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Abstract: Tool wear monitoring (TWM) is of great importance for improving the machining quality
and the efficiency of the milling process. Extracting a discriminative tool wear feature is the key to
TWM. Cutting force coefficients, which reflect the tool–chip and tool–material contact form, are good
indicators of tool wear condition. However, in the existing studies, only the tangential and radial
cutting force coefficients are adopted to monitor tool wear. The axial coefficients extracted from the
axial cutting force are neglected. Preliminary experiments have shown that, although the axial cutting
force has a small amplitude, the axial cutting force coefficients are very discriminative regarding the
tool wear condition. Fusing the axial coefficients and the traditional tangential and radial coefficients
can improve the monitoring accuracy. Based on such a consideration, this study proposes a milling
tool wear monitoring method in which the multichannel cutting force coefficients, viz., the tangential,
radial, and axial cutting force coefficients, are fused to indicate the tool wear. A long short-term
memory (LSTM) network is adopted to sequentially estimate the progressive tool wear value from
the multichannel cutting force coefficients. The effectiveness of the proposed monitoring method
is examined using the PHM 2010 data. The results show that the proposed method outperforms
the traditional method. With the fusion of the multichannel coefficients, the monitoring accuracy
improves by 2.74–6.35%.

Keywords: tool wear; monitoring; cutting force; cutting coefficients; LSTM model

1. Introduction

Tool wear decreases the machining quality and the efficiency of the milling process. Se-
vere tool wear will even cause tool breakage and destroy the workpiece and the machine [1].
According to statistics, the downtime caused by tool wear failure accounts for 20% of the
total working hours, and the related economic loss accounts for 15–40% of the total cost [2].
The tool wear monitoring system, which can make an accurate online estimation of tool
wear and provide an alert regarding tool failure, is of great importance for improving the
machining quality and efficiency [3].

Online assessments of tool wear are usually conducted by inferring the tool wear
from the monitoring signals [4]. Commonly used monitoring signals are cutting force [5,6],
vibration [7], acoustic emission [8], and rotor current [9]. Because of its ability to sense tool
wear condition, the cutting force signal has been widely adopted in tool wear monitoring
systems. However, due to the high sampling rate of the cutting force signal generated in
the milling process, the cutting force data are excessive and redundant. It is not proper to
estimate the tool wear from the raw cutting force signal. Extracting low-dimensional and
discriminative tool wear features is necessary for constructing an efficient tool monitoring
system for the milling process.

The cutting force coefficient, which represents the force distribution in the tool–chip
and tool–material contact zones, has proven to be a discriminative tool wear feature [10,11].
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From a modeling perspective, the cutting force coefficients can be regarded as parameters of
the model representing the relationship between the uncut chip thickness and cutting force.
Therefore, the cutting force coefficients can be extracted by identifying the model. In recent
years, the milling force model has been deeply investigated, leading to a good theoretical
foundation for model identification and cutting force coefficient extraction [12,13]. In the
study of milling titanium alloys, Lu et al. [14] accurately predicted the micro-milling cutting
force under the tool wear state by establishing a mapping relationship between the flank
wear and cutting force. Zhou et al. [15] comprehensively considered the effects of the
radius of the cutting edge on the shear/plowing force coefficient and the wear width of
the flank face on the friction coefficient and established a milling cutting force model that
includes both cutting edge wear and flank wear. Nouri et al. [16] built a dual cutting
force coefficient model to represent the relationship between UCT and cutting force and
extracted the cutting force coefficient from the cutting force signal to monitor the tool wear.
Hou et al. [17] built an analytic force model considered flank tool wear and calculated the
flank wear from the friction force coefficient in the flank wear region. Pan et al. [18] adopted
the cutting parameter-independent coefficients that were extracted from the mechanistic
cutting force model to estimate the tool wear. Liu et al. [19] extracted the cutting parameters
and tool runout-independent cutting force coefficients to estimate the tool wear under
variable cutting parameters and runout in the micro-milling process.

