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Abstract: The whole life cycle degradation data set of rolling bearings has the characteristics of large
capacity, diversity, and non-stationarity. As a powerful tool for processing such time series data
in deep learning algorithms, LSTM is prone to the loss of important time series information in the
process of the life prediction of rolling bearings, which leads to a decline in prediction accuracy.
Therefore, a method for predicting the remaining useful life (RUL) of rolling bearings based on the
combination of temporal pattern attention mechanism (TPA) and LSTM is proposed. The method
firstly combines hierarchical clustering and principal component analysis (PCA) to construct a multi-
faceted and multi-scale preferred feature set reflecting the degradation information of rolling bearings,
then strengthens the information correlation between hidden layers of the LSTM model through
TPA and optimates the parameters of the fusion model of TPA and LSTM by using the gazelle
optimization algorithm (GOA). Finally, the model is applied to the experimental data set of rolling
bearing degradation. The results show that, compared with the traditional model, this method is
more suitable for the remaining life prediction of rolling bearings.

Keywords: remaining useful life prediction; gazelle optimization algorithm; temporal pattern
attention mechanism; long short-term memory neural network

1. Introduction

In recent years, the rapid development of high-end heavy equipment such as high-
speed rail, turbines, and industrial robots has placed higher and higher requirements on the
reliability and safety of equipment. Data show that about 45% to 55% of mechanical failures
in rotating machinery are caused by rolling bearing failure [1]. As a key component of
high-end heavy equipment, rolling bearings usually operate under high-speed, heavy-load
conditions and are extremely susceptible to wear and tear, which can cause equipment
failure, serious economic losses, and even casualties. Therefore, it is crucial to choose an
appropriate method, make full use of real-time monitoring data from rolling bearings,
accurately predict the RUL of rolling bearings, and provide a reliable basis for predictive
maintenance of equipment.

At present, rolling bearing RUL prediction methods are mainly divided into two types:
one is based on the failure mechanism model and the other is data-driven. The prediction
method based on the fault mechanism model refers to constructing a failure physical model
that reflects the rules between the rolling bearing fault state and system parameters through
theoretical derivation or large-scale experimental analysis [2]. However, bearing failures
in equipment such as aerospace engines and industrial robots are characterized by multi-
factor coupling and complex transmission paths, which often require the establishment
of extremely complex mechanical models, making it difficult to obtain accurate results.
Relying on abundant measured data throughout the life cycle of rolling bearings, the
data-driven prediction method does not require in-depth study of the coupling of multiple
failure factors in the external environment of the bearing and the complex degradation

Machines 2024, 12, 224. https://doi.org/10.3390/machines12040224 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12040224
https://doi.org/10.3390/machines12040224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0009-0001-0429-921X
https://doi.org/10.3390/machines12040224
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12040224?type=check_update&version=2


Machines 2024, 12, 224 2 of 22

mechanism inside the bearing. Therefore, this method has received widespread attention
from scholars. Data-driven prediction methods can be divided into statistical models and
machine learning. The prediction method based on the statistical model first establishes a
random degradation model of the rolling bearing and estimates and updates the unknown
parameters of the model through a large number of historical performance degradation
data and field data of the same operating condition and the same model of rolling bearings,
thereby obtaining the RUL expression of the rolling bearing in the form of a probability
distribution. At present, significant progress has been made in the prediction methods based
on statistical models. Scholars have successively proposed rolling bearing degradation
modeling under different situations such as multiple uncertainties [3], nonlinearity [4],
multi-stage [5], and multi-source information fusion [6]. Although complex stochastic
degradation models can effectively track and predict the degradation trend of rolling
bearings, they need to assume more unknown parameters, making the model parameters
more difficult to estimate. The accuracy of prediction methods based on statistical models
greatly depends on the accurate estimation of model parameters. At the same time, rolling
bearing degradation data are affected by multiple working conditions and models and the
degradation process is random and variable. Therefore, the accuracy of the method for
predicting rolling bearing RUL based on statistical models needs to be improved.

