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Abstract: This paper analyzes traditional vibration suppression methods in order to solve the
vibration problem caused by the stiffness of flexible industrial robots. The principle of closed-loop
control dynamic feedforward vibration suppression is described as the main method for solving
robot vibration suppression. This paper proposes a method for time-lag filtering based on T-trajectory
interpolation, which combines the T-planning curve and the time-lag filtering method. The method’s
basic principle is to dynamically adjust the trajectory output through the algorithm, which effectively
suppresses the amplitude of the harmonic components of a specific frequency band to improve
the vibration response of industrial robot systems. This experiment compared traditional vibration
suppression methods with the time-lag filtering method based on T-trajectory interpolation. A
straight-line method was proposed to measure the degree of vibration. The results demonstrate that
the time-lag filtering method based on T-trajectory interpolation is highly effective in reducing the
vibration of industrial robots. This makes it an excellent option for scenarios that demand real-time
response and high-precision control, ultimately enhancing the efficiency and stability of robots in
performing their tasks.

Keywords: time-lag filtering; T-shaped trajectory interpolation; dynamic feedforward; vibration
suppression

1. Introduction

Industrial robots are becoming increasingly important in manufacturing due to the
rapid development of science and technology and the rise of industrial automation. They
enhance productivity, lower costs, and create a safer working environment for humans by
performing tasks with efficient and precise movements [1–3]. However, the widespread use
of robots in industry has brought the vibration problem caused by robots during operation
to the forefront. This problem has become one of the most important factors affecting the
performance and work stability of robots. The vibration of industrial robots primarily
results from their complex mechanical structure and the instability of the motion process.
This is especially true when harmonic reducers are included, which inevitably leads to
increased joint flexibility and poor rigidity. Vibrations not only affect the working accuracy
and stability of the robot, but can also lead to mechanical wear, equipment failure, and
reduced production quality. Therefore, vibration suppression is a significant concern in the
field of industrial robotics research [4].

The vibration suppression control of industrial robots can improve their accuracy,
performance, and mechanical durability. The goal of vibration suppression is to reduce
or eliminate robot vibration through advanced control strategies, materials, and design
methods, thereby improving motion accuracy and stability. Relevant vibration suppression
methods have been explored in previous work. The literature [5] discusses the problem
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of vibration suppression in multi-degree-of-freedom industrial robots and proposes new
methods to improve existing input-shaping techniques. The proposed techniques include
an optimal S-curve trajectory, a robust zero-vibration shaper, and a dynamic zero-vibration
shaper. Additionally, a structural vibration avoidance technique based on a combination
of input shaping and learning-based structural dynamics modeling is proposed in the
literature [6]. The effectiveness of this method was experimentally verified on a Staubli
RX90CR robot (Staubli, Pfäffikon, Switzerland), where the residual vibration of the robot
during heavy motions was reduced by more than 85%. The literature [7] presents an
enhanced trajectory planning method to reduce vibration in collaborative robots. The
authors established a rigid–flexible coupled dynamics model of the robot using the finite
element and Lagrangian methods and derived the vibration equations. The trajectory
planning method optimizes the excitation force to reduce the vibration of the collaborative
robot and ensure the accuracy of the robot’s end position. The literature [8] proposes
a vibration suppression algorithm for an industrial robot joint servo system based on a
kinematic model and internal mode control. This algorithm can suppress vibrations of
the joint servo system without requiring additional sensors or complex control algorithms.
Anti-vibration filters are added between the position and velocity loops. These methods
have the following problems: the methods have high computational overhead and cannot
always be used in real-time scenarios; and vibration suppression is implemented in the
actuators of the control system, but this may lead to changes in the robot trajectory. With
regard to the matter of industrial robot vibration, there are a number of commonly utilized
algorithms, including trajectory planning, dynamic feedforward, and deep learning-based
vibration suppression. While these algorithms have made progress in addressing the
issue, it is possible that they may not entirely fulfill the engineering requirements. The
literature [9] proposes a new method for reducing residual vibrations in underactuated
and uncertain flexible systems through motion planning. The method proposed in this
study utilizes both input shaping and modifications in the mechanical characteristics
of the system concurrently, thereby enhancing robustness against uncertain parameters.
By integrating these techniques, the system’s ability to suppress residual vibrations is
significantly improved, leading to more stable and reliable operation.

