision event due to
accelerating under the PASAC algorithm.



Machines 2024, 12, 252 12 of 14

Figure 8. A collision incident during a car-following scenario controlled by the PASAC algorithm
in SUMO, where the red vehicle represents the ego car and the green vehicle represents other
traffic participants.

4.4. Generalization Analysis

To evaluate the generalizability of the proposed algorithm, we first conducted tests
under a traffic density of 10 veh/km, and the results are presented in Table 3. The data
presented in Table 3 reveal that at such a reduced traffic density, both algorithms demon-
strated the ability to maintain a collision rate of zero. Notwithstanding this equivalence
in safety, the PASAC-PIDLag algorithm surpassed its counterpart, PASAC, by securing a
greater average reward, attaining a higher mean velocity, and exhibiting a lower average
jerk. These findings imply that the PASAC-PIDLag algorithm not only meets safety bench-
marks but also excels in performance, offering an enhanced level of optimality over the
PASAC algorithm.

Table 3. The generalization results under a traffic flow density of 10 veh/km.

400 Episodes PASAC-PIDLag PASAC

Average reward −24.98 −71.32
Collision rate 0% 0%

Average speed (m/s) 14.51 14.06
Average jerk (m/s3) 0.290 0.329
Lane-change times 82 78

Our final series of tests were conducted at a traffic flow density of 18 veh/km. The
results outlined in Table 4 reveal that at this higher traffic density, the collision rate of the
PASAC-PIDLag algorithm remained lower than that of the PASAC algorithm. Furthermore,
the PASAC-PIDLag algorithm demonstrated its superiority across all measured metrics,
including average reward, average speed, and average jerk.

Table 4. The generalization results under a traffic flow density of 18 veh/km.

400 Episodes PASAC-PIDLag PASAC

Average reward −136.07 −150.25
Collision rate 0.25% 2.25%

Average speed (m/s) 14.17 13.98
Average jerk (m/s3) 0.290 0.329
Lane-change times 226 164

5. Conclusions

In this paper, we introduced PASAC-PIDLag, a safe hybrid-action reinforcement
learning algorithm specifically applied to the scenario of autonomous lane change. This
method represents a novel approach that aims to enhance both safety and optimality
in the application of reinforcement learning in the autonomous driving domain. We
compared it with its unsafe version, PASAC. Both algorithms were trained and tested
under a traffic flow density of 0.15 veh/km and underwent generalization tests at den-
sities of 0.10 veh/km and 0.18 veh/km. The results indicated that at a traffic density of
15 veh/km, the strategy trained by the PASAC-PIDLag algorithm managed to maintain
zero collisions, while the collision rate for the PASAC algorithm was observed to be 1%.
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The PASAC algorithm was observed to encounter two types of collisions at a density of
15 veh/km. The reward structure in this study involves both lane changing and car follow-
ing, which may lead to collisions arising from unsuccessful lane-changing or car-following
maneuvers.

Both algorithms achieved zero collisions at a lower traffic density of 10 veh/km.
At a higher traffic density of 18 veh/km, the collision rate of the PASAC-PIDLag algo-
rithm was lower than that of the PASAC algorithm. Across the three traffic densities, the
PASAC-PIDLag algorithm consistently achieved higher average speeds, lower average
jerks, and greater average rewards. Overall, the PASAC-PIDLag algorithm showed superior
performance with respect to safety and optimality.

In future work, we aim to further the application of safe reinforcement learning-based
control in actual vehicles. Applying reinforcement learning to real vehicles presents numer-
ous challenges, particularly regarding varying road conditions. In subsequent efforts, we
plan to utilize driving simulation software to create road scenarios with obstacles such as
construction zones, potholes, and lane congestion. Training within these simulated envi-
ronments will address the challenge of adapting to diverse road conditions. Additionally,
we will employ meta-reinforcement learning to rapidly adapt to different road conditions.
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