The prediction method based on machine learning generally consists of four technical
processes, namely data collection, health indicator (HI) construction, health stage (HS)
division, and RUL prediction [7]. The construction of a high-quality HI is the prerequisite
for high-precision RUL prediction. The monitoring data collected through sensors has
the characteristics of large capacity, nonlinearity, and non-stationarity. How to mine
useful information from the huge data is the key to bearing RUL prediction. A large
amount of random noise mixed in with the monitoring data increases the difficulty of
constructing an HI. Tang et al. [8] proposed a noise reduction method based on the fusion
of local mean decomposition (LMD) and multi-scale entropy (MSE). This method first uses
LMD to decompose the original signal into multiple components that are then filtered
out with a low signal-to-noise ratio through mutual information values; finally, the MSE
composition feature set of the remaining components is obtained. Experiments show
that this method has extremely strong noise reduction capabilities. Wang et al. [9] used
variational mode decomposition (VMD) to decompose the original signal into global
degradation components and local fluctuation components. This method classifies noise
and random fluctuations into one category, making full use of the characteristic information
of the original signal. As an effective indicator of the physical quantities reflecting the
degradation of rolling bearings, RMS is widely used because of its good interpretability and
monotonicity [10]. However, often a single feature can only reflect the single-scale feature
information of the time series and the analysis effect has certain limitations. Therefore, many
scholars extract rolling bearing degradation characteristics from different perspectives
such as the time domain, frequency domain, and time–frequency domain to form feature
sets [11]. Zhang et al. [12] screened the feature set based on the weighted sum of three
indicators, monotonicity, correlation, and robustness, and extracted the optimal features.
It is important to construct an HI that can map the degradation trend of rolling bearings.
Principal component analysis (PCA) can fuse high-dimensional feature sets into low-
dimensional feature curves as bearing HIs without losing much feature information and is
an important means to deal with this type of problem [13].

Reasonable division of health stages and determination of rolling bearing degradation
starting points and failure points are of great significance to rolling bearing RUL prediction
and subsequent maintenance strategies. Mao et al. [14] first found the maximum slope
point of the singular value decomposition (SVD) normalized correlation coefficient, then
found the point at the same time on the RMS as the individual bearing change point,
and finally averaged all individual bearing change points as the starting point of bearing
degradation. starting point. Li et al. [15] determined the 3σ interval by calculating the
average and standard deviation of kurtosis and considered the exceeding 3σ interval as
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an abnormal state of the rolling bearing. Jin et al. [16] used Box–Cox transformation and
Gaussian distribution to determine the starting point of degradation and divided the
degradation stage of rolling bearings into a health stage and a wear stage. In summary,
based on the threshold method, the starting point of rolling bearing degradation can be
objectively determined. However, due to the weak fault information of rolling bearings
in the early degradation stage, there is a situation where the segmentation points of the
healthy stage and the degradation stage are extremely blurred. At the same time, due
to the uncertainty of individual differences in rolling bearings, the degradation trend of
some rolling bearings is poor in monotonicity, which can easily lead to misjudgment of
the starting point of degradation. Therefore, how to accurately find the starting point
and failure point of rolling bearing degradation while ensuring the objectivity of the
classification basis requires further research.

Machine learning has powerful feature extraction capabilities and is widely used in
speech translation, image recognition, fault diagnosis, RUL prediction, and other fields.
Wang et al. [17] combined the BP neural network with the ARIMA model and applied it
to fan RUL prediction. Experimental results show that this method can make up for the
shortcomings of the large prediction errors of a single BP neural network. Zhang et al. [18]
used a genetic algorithm (GA) to optimize the BP neural network to achieve RUL prediction
for cutting tools. Experimental results show that this method can also improve the accuracy
of model prediction. However, a BP neural network also has the disadvantages of slow
convergence speed and ease of falling into local minimization. Chen et al. [19] proposed an
improved hybrid model RUL prediction method that combines the multivariate gray model
(MVG) and the radial basis neural network (RBF). This method can solve the problems of a
small number of prediction samples, insufficient sequence integrity, and local minimization
and has the advantages of a simple structure and fast convergence speed; however, this
method is only suitable for short- and medium-term and exponential growth predictions.
Wang et al. [20] proposed an online sequential extreme learning machine (OS-ELMK) with a
kernel to solve the non-stationary problem of time series. Miao et al. [21] applied a support
vector machine (SVM) to gyroscope RUL prediction. They first used wavelet decomposition
to weaken the influence of random items in time series and highlight the trend items and
then introduced a GA-optimized SVM for time series prediction. This method shows that
the SVM has strong generalization processing capabilities. However, for long-term time
series prediction, the SVM has problems such as a long training cycle and high risk of
overfitting. To sum up, traditional machine learning mostly adopts shallow model design
and cannot represent the complex mapping relationships of time series.