This paper introduces the basic principles of industrial robot vibration, including
the source of vibration, propagation mode, and the impact on robot performance. It is
important to note that due to the great variability of the mechanical structure of robots,
this paper does not optimize or analyze the robot’s ontological structure. Two methods are
proposed for robot vibration suppression: closed-loop control-based dynamic feedforward
and T-trajectory interpolation-based time-lag filtering. Both methods have their own
advantages and can be used depending on the specific requirements of the application.
The T-trajectory interpolation-based method can dynamically adjust the trajectory output,
suppressing the amplitude of harmonic components in a specific frequency band to a great
extent. This paper analyzes the advantages and disadvantages of traditional vibration
suppression methods and T-trajectory interpolation-based time-lag filtering techniques.
The method proposed in this paper is verified for correctness.

Finally, this paper discusses future trends in vibration suppression for industrial
robots and provides suggestions for promoting research and application in this field.
The continuous innovation of vibration suppression technology may also provide useful
insights for vibration problems in other fields and promote cross-field application and
development of science and technology.

The main contributions of this paper are as follows:

(a) This paper analyzes the methods of robot vibration suppression and proposes a
new vibration suppression system for the SIASUN 20 kg flexible robot (SIASUN,
Shenyang, China).

(b) The principle of closed-loop control dynamic feedforward vibration suppression is de-
scribed, which has become the main method for solving robot vibration suppression.
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(c) This study proposes a vibration suppression method that incorporates time-lag filter-
ing at the robot controller layer, which can ensure consistency in the robot’s motion at
each joint.

(d) This article combines the time delay filtering method with the T-programming method
to address the flexible vibration of robotic arms.

(e) This article proposes a straight-line method to measure the degree of vibration.
(f) This article compares traditional methods of vibration suppression with the proposed

method through experiments. The proposed method has been applied to the SIASUN
20 kg robot and has demonstrated strong real-time performance, making it suitable
for practical engineering.

2. Overview of the Vibration Problem System
2.1. Vibration Problems

This paper utilizes the vibration test object system depicted in Figure 1 to study in-
dustrial robot vibration, which is caused by periodic and regular oscillation or vibration
during the robot’s motion or static process due to changes in the rigidity of the mechanical
structure, loosening of the joint drive system, and variations in the load [10–14]. Vibration
sources often arise from changes in the mechanical structure’s rigidity, which can result
in deformation and vibration during the robot’s motion and under load [15–18]. Further-
more, load variations can also contribute to vibration. During operation, it is possible
that fluctuations in load may cause instability in system dynamics, which could result
in vibration.
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Mechanical Resonance: Similar to any physical object, robots exhibit natural frequen-
cies at which they are more susceptible to resonance. If the operational frequency of a
robot coincides with its mechanical resonance frequency, it can result in excessive vibration.
This phenomenon can be alleviated through the implementation of damping techniques or
modification of the robot’s design.

High-Speed Motion: When robots engage in high-speed motion or rapid acceleration,
they can experience vibrations resulting from abrupt changes in their movement. These
vibrations may be particularly noticeable in lightweight robots or those equipped with
flexible structures.

The Effects of Vibration on Robot Performance: Vibration can cause positional devia-
tions of the robot’s end-effector, which negatively affects its motion accuracy. Additionally,
vibration can negatively impact the stability of the robot, particularly at high speeds or
under high load conditions. Furthermore, vibration may lead to increased wear and
tear of mechanical components, ultimately reducing the robot’s lifespan. To effectively
address the vibration problem of industrial robots, it is necessary to comprehensively
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consider the robot’s structural design, control system, sensor technology, and vibration
suppression strategy.