The adopted cutting force coefficients in the studies mentioned above were mainly
the coefficients that were extracted from the tangential and radial cutting forces. Because
the amplitude of the axial cutting force in the milling process is small, the axial coefficients
corresponding to the axial force wear are usually neglected in tool wear monitoring. In
this study, it was considered that although the axial force is small, the axial coefficients
are sensitive to the tool wear condition, and incorporating the axial coefficients into the
monitoring system must improve the monitoring accuracy. Based on such a consideration,
this study proposes a milling tool wear monitoring method in which the multichannel
cutting force coefficients, viz., the tangential, radial, and axial cutting force coefficients,
are fused to indicate the tool wear. The long short-term memory network is adopted to
sequentially estimate the progressive tool wear value from the multichannel cutting force
coefficients. The effectiveness of the proposed monitoring method is examined via the
PHM 2010 data.

This study evolves as follows. The cutting force model and the extraction of the cutting
force coefficients are presented in Section 2. The tool wear monitoring is conducted in
Section 3. The effectiveness of the proposed monitoring method is validated in Section 4.
The study is concluded in Section 5.

2. Cutting Force Model and Cutting Force Coefficient Extraction
2.1. Mechanistic Cutting Force Model for the Milling Process

Equations (1)–(3) mathematically describe the mechanistic cutting force model param-
eterized by the cutting force coefficients. As the equations show, the model represents the
relationship between the uncut chip thickness and cutting force.

Fc =
(
Kc,sph + Kc,vb

)
d (1)

Fr =
(
Kr,sph + Kr,vb

)
d (2)

Fa =
(
Ka,sph + Ka,vb

)
d (3)

where Fc is the tangential force, Fr is the radial force, Fa is the axial force, h is the instan-
taneous uncut chip thickness, d is the axial cutting depth, Kc,sp is the shear/ploughing
coefficient in the tangential direction, Kr,sp is the shear/ploughing coefficient in the radial
direction, Ka,sp is the shear/ploughing coefficient in the axial direction, Kc,vb is the friction
force coefficient in the tangential direction, Kr,vb is the friction force coefficient in the radial
direction, and Ka,vb is the friction force coefficient in the axial direction. The six cutting
force coefficients were categorized into three classes in terms of direction: tangential, radial,
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and axial direction. In terms of the effecting mechanism, the six cutting force coefficients
were categorized into two classes: the shear/ploughing coefficients and the friction force
coefficients. The shear/ploughing coefficients correspond to the force distribution in the
rake face and cutting-edge zone and thus reflect the wear condition of the rake face and
cutting edge. The friction force coefficients correspond to the force distribution in the flank
wear zone and thus reflect the flank wear condition. The six cutting force coefficients are
listed in Table 1.

Table 1. The multichannel cutting force coefficients.

Shear/Ploughing Friction in Flank Region

Tangential Kc,sp (N/mm2) Kc,vb (N/mm)

Radial Kr,sp (N/mm2) Kr,vb (N/mm)

Axial Ka,sp (N/mm2) Ka,vb (N/mm)

The uncut chip thickness periodically varies with the rotation angle, as Equation (4) shows.

h(θ) = fz sin(θ) (4)

where fz is the feed per tooth. In practice, in precision milling, the uncut chip thickness
also varies with tool runout parameters such as runout length and runout angle [20,21].
This study mainly considered the conventional milling process, which is less affected by
the tool runout. Thus, the simplified form without considering the tool runout effect was
adopted to mathematically represent the uncut chip thickness, as Equation (4) shows.

Compared to the tangential and radial forces, the forces in the feed and normal
directions are easier to collect, as most commercial force meters use Cartesian coordinates.
Instead of the tangential and radial forces, the tangential and radial coefficients are usually
extracted from the cutting forces in the feed and normal directions. According to the
decomposition form shown in Figure 1, the cutting forces in the feed and normal directions
can be mathematically written as Equations (5) and (6).