In today’s big data context, rolling bearing monitoring data mostly exhibits nonlinear,
diverse, and multi-dimensional characteristics. Among various machine learning algo-
rithms, deep learning algorithms have powerful feature learning capabilities, nonlinear
fitting capabilities, flexible model structure expansion capabilities, and can better handle
diversified rolling bearing performance degradation data. Therefore, they are widely used
in the field of rolling bearing RUL prediction. They have developed rapidly, and a large
number of deep neural networks have been developed and applied to rolling bearing RUL
prediction. Babu et al. [22] used a convolutional neural network as a rolling bearing RUL
prediction model, and their results show that the prediction accuracy of this method is
better than traditional machine learning. Zhu et al. [23] applied a multi-scale convolutional
neural network (MSCNN) to rolling bearing RUL prediction. Compared with a traditional
CNN, the MSCNN can learn global information and local information simultaneously, im-
proving the model prediction accuracy and stability. Li et al. [24] used a CNN to extract the
multi-scale features of vibration data for equipment RUL prediction. This method shows
that the CNN can replace traditional signal processing and remove manual experience to
achieve an end-to-end prediction method, making RUL prediction more intelligent. The
above shows that increasing the depth and complexity of the CNN model can enhance the
learning ability of the CNN, but excessively increasing the depth of the model will increase
the time cost of model prediction and, at the same time, network degradation problems
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will occur. In this regard, Mo et al. [25] added the residual network (ResNet) to a CNN for
device RUL prediction, which solved the problems of gradient disappearance, gradient
explosion, and network degradation that occur with the superposition of convolutional
layers and pooling layers and accelerated the model convergence.

Rolling bearing monitoring data contain a large amount of timing information. Al-
though CNNs have powerful high-dimensional feature extraction capabilities, they do
not have the memory function of time series information. The recurrent neural network
(RNN), as a deep learning network that specializes in processing time series data, has
proven its power in application fields such as natural language processing (NLP), speech
recognition, and web resource recommendation. Inspired by this, Heimes [26] applied
an RNN to equipment RUL prediction and proved on the NASA data set that the RNN’s
ability to predict time series is stronger than other neural networks. Guo et al. [27] used an
RNN to extract rolling bearing degradation data to construct an HI. The results showed
that the HI constructed by this method has high monotonicity and correlation, proving
that RNNs can also replace traditional signal processing. Wang et al. [28] proposed an
RUL prediction method based on a cyclic convolutional network (RCNN) and applied it to
rolling bearing and milling cutter data sets. The results show that this method has high
accuracy and convergence. Although RNNs have the memory function of time series data,
when RNNs handle long time series prediction problems, they will also expose two major
drawbacks: gradient disappearance and gradient explosion. LSTM and a gated recurrent
unit (GRU) were proposed to solve this type of problem. Wang et al. [11] applied LSTM to
rolling bearing RUL prediction, and their results showed that LSTM has high accuracy in
long time series prediction. Huang et al. [29] used a bidirectional long short-term memory
network (BiLSTM) to perform feature extraction and RUL prediction on turbofan engine
data. The results show that this method has higher generalization performance compared
to LSTM. In order to fully mine high-dimensional features, Meng et al. [30] superimposed
multiple deep convolutional long short-term memory networks (CLSTMs) layer by layer
to predict device RUL. Bai et al. [31] proposed a new time series prediction model, the
temporal convolution network (TCN), by changing the architecture of a CNN. The results
show that the TCN is superior to the traditional LSTM in extracting temporal features,
and it also has the ability of time memory. However, due to the limited receptive field,
this model can only capture the local degradation features of rolling bearings with a fixed
length and cannot effectively deal with the global dependency relationship of degradation
features of rolling bearings like LSTM.