2.2. Traditional Vibration Suppression Methods

Traditional methods for suppressing vibration in industrial robots include mechan-
ical design, control systems, and material selection [18–21]. These techniques aim to
mitigate or eliminate vibration. Below are some common methods used for traditional
vibration suppression:

1. Optimization of mechanical structure

Rigid Design: By increasing the rigidity of the robot structure and reducing the
deformation of the structure, vibration can be reduced.

Damping Structure Design: To reduce vibration transmission, damping materials or
shock absorbers can be used to transfer vibration energy to the damping materials.

(This article does not optimize the mechanical structure)

2. Dynamics modeling and control

Model Predictive Control: A system dynamics model is used to predict and suppress
vibrations by optimizing control inputs for future states.

Adaptive Control: The adaptive control algorithm adjusts control parameters in real
time to suit different working conditions based on the system’s dynamic characteristics.

Dynamic Feedforward: Dynamic feedforward is utilized to actively control the be-
havior of a system by incorporating information from the system dynamics model into the
control system to predict future behavior and compensate for it. The dynamic equations
describe how the system’s components interact with and respond to external forces. Con-
structing precise dynamic models can improve our understanding of the system’s behavior
and our ability to predict its future state.

3. Closed-loop control vibration suppression technology

Acceleration Sensor: This sensor is used to measure the acceleration of the robot and
provide real-time information on vibration.

PID Control: Proportional-Integral-Derivative (PID) controllers are commonly utilized
in closed-loop control systems to mitigate vibration by adjusting real-time feedback signals
of position, velocity, or acceleration.

Model Predictive Control: MPC is a control strategy that utilizes a robot’s dynamics
model to predict and optimize control inputs in real time, allowing for adaptation to
varying vibration conditions.

Adaptive Control: The control parameters are adaptively adjusted based on real-time vi-
bration feedback information to handle various working environments and load conditions.

4. Active vibration control

Active Vibration Suppression System: Introduces an active vibration suppression
device that can counteract robot vibration by monitoring and feeding back vibration signals
in real time to generate anti-vibration forces.

These traditional methods for suppressing vibrations can often be combined to select
the most appropriate solution for a specific industrial robot application and working
environment. However, these methods may face challenges such as accuracy, real-time
performance, and cost. Therefore, new research and innovations are constantly emerging
in the field of vibration suppression.

5. Predictive control

Predictive control is an advanced control method used to solve system vibration
problems. It monitors the system status in real time and predicts future vibrations to
take control measures to suppress them. This method usually involves using sensors to
collect system data, and then using models to predict future vibration behavior, allowing
for control measures to be taken in advance to suppress vibration occurrence. Predictive
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control is a widely used technique in engineering, particularly in areas such as vibration
suppression, wind power generation, and robot control. It involves predicting the behavior
of a system and implementing control strategies in a timely manner to effectively reduce
the impact of system vibration on performance and stability.

3. Vibration Suppression Method Based on Dynamic Feedforward

Although the closed-loop control algorithm is complex, it still provides better vibra-
tion suppression and control accuracy than open-loop control [21–25]. Figure 2 shows
the vibration control system structure of the industrial robot discussed in this paper. The
closed-loop control system also employs filtering optimization of the motion trajectory
and feedforward compensation to effectively suppress vibrations. This paper combines
closed-loop control with dynamic feedforward compensation to suppress robot vibrations.
The use of dynamic feedforward significantly improves the robot’s motion performance.
The proposed method addresses these issues and improves the robot’s overall performance.
In industrial settings, robots may experience motion errors and vibrations due to inertia,
friction, and other dynamic effects when performing high-speed motion, complex path
tracking, or precision manipulation. Introducing closed-loop control-based dynamic feed-
forward can improve the robot’s accuracy in performing tasks. This compensation method
improves the smoothness, trajectory consistency, straightness, and trajectory tracking of the
robot’s motion, as well as the anti-disturbance ability and robustness of the control system.
The method for suppressing vibrations prepares the manipulator for trajectory tracking
capability and operational efficiency.
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Figure 2. Robot vibration control system structure.