Fx =
[
Kc,sph cos(θ) + Kc,vb cos(θ) + Kr,sph sin(θ) + Kr,vb sin(θ)

]
d (5)

Fy =
[
Kc,sph sin(θ) + Kc,vb sin(θ)− Kr,sph cos(θ)− Kr,vb cos(θ)

]
d (6)
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2.2. Identification of the Multichannel Cutting Force Coefficients

The cutting force coefficients were extracted by identifying the cutting force model
defined in Section 2.1. The input of the model is the instantaneous uncut chip thickness, and
the output of the model is the cuttingforce. The cutting force coefficients are regarded as
the model parameters to be identified. The identified coefficients are the model parameters
that create an optimal fitting relationship between the measured cutting forces and the
predefined uncut chip thickness. The measured feed and the radial and axial forces in a
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short cutting pass are denoted by vectors Fx, Fy, and Fa, and the predefined instantaneous
uncut chip thickness in a short cutting pass is denoted by vector h. The four vectors
involved in the identification process are defined as:

hc := h. ∗ cos(θ)
c := cos(θ)
hs := h. ∗ sin(θ)
s := sin(θ)

(7)

With the definitions of the four vectors, the cutting force model in Section 2.1 can be
written in matrix form using Equation (8).

Fx/d
Fy/d
Fa/d

 =

hc c hs s 0 0
hs s −hs −c 0 0
0 0 0 0 h 1




Kc,sp
Kc,vb
Kr,sp
Kr,vb
Ka,sp
Ka,vb

 (8)

By solving Equation (8), the six coefficients can be obtained. To ensure the Equation
has a unique solution or the least square solution, the number of sampling points should be
larger than six. It is worth noting that, before identifying the cutting force coefficients using
Equation (8), an alignment process should be carried out to ensure that the instantaneous
uncut chip thickness and the measured cutting force are aligned. In this study, the alignment
process is conducted by maximizing the linear correlation between the instantaneous uncut
chip thickness and the measured resultant force.

3. Tool Wear Monitoring with LSTM and the Multichannel Cutting Force Coefficients

Tool wear is a progressive degradation process. Sequential estimation, which combines
current and historical information, is a good way to monitor progressive tool wear. LSTM
(Long Short-Term Memory) is a type of recurrent neural network (RNN) architecture that
is well-suited for learning long-term dependencies in sequences [22], as Figure 2 shows.
Therefore, the LSTM model is utilized to monitor the tool wear from the extracted six
cutting force coefficients.
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Unlike the traditional RNNs, LSTMs have a memory cell that can maintain information
over long time periods and prevent the vanishing gradient problem, which makes them
more suitable for tasks such as speech recognition, natural language processing, and time
series analysis. The key component of the LSTM architecture is the memory cell, which has
three gates: the input gate, the forget gate, and the output gate. The input gate controls the
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flow of new information into the memory cell, the forget gate decides what information
to keep and what to discard, and the output gate determines how the memory cell’s
information is used, as Figure 3 shows. These gates are controlled by sigmoid activation
functions and trained using backpropagation through time (BPTT). According to study [22],
the mathematical representation of the LSTM can be written using Equations (9) and (10).

ct = ft ⊙ ct−1 + it ⊙ gt (9)

ht = ot ⊙ σc(ct) (10)

where i, f, g, and o denote the input gate, forget gate, cell candidate, and output gate, respec-
tively. Notation ⊙ denotes the Hadamard product, and σc denotes the state activation function.
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According to the data form and the task, the LSTM can be categorized into four
classes: sequence-to-label classification, sequence-to-sequence classification, sequence-to-
one regression, and sequence-to-sequence regression. In this study, the continuous flank
wear width (VB) was adopted to measure the tool wear state. Thus, the monitoring of
the flank wear width was a regression problem. As the VB should be estimated at each
time step, the monitoring process was a typical sequence-to-sequence regression process.
As Figure 4 shows, the proposed LSTM has eight layers: the sequence input layer with
the sequence of the six cutting force coefficients as the input, three LSTM layers with
13 hidden states, the fully connected layer with 10 notes, the dropout layer with a dropout
probability of 0.5, the fully connected layer, and the regression layer. It is worth noting
that the stacked LSTM form was adopted in this study to better represent the nonlinear
regression relationship between the features and the flank wear. To avoid overfitting, only
three LSTMs were stacked in this study.
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The LSTM for tool wear monitoring was constructed with the guide of the Deep Learn-
ing Toolbox in MATLAB [23]. Before training the LSTM, the input data were normalized
to have zero mean and unit variance. The training options were as follows: (1) train for
60 epochs with mini-batches of size 1 using the solver ‘Adam’; (2) the learning rate was set
to 0.01; (3) the gradient threshold was set to 1 to prevent the gradients from exploding; and
(4) ‘Shuffle’ was set to ‘never’ to keep the sequences sorted by length.