The quantification of uncertainty in predicting the remaining life of rolling bearings
has important application value for subsequent maintenance decisions. She et al. [32]
added a bootstrap algorithm to the prediction model to quantify the prediction uncertainty
and found that this algorithm can flexibly and intuitively evaluate the reliability without
prior knowledge and sensitively capture the prediction error caused by data changes. Jiang
et al. [33] combined the prediction model with a Bayesian neural network (BNN) to quantify
the prediction uncertainty of rolling bearing RUL and realized the complementary advan-
tages of the network. These methods have shown considerable prospects in application, but
there are still some unresolved issues. When processing large-scale data, its computational
time cost limits its practical feasibility. Furthermore, the robustness of the BNN will be
constrained by prior distribution selection.

This paper improves the RUL prediction method of rolling bearings based on LSTM
based on the research of scholars. In actual engineering service, there is often a long time
span from the initial degradation to the failure of rolling bearings. Although LSTM can
effectively handle the long-term dependence of rolling bearing degradation characteristics,
its ability is not sufficient to cope with practical applications. Therefore, the long-term
memory ability of LSTM still needs to be improved. The accurate setting of the LSTM
model parameters is very important for its prediction accuracy, but manual adjustment of
parameters will greatly increase time cost and workload. At the same time, the commonly
used methods to quantify the uncertainty have adaptability problems.
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In order to overcome the above problems, this paper proposes a rolling bearing RUL
prediction method based on GOA-TPA-LSTM. The major contributions of this work are:
(1) using an LSTM model with added TPA for RUL prediction of rolling bearings to enhance
LSTM’s memory ability; (2) selecting the GOA algorithm to optimize the parameters of the
prediction model, reducing the time cost and workload of manually adjusting parameters;
and (3) the combination of quantile regression and prediction models for the interval
probability prediction of rolling bearings has achieved complementary advantages of
the models.

The remainder of the paper is organized as follows: In Section 2, we introduce the basic
theories of LSTM and the TPA and GOA and established an RUL prediction framework for
rolling bearings based on these three methods. In Section 3, we apply this framework to
the accelerated life test data of rolling bearings. Conclusions are drawn in Section 4.

2. Theoretical Analysis of the Rolling Bearing RUL Prediction Model

Rolling bearings of different operating conditions and models show significant differ-
ences in degradation trends. At the same time, the degradation characteristics of rolling
bearings have long-term correlation globally and show nonlinearity and fluctuation en-
hancement locally. Long-term correlation refers to the numerical correlation of rolling
bearing degradation data over a long period of time; nonlinearity and fluctuation en-
hancement means that the local change trend is disordered, and the degree of fluctuation
increases as time goes by. These characteristics greatly increase the prediction difficulty of
the model. To solve this problem, this paper chooses to use LSTM to predict the RUL of
rolling bearings. In order to enhance the model’s ability to recognize and remember key
timing features, the TPA mechanism is introduced. In order to make the model suitable
for the RUL prediction of rolling bearings of different working conditions and different
models, GOA is added to adaptively optimize the model parameters. The following is a
focused introduction to the model.

2.1. Basic Theory of LSTM

LSTM was proposed to solve the long-term dependency problem of RNNs. That is,
when modeling time series, after several iterative calculations, earlier time series features
will be overwritten by new features, resulting in new features. The information contained
is reduced, so that the model loses its ability to learn long-term information [11]. In order
to solve the long-term dependency problem, LSTM introduces the concept of gating, which
controls the circulation and loss of features through multiple gates. Its unit structure is
shown in Figure 1.
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Figure 1. LSTM unit structure diagram. Where: ft, it, ot represent the forget gate, input gate, and
output gate of the LSTM unit at time t, respectively.

Forgetting gate: The forgetting gate determines the degree of retention of state infor-
mation at the previous moment. The calculation formula is:

ft = σ(W f ht−1 + U f xt + b f ) (1)
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Input gate: The input gate determines whether the status of the unit is updated. The
calculation formula is:

it = σ(Wiht−1 + Uixt + bi) (2)

at = tanh(Waht−1 + Uaxt + ba) (3)

Ct = ftCt−1 + itat (4)

Output gate: The output gate determines the final output value of the unit. The
calculation formula is:

ot = σ(Woht−1 + Uoxt + bo) (5)

ht = ottanh(Ct) (6)

where W and U are the weight coefficients; b is the bias coefficient; σ is the sigmoid
activation function; tanh is the tanh activation function; xt is the input at time t; ht is the
hidden state at time t; and Ct is the internal state at time t.