The principle of dynamic feedforward is to use a system dynamics model to calculate
the desired control input in advance and then add it to the actual feedback control. This pro-
vides faster and more accurate control when the system experiences external perturbations
or requires a fast response. Dynamic feedforward can be utilized to achieve more precise
control by incorporating a dynamics model into the controller. To control the system, a
control input is calculated based on the current and desired states of the system. This input
is then combined with the input generated by the feedback controller.

Newton–Euler extrapolation
Extrapolation: i: 0–5
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i R denotes the rotation matrix of the coordinate frame {i} with respect to the
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.
θi denotes the angular velocity due to the rotation of the joint i.
iωi denotes the angular velocity of the link i in the coordinate frame {i}.
ivi denotes the linear velocity at the origin of the coordinate frame {i}.
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In Equation (2):
i fi is the force at the ith center of mass.
ini denotes the torque at the origin of the coordinate frame {i}.
τi is the component of ini in the z-axis direction.
The values calculated from the dynamics are utilized as inputs for the actuator’s

feedforward. Figure 3 below shows the structure of the feedforward control system for
robot dynamics.

The final motion control of the industrial robot is determined by the planned curve.
Any remaining vibration is expressed as a small amplitude oscillation with the end moment
position of the trajectory as the equilibrium point. Assuming the terminal moment position
of the robot is θk f , the residual vibration in the time domain can be expressed as:

θk(t) = θk f + θke(t) (3)

where θk f represents the position of the robot at the end of its motion; θke(t) represents
the small amplitude oscillation generated by the robot. |θke(t)| ≪ 1. The issue of de-
creasing the residual vibration of the robot can be reframed as the task of minimizing the
position and velocity errors of the robot at the end moment. Based on the analysis above,
the requirements for trajectory planning to suppress robot vibration can be summarized
as follows:
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1. Ensure that the velocity, acceleration, and acceleration of the reference trajectory have
continuous boundaries at the beginning and end of the motion.

2. Largely suppresses the amplitude of the harmonic components in a specific frequency
band.

3. The goal is to minimize position and velocity errors in the trajectory at the termination
moment and suppress residual vibrations of the robot.
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4. Vibration Suppression System with Time-Lag Filtering for T-Track Interpolation

Reference [26] proposes a scheme for suppressing vibration using cable-driven par-
allel robots (CDPR) to protect the flexible wings of satellites from external interference
and severe vibrations caused by rotation, avoid damage, and reduce energy consumption.
The effectiveness of vibration suppression was evaluated through numerical simulations
under the control of the proposed fuzzy PID method and active control method. Refer-
ence [27] proposes an optimal control method that is dependent on the pose to actively
suppress tool tip vibration generated by periodic milling forces in robot milling. The
method’s performance is evaluated through process-independent offset mass experiments
and milling experiments, which showed that it can reduce tool tip vibration and improve
robot milling accuracy. According to Reference [28], robots have low stiffness and are sus-
ceptible to vibration during the boring process, which can make it challenging to maintain
machining quality. This article analyzes the vibration mechanism during robot boring
processes and proposes a new vibration suppression method based on pressure feet. The
effectiveness of the vibration suppression method was verified through a large number
of boring experiments, which also confirmed the correctness of the vibration mechanism.
Based on these references, this paper proposes a method for suppressing vibrations using
time delay filtering and investigates the vibration mechanism of a 20 kg robot. A new
concept of ‘straightness’ is introduced to assess the performance of the proposed method
in comparison to other mainstream vibration suppression techniques.

Figure 4 shows a control system that utilizes the time-lag filtering method to improve
system performance by adjusting the output trajectory. This method involves selecting a
specific frequency band based on the robot body’s vibration characteristics and designing a
corresponding time-lag filter. The filtered signal trajectory can reduce vibration amplitude
within the selected frequency band. Under ideal circumstances, robot body vibration can
be reduced to zero through suppression or elimination.