4. Experimental Validations and Analysis
4.1. Experimental Setup

The data from PHM 2010 were adopted to validate the monitoring method. The PHM
Data Challenge is a competition open to all potential conference attendees. The challenge
in 2010 was focused on RUL estimation for high-speed CNC milling machine cutters using
dynamometer, accelerometer, and acoustic emission data. The PHM 2010 tool wear data
are often used to validate the monitoring method, as the data set has enough tool wear data.
This study also adopted the data set to validate the multichannel coefficient-based tool wear
monitoring method. In the milling experiment of PHM 2010, six ball nose milling tools were
utilized. The six experiments were C1–C6. These cutters varied in terms of their geometry
and coating, but they all shared the same specifications, including 6 mm alignment-tool
carbide ball-nose ends with three flutes. The material in the cutting processes in this
experiment was stainless steel (HRC52). During the cutting process, the upper face of the
material was horizontally cut from top to bottom, which created a series of lines. After
315 cuts were completed, another cutter started again at the top edge and made another
315 similar cuts. The cutting face measured 112.5 mm wide and 40 mm high. The cutting
parameters are listed in Table 2. The experiment setup is shown in Figure 5. Detailed
information about the experimental setup can be found in reference [24].

Table 2. The cutting tool, material, and cutting parameters used in the experiments.

CNC Machine Röders Tech RFM760 (Soltau, Germany)

Tool type Ball nose milling cutter

Number of flutes 3

Workpiece material Stainless steel (HRC52)

Spindle speed 10,400 rpm

Feed rate 1555 mm/min

Radial cutting depth 0.125 mm

Axial cutting depth 0.2 mm

Number of cuts per experiment 315
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The cutting force signal was collected using a dynamometer with three channels for
the different directions, with a PCI1200 board with a sampling rate of 50 KHz per channel.
The tool wear was measured after each cut and stored in the computer along with the
sensed signals, which were captured using Labview software running on the computer.
The Labview software could be found at https://www.ni.com/en/support/downloads/
software-products/download.labview.html#521715 (accessed on 6 April 2024). Detailed
information about the PHM 2010 data can be found at https://phmsociety.org/phm_
competition/2010-phm-society-conference-data-challenge/ (accessed on 15 July 2023).
Because the tool wear values in experiments C2, C3, and C5 were not measured, only the
experimental data in C1, C4, and C6 were utilized. Three groups of training and testing
were conducted. The training and testing data for the three groups are listed in Table 3.

Table 3. The cutting parameters used in the experiments.

Number Training Data Testing Data

1 C4 and C6 C1

2 C1 and C6 C4

3 C1 and C4 C6

4.2. Tool Wear Feature Extraction and Analysis

The cutting forces with different tool wear conditions are shown in Figures 6–8. The
amplitude of force increased with the tool wear. The amplitude of the force Fx at the end
pass (pass 315) was nearly 30 times the amplitude of the force with a fresh tool. This implies
that tool wear indeed has a great impact on the cutting force. Among the forces in the three
directions, the force Fz had the smallest amplitude. This is because the helix angle was
small, and the effect of cutting on the axial direction was slight. Also, the waveform of the
force at the first cutting pass was more irregular than the fore waveform with the worn tool.
This may be because the tooltip was shaped at the first cutting pass, and the worn tool had
a blunter tooth tip and a smoother waveform.

The extracted tangential and radial cutting force coefficients are shown in Figures 9 and 10.
Figure 9 shows the shear/ploughing coefficients, and Figure 10 shows the friction force
coefficients. The figures clearly show that both the shear/ploughing coefficients and
the friction force coefficients increase with the tool wear. This is because the uncut chip
thickness does not vary with the tool wear, while the cutting force increases with the tool
wear. From the two figures, it was also found that the shear/ploughing coefficient was
bigger than the friction force coefficient. This is because the chip formation occurred in
the shear/ploughing region and made the shear/ploughing force much bigger than the
friction force in the flank wear region. Figure 11 presents the extracted axial cutting force
coefficients. It shows that the axial coefficients are able to adequately indicate the tool wear
condition. The standard deviation of the extracted cutting force coefficients is presented in
Figure 12.
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4.3. Tool Wear Monitoring Results and Analysis

The testing results are presented in Figures 13–15. Figure 13 presents the testing
results of C1, with C4 and C6 as the training sets. Figure 14 presents the testing results
of C4, with C1 and C6 as the training sets. Figure 15 presents the testing results of C6,
with C1 and C4 as the training sets. From the figures, it was found that the monitoring
method via the fusion of the six cutting force coefficients had a higher tool wear estimation
accuracy, especially for the monitoring of the severe tool wear condition at the last cutting
passes. The relative monitoring error defined in Equation (11) was adopted to measure the
monitoring accuracy.