2.2. Basic Theory of TPA Mechanism

In order to obtain the importance of inputs at different moments to the predicted
value, TPA first uses multiple one-dimensional convolution kernels to extract the time
series features of fixed length from hidden state ht output by LSTM, then the weights of
the current time ht and the previous time ht-w are determined by the scoring function and
the final hidden state ht is obtained according to the weights of the current time [34]. The
LSTM adding TPA focuses on the correlation between the hidden layer output value at
different times in the past and the hidden layer output value at the current moment, which
enhances the sensitivity of the input value at key historical moments and thereby enhances
the prediction model’s ability to recognize and remember key temporal features. The block
diagram of the TPA mechanism is shown in Figure 2.
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The calculation formula is:
CNN extracts the temporal feature matrix HC

i,j:

HC
i,j =

w

∑
i=1

Hi,t−w−1+l ∗ Cj,T−w+l (7)

Calculate the temporal pattern weight vector vt:

f (HC
i , ht) = (HC

i )
T

Waht (8)

αi = σ( f (HC
i , ht)) (9)

vt =
m

∑
i=1

αi HC
i (10)
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Calculate the hidden state at the current moment h′t:

h′t = Wh′(Whht + Wvvt) (11)

where Hi,t−w−1+l = [ht−w, ht−w+1, . . . , ht−1], w is the length of the time series of interest,
∗ represents convolution operation; Cj,T−w+l is the convolution kernel, T represents the
convolution kernel size; and Wi,h′ ,h,v is the weight matrix.

2.3. Basic Theory of GOA Algorithm

The GOA algorithm is a new global intelligent optimization algorithm proposed by
Agushaka et al. [35] that was inspired by the behavior of gazelles escaping predators. It has
powerful optimization efficiency and convergence functions. In this paper, the algorithm
is used to find the optimal hyperparameters of the prediction model. The basic modeling
steps of the GOA are as follows:

(1) Random initialization of the population

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
...

...
...

xn,1 xn,2 · · · xn,d

 (12)

where n represents the number of populations; d represents the dimension of the problem
to be optimized; xi,j = r·(Uj − Lj) + Lj; r is a random number between [0, 1]; and Uj and Lj
are the upper and lower bounds of the parameters to be optimized, respectively.

(2) Global search

⇀
y i+1 =

⇀
y i + v·

⇀
R·

⇀
RB·(

⇀
Xi −

⇀
RB·

⇀
y i) (13)

where
⇀
y i+1 is the solution of the i + 1 iteration;

⇀
y i is the solution of the i iteration; v

represents the individual’s moving speed;
⇀
R is a vector composed of random numbers

between [0, 1]; and
⇀
RB is a random number vector of Brownian motion.

(3) Local search

When the number of iterations is an odd number, the first stage is taken.

⇀
y i+1 =

⇀
y i + v·µ·

⇀
R·

⇀
RL·(

⇀
Xi −

⇀
RL·

⇀
y i) (14)

where µ is −1 or 1 and
⇀
RL is a random number vector from Le′vy distribution. That is,

Levy(α) = 0.05·a·|b|−
1
α , a = N(0, σ2

a ), α = 1.5, b = N(0, σ2
b ), σa =

[
Γ(1+α) sin(πα/2)

Γ((1+α)/2)α2(α − 1)/2

]1/α

,
σb = 1.

When the number of iterations is an even number, the second stage is taken.

⇀
y i+1 =

⇀
y i + v·µ·CF·

⇀
RB·(

⇀
Xi −

⇀
RL·

⇀
y i) (15)

where CF = (1 − i/imax)
(2i/imax) represents the cumulative effect of predators.