Vibration suppression is a crucial concern in industrial robot control, particularly in
applications that demand high accuracy and performance. The time-lag filtering method is
particularly suitable for integration into the trajectory planning unit of a robot controller.
This method can directly enhance performance through software algorithms without
modifying the overall hardware and software structure of the controller.
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4.1. T-Track Interpolation Strategy

When an industrial robot is assigned a task, it is typically provided with only the
starting and ending positions. To generate the robot’s position, speed, and acceleration at
each moment, specific strategies and methods are used. This process is known as trajectory
interpolation, which enables the robot to create smooth paths and maintain smoothness
during the motion process. The goal of T-trajectory interpolation is to ensure that the robot
displays desirable motion characteristics while executing T-trajectories using appropriate
mathematical algorithms and control strategies.

Acceleration:

A(t) =


A 0 ≤ t < t1
0 t1 ≤ t < t2
−A t2 ≤ t < t3

(4)

Velocity:

V(t) =


Aτ1 0 ≤ t < t1

AT1 t1 ≤ t < t2

AT1 − Aτ3 t2 ≤ t < t3

(5)

Distance:

S(t) =


Ss +

1
2 Aτ2

1 0 ≤ t < t1

S01 + AT1τ2 t1 ≤ t < t2

S02 +
1
2 Aτ3(2T1 − τ3) t2 ≤ t < t3

(6)

where A denotes the maximum acceleration and t1 ∼ t3 denotes the time point of each
stage. T-trajectory interpolation is a technique used to ensure that a robot exhibits smooth,
accurate, and efficient motion when executing a T-trajectory. The use of T-trajectory in-
terpolation helps to avoid robot instability when switching paths. This involves inserting
additional points in the robot’s path to achieve the desired motion.
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4.2. Principle of Input Time-Lag Filtering Method

Time-lag filtering is a technique used in control systems to suppress time-lag (delay)
effects. It is a form of input shaping with significant features and applications in vibration
suppression.

1. Vibration Signal Monitoring: During a robot’s task, the robot control system monitors
the vibration characteristics of the robot body in the operating space. These character-
istics are obtained from the residuals of the actual trajectory relative to the theoretical
trajectory, known as the trajectory residuals. The robot body exhibits undamped
oscillation. The characteristics of the trajectory residuals can serve as the foundation
for designing the time-lag filter parameters.

2. Design of the Time-Lag Filter: The time-lag filter is a Finite Impulse Response (FIR)
filter with parameters for amplitude, damping ratio, and time lag. The damping
ratio and time lag are determined by the intrinsic frequency of the robot body, while
the amplitude is determined by the damping ratio and time lag. By adjusting the
parameters of the time-lag filter, it can be adapted to vibration signals of different
frequencies and amplitudes.

3. Multimodal Vibration Suppression: The robot body is composed of multiple rotary
joints, each with different performance and load capacities. Therefore, the system
exhibits multimodal vibration, which means that its response amplitude to multiple
frequencies is significant. Filtering out the vibration of a single frequency alone does
not produce a noticeable effect. To address this issue, a cascaded time-lag filter can be
employed to suppress vibration across all frequency bands.

4.2.1. Time-Lag Filter Design Guidelines

The time-lag filtering method can be used to dynamically adjust the trajectory output
in the curve of T-trajectory interpolation. This method suppresses the amplitude of har-
monic components in specific frequency bands, primarily making it suitable for vibration
suppression in complex and variable environments. By doing so, the robot system’s ro-
bustness and adaptability to vibration are improved. This method offers advantages in
real-time performance and accuracy, providing an effective technical solution for industrial
robots to move with high precision and stability, even under vibration disturbances. Each
joint of the robot is considered a dynamical system, which is simplified to a second-order
follower system.

..
y(t) + 2ξωn

.
y(t) + ω2

ny(t) = ω2
nu(t) (7)

where ωn represents the undamped intrinsic frequency of the system, ξ represents the sys-
tem damping ratio, u(t) represents the system input, and y(t) represents the system output.

The unit impulse response of an underdamped system is given as:

w(t) =
ωn√
1 − ξ2

e−ξωntsin(ωdt) (8)

In Equation (8), ωd = ωn
√

1 − ξ2 represents the damped intrinsic frequency of the
system. The output of the system displays exponentially decaying oscillations. The rate of
decay is determined by ξ, while the frequency of the oscillation is determined by ωd.