Error =

P
∑

i=1
(VBm,i − VBr,i)

2

P
∑

i=1
VB2

r,i

(11)

where VBm,i is the monitored flank with a width at the i-th cutting pass, VBr,i is the real
flank with a width at the i-th cutting pass, and P is the number of cutting passes.
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The influence of the initial parameters on training process was analyzed by conducting
multi-training with random initial parameters. Five hundred training processes were
carried out for each experiment. The distributions of the monitored error are shown in
Figure 16. The average error is listed in Table 4. It shows that, compared to the traditional
monitoring method with tangential and radial cutting force coefficients, the proposed
monitoring method with the multichannel coefficients yielded more accurate monitoring
results and improved the monitoring accuracy by 2.74–6.35%.
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Table 4. The average monitoring error with different coefficients.

Number Tangential + Radial Axial Tangential + Radial + Axial

1 8.53% 8.98% 5.79%

2 14.70% 15.38% 11.33%

3 16.58% 25.39% 10.23%
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According to the results presented above, it can be concluded that although the axial
force is small, the axial coefficients extracted from the axial force are sensitive to the
tool wear condition, and incorporating the axial coefficients into the monitoring system
improves the monitoring accuracy. The effectiveness of applying the stacked LSTM to the
progressive tool wear monitoring was also verified by comparing the monitoring results of
different models. The single-layer LSTM model and the commonly used MLP model were
used for comparison purposes. The monitoring results via different models are presented in
Table 5. It clearly shows that the stacked LSTM model yielded a more accurate monitoring
result. This is because the stacked LSTM is better at representing the nonlinear relationship
between the features and the tool wear and is also better at estimating the sequential tool
wear progress compared to the single-layer LSTM and MLP models.

Table 5. The average monitoring error of different monitoring models.

Number MLP Single-Layer LSTM Stacked LSTM

1 10.37% 9.24% 5.79%

2 16.73% 14.95% 11.33%

3 16.58% 18.17% 10.23%

Although the multichannel coefficient-based method improves the monitoring ac-
curacy, the average monitoring accuracy is still not satisfactory. This may be due to the
existence of a non-neglected discrepancy between the training and testing experimental
data, and the LSTM model that was trained using the two groups of experimental data
cannot be directly used for the testing of the other data. In future work, we will study
the discrepancy between the sequential tool wear data and build a transfer LSTM [25] to
monitor the tool wear process to solve the discrepancy problem and to further improve the
monitoring accuracy.

5. Conclusions

The multichannel cutting force coefficients, viz., the tangential, radial, and axial
coefficients, extracted from the three-dimensional cutting force signals were fused to
monitor the tool wear. A mechanistic cutting force model with the multichannel coefficients
as the model parameters was constructed. The multichannel coefficients were extracted
by identifying the mechanistic model. The LSTM model was adopted to estimate the tool
wear value from the sequential coefficients. Some conclusions are as follows:

(1) The tangential, radial, and axial cutting force coefficients were sensitive to the tool
wear condition.

(2) With the fusion of the multichannel cutting force coefficients, the monitoring accuracy
improved by 2.74–6.35%.

(3) The shear/ploughing coefficient was bigger than the friction force coefficient and was
more sensitive to the tool wear condition in milling Inconel 718.

The extraction of the multichannel cutting force coefficients relies on the analytical
and regular cutting force model, and thus, the cutting force coefficient can be regarded as a
regular feature of the cutting force signal. The irregularity and singularity of the cutting
force signal, such as the fractal dimension and Holder exponent, can also indicate the tool
wear condition and will be incorporated into the monitored model in future work. In
addition, the transfer stacked LSTM model will be considered to solve the discrepancy
problem and to further improve the monitoring accuracy.
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