The output of the system with the addition of time-lag filtering is:

y(t) = ∑n
i=1 Aiw(t − ti) (9)

where n is the number of pulses of the FIR, Ai is the amplitude of each pulse, and ti is
the time lag of each pulse. To meet the implicit condition of the system, which is that the
robot’s termination position still matches the target position after adding the filter, the
parameter Aiti of the filter must satisfy the following condition:

y(t) = 0, t ⩾ tn (10)
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where tn represents the end moment of the pulse sequence action. Thus, it is that:{
∑n

i=1 Aie−ξωn(tn−ti)cos(ωdti) = 0
∑n

i=1 Aie−ξωn(tn−ti)sin(ωdti) = 0
(11)

4.2.2. Zero-Vibration Time-Lag Filter Design

The expression for time-lag filtering in the time domain is:

f (t) = ∑n
i=1 Aiδ(t − ti) (12)

The expression for time-lag filtering in the frequency domain is:

F(S) = ∑n
i=1 Aie−tiS (13)

The residual vibration of the system can be defined as the impulse response in a steady
state:

V(ωn, ξ) = e−ξωntn
√

C2(ωn, ξ) + S2(ωn, ξ)

Among them,
C(ωn, ξ) = ∑n

i=1 Aieξωnti cos(ωdti) (14)

S(ωn, ξ) = ∑n
i=1 Aieξωnti sin (ωdti) (15)

By setting V(ωn, ξ) = 0, the requirement of zero vibration can be satisfied. Its equiva-
lent, Equations (14) and (15) are both zero.

However, the zero-vibration filter designed using the above method is only effective at
ω = ωn. Additionally, the vibration suppression bandwidth is very narrow. It is necessary
to increase the order of the filter, i.e., the number of pulses, to broaden the effective vibration
suppression bandwidth.

To achieve a zero-vibration filter with N-pulses, the following conditions must be met:

C(ωn, ξ) = 0
S(ωn, ξ) = 0

∂C(ω,ξ)
∂ω |ω=ωn= 0

∂S(ω,ξ)
∂ω |ω=ωn= 0

...
∂n−2C(ω,ξ)

∂ωn−2 |ω=ωn= 0
∂n−2S(ω,ξ)

∂ωn−2 |ω=ωn= 0

(16)

The parameters for the N-pulse zero-vibration time-lag filter can be obtained by
solving Equation (16) as follows:  Ai =

Ci−1
n−1Ki−1

(1+K)n−1

ti = (n − 1) π
ωd

(17)

The time-lag filtering method convolves and filters the raw input signal with a given
pulse before inputting it into the system to obtain a valid input signal. Figure 5 illustrates
the working principle of input shaping using two pulses. The horizontal axis of the curve
is measured in seconds (s) and the vertical axis is measured in millimeters (mm). When a
pulse A1 is applied to a flexible system, it will cause the system to vibrate. The vibration
response of an underdamped system is depicted in the figure above as the A1 response.
If a second pulse, A2, is applied to the system with an amplitude opposite to that of the
first pulse after one-half cycle, the vibration of the system will be completely suppressed. It
is important to note that selecting the appropriate amplitude and duration of the second
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pulse is crucial in achieving effective vibration suppression. Ideally, complete suppression
of vibration should be achieved.
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Filters can be designed according to Equation (17) to account for the multimodal
vibration of industrial robots. It is important to determine the vibration of each mode and
cascade the filters to maintain the kinematic synergy of all joints, avoiding differences in
filter parameters that could disrupt it.

5. Experimental Analysis

The experiment compared two methods for suppressing vibrations in industrial robots:
one based on closed-loop control of feedforward dynamics and the other based on T-
trajectory interpolation time-lag filtering [29–31]. Table 1 shows the results of the exper-
imental equipment used to test robot trajectory accuracy and stability, which included a
dynamic signal test analyzer, laser tracker, and micrometer.

Table 1. Experimental equipment.

Instrumentation Quantities

Laser Tracker 1 unit
20 kg Industrial Robot 1 unit

ThinkPad Laptop 1 unit

Figure 6 displays the flowchart of the vibration test conducted on an industrial robot.
Table 2 below shows the full-mode vibration angular frequency of the robot body as

measured.

Table 2. The angular frequency distribution of each joint vibration.

Joint Angular Frequency Minimum Frequency Maximum Frequency

1 19.635 18.7 20.6684
2 43.6332 41.3367 46.1999
3 78.5398 71.3998 87.2665
4 87.2665 78.5398 98.1748
5 No obvious vibration NONE NONE
6 No obvious vibration NONE NONE
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Figure 6. Block diagram of test procedure.

When the robot executes a motion command, the controller uses a cascaded mode of
time-lag filter for each mode in the software algorithm. This filter is cascaded and specific
to the joint involved in the motion, effectively suppressing any vibration.

The Laser tracker from FARO Company (Exton, PA, USA) was selected to measure
the robot’s vibration trajectory in this experiment. The tracker has a measuring range
of 40 m and an accuracy of 10 µm ± 8 µm/m. To meet the measurement requirements,
the tracker’s accuracy of ±25 µm takes into account the sphericity error of the target ball
and the spatial distance between the tracker and the robot during measurement. The
experiment described in this paper employs a sampling period of 1 ms, which corresponds
to the robot’s communication period.

5.1. Trajectory Interpolation Test

The trajectory interpolation test is a prerequisite for the vibration suppression method
based on T-trajectory interpolation time-lag filtering. To achieve vibration suppression,
time-lag filtering must be combined with T-track interpolation. The trajectory interpolation
curve of the industrial robot was collected and tested to verify key features such as smooth
transition, trajectory optimization, and speed planning. To improve the accuracy and
efficiency of the automation system, T-trajectory interpolation was used to ensure a smooth
trajectory of the industrial robot. As shown in Figure 7a–c, the horizontal axis of the
curve is measured in cycles/16 ms, while the vertical axis is measured in mm. The goal
of T-trajectory interpolation is to improve the accuracy and efficiency of the automation
system by achieving ideal motion characteristics.
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The trajectory curves without vibration suppression are shown in Figure 8, from
which it can be seen that the robot’s velocity and torque have large amplitudes that affect
the control. The robot is controlled in synchronized position mode, and although it also
has a certain amplitude on the position curve, it is not significant enough relative to its
position scale.
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As shown in Figure 9, the inclusion of vibration suppression considerably enhances
the amplitude of the robot’s velocity profile while mitigating the impact of vibration.
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The experimental results suggest that ensuring smooth transitions between target
points in T-trajectory interpolation leads to vibration-free and stable transitions, which
helps avoid robot instability during path switching. Trajectory optimization shapes the tra-
jectory to meet specific motion conditions by considering factors such as the shortest path,
minimum acceleration/deceleration, and minimum mechanical stress. Velocity planning
and T-trajectory interpolation are utilized to enhance system stability by achieving appro-
priate velocity variations throughout the trajectory and ensuring the necessary conditions
for the vibration suppression method of time-lag filtering.
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5.2. Straightness Vibration Suppression Test

The accuracy of an industrial robot’s straight-line walking ability is reflected in its
straightness test results. This is a test of straightness vibration suppression for industrial
robots. Straightness motion is the most used method for inducing vibration in industrial
robots. It provides an intuitive response to the vibration of each joint of the robot, al-
lowing for the assessment of the effect of joint vibration on the robot. The experiments
on straightness vibration suppression have shown that the time-lag filtering method is
superior to the vibration method based on closed-loop control of the dynamic feedforward.
Figures 10–12 demonstrate the effectiveness of the time-lag filtering method in suppressing
robot vibration at various speeds.

At a straightness velocity of 30%:
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At a straightness velocity of 150%:
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The time-lag filtering technique is an effective means of motion control for industrial
robots. It is expected to improve the performance of robots and meet the increasing demand
for precision and efficiency in modern manufacturing. However, time-lag filtered control
systems are subject to certain delays.

5.3. Comparison of Methods for Vibration Suppression

Due to the difference between the trajectory of robot teaching and speed parameters,
the deviation value of vibration may be different. However, it is necessary to compare only
under the same conditions.

To evaluate the actual vibration effect of the relevant vibration suppression algorithms
(predictive control algorithm, time-lag filtering algorithm, and dynamic feedforward algo-
rithm) on the robots, a comparative test was carried out. Four sets of offset distance values
were collected for Formula (18).

o f f set 1 = trajectory o f without vibration suppression ¯planning trajectory

o f f set 2 = trajectory o f predictive control¯planning trajectory

o f f set 3 = trajectory o f time lag f iltering¯planning trajectory

o f f set 4 = trajectory o f dynamics f eed f orward¯planning trajectory

(18)

Figure 13 demonstrates that time-lag filtering is more effective than other algorithms
in suppressing vibrations and enabling the robot to achieve a higher level of trajectory
coincidence. The degree of trajectory coincidence is an important indicator of the robot’s
ability to maintain trajectory planning, and using time-lag filtering is a viable approach to
improving this ability.

Table 3 shows that the time-lag filtering method and dynamic feedforward con-
trol method are superior to other methods in terms of vibration suppression. The de-
lay filtering method has the best vibration suppression effect and can improve robot
vibration performance.
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Table 3. Comparison of straightness.

Parameter
Without Vibration

Suppression
Algorithm

Predictive Control
Algorithm

Dynamic Feedforward
Algorithm

Time-Lag Filtering
Algorithm

Average 2.4333 mm 2.0367 mm 1.1966 mm 0.7718 mm
Max 2.9426 mm 2.5000 mm 1.6312 mm 1.3170 mm
Min 1.9129 mm 1.4900 mm 0.8579 mm 0.1085 mm

Standard Deviation 0.3573 mm 0.3287 mm 0.2746 mm 0.3806 mm

5.4. Analysis of Experimental Results

We use “Average Amplitude Ratio” as a measure of the vibration suppression effect,
abbreviated as AAR.

AAR =
1
n ∑n

i=1

(
Si
Ui

)
(19)

where n is the number of laser tracker acquisition points, Si is the amplitude after vibration
suppression, and Ui is the amplitude before vibration suppression.

Comparison of the classical methods with the method proposed in this paper: the
predictive control method has an AAR of 0.841, the dynamic feedforward method has an
AAR of 0.498, and the time-lag filtering method proposed in this paper has an AAR of 0.306.
The vibration suppression effect increases as the AAR decreases.

In summary, the method proposed in this paper can reduce the AAR from 0.841
and 0.498 to 0.306 compared with the classical methods, which has a more significant
improvement effect.

6. Conclusions

This study explores the application of the T-planning-based time-lag filtering technique
in suppressing vibrations in robotic systems. Time-lag-induced vibrations can negatively
impact system performance and lead to unstable control behavior. The problems associated
with vibration suppression systems are described in detail, including some of the reasons for
the occurrence of vibrations. The paper thoroughly analyzes and compares the advantages
and disadvantages of closed-loop control-based dynamic feedforward. Additionally, it
proposes a vibration suppression method based on time-lag filtering with T-trajectory
interpolation. The robotic system can respond more accurately to external commands by
designing zero-vibration time-lag rate filters for each vibration mode and cascading them,
thus reducing vibration. The results indicate that the time-lag filter, which is based on
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T-trajectory interpolation, is significantly more effective than the dynamic feedforward
method, which is based on closed-loop control, in suppressing robot vibrations. This
leads to a significant improvement in the robot system’s vibration performance. Time-lag
filtering provides a more reliable response for the robot, particularly in tasks requiring
high-precision control, which enhances its reliability and accuracy in performing tasks.

Future research could investigate the optimization and extension of time-lag filtering
in different types of robotic systems and various application scenarios to better adapt to
evolving robotics needs.
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