(4) Gazelle escape

⇀
y i+1 =

{
⇀
y i + CF[

⇀
L +

⇀
R·(

⇀
U −

⇀
L )]·

⇀
d

⇀
y i + [0.34·(1 − r) + r](

⇀
y r1 −

⇀
y r2)

r ≤ 0.34
r > 0.34

(16)

where
⇀
d =

{
0
1

r < 0.34
r = 0.34

and r1 and r2 are random integers between [imin, imax].
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The optimization flow chart of the GOA algorithm is shown in Figure 3.
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2.4. RUL Prediction of Rolling Bearing Based on GOA-TPA-LSTM

The technical route of the prediction method of rolling bearing RUL based on the
GOA-TPA-LSTM model proposed in this paper is shown in Figure 4, and the specific steps
are as follows:

(1) Extracting the degradation feature of rolling bearings from time domain, frequency
domain, and time–frequency domain to build a feature set;

(2) Screening feature sets based on monotonicity, time series correlation, and robustness;
(3) Combining hierarchical clustering and PCA to fuse feature sets;
(4) Using the top-down (TPD) algorithm to divide the fused features into health stage,

degradation stage, and failure stage, and using the features of the degradation stage
as degradation factors for subsequent prediction;

(5) Normalize the degradation factor and divide the dataset into training and testing sets;
(6) Using TPA-LSTM as the prediction model and optimizing its parameters through

GOA, the training set is used as input to train the model;
(7) Input the testing set into the trained prediction model for RUL prediction;
(8) Evaluate the prediction results and verify the effectiveness of the method proposed in

this paper.
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3. Experimental Study
3.1. Introduction to Data Sets

The vibration signal data comes from the XJTU-SY rolling bearing accelerated life test
data set [36]. The data acquisition test bench is shown in Figure 5. The test bearing in
this data set is an LDK UER204 rolling bearing. Two unidirectional acceleration sensors
measure the transverse and longitudinal vibration signals. The sampling frequency is set
to 25.6 kHz, the sampling interval is 1 min, and the duration of each sampling is 1.28 s.
This data set includes full-life vibration acceleration data of a total of 15 bearings under
three working conditions. The test condition design is shown in Table 1. Since the vibration
signal in the horizontal direction contains more useful information [37], this paper selects
Bearing 1_1, Bearing 1_2, and Bearing 1_3 under the first horizontal working condition
of the bearing and Bearing 2_2, Bearing 2_3, and Bearing 2_5 under the second working
condition as the research objects, recorded as C1~C6.
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Table 1. Test data conditions.

Working Conditions Rotating Speed/r·min−1 Radial Force/kN

1 2100 12
2 2250 11
3 2400 10

3.2. Rolling Bearing HI Construction
3.2.1. Feature Extraction

In order to quantify the degradation trend of rolling bearings in multiple aspects and
at multiple scales, 12 time domain features are first extracted (average, standard deviation,
skewness, kurtosis, maximum value, minimum value, peak-to-peak value, root mean
square, amplitude factor, waveform factor, impact factor, and margin factor), alongside
three frequency domain features (center of gravity frequency domain, average frequency
domain, and frequency domain root mean square) and eight wavelet packet node energies.
A total of 23 features are used to construct the feature set, recorded as F1~F23. Then, the
outliers of the 23 features in the feature set are eliminated. At the same time, in order to
weaken the impact of short-term random fluctuations and noise on features and highlight
the long-term trends of features, the moving average (MA) was performed on 23 features
in the rolling bearing feature data set, and the sliding window was set to 30. Finally, the
feature set was normalized. Figure 6 shows the partial feature curves of the feature set after
bearing C3 processing.
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3.2.2. Screening of Rolling Bearing Feature Sets

There are features in the feature set that cannot represent the degradation trend of
rolling bearings and are severely contaminated by noise. This paper selects a comprehensive
index consisting of monotonicity, temporal correlation, and robustness to screen the original
feature set. Among them, the higher the monotonicity, the greater the trend that the feature
value continues to increase or decrease over time; the higher the time series correlation, the
stronger the correlation between the feature sequence and the time series; and the higher
the robustness, the feature sequence is resistant to anomalies and the higher the tolerance
of the value. The definitions of the three are as follows:

Mon( fi) =

∣∣∣∣#d/d fi > 0
N − 1

− #d/d fi < 0
N − 1

∣∣∣∣ (17)

Corr( fi, Ti) =

∣∣∣∑N
i=1 (( fi − f )(Ti − T))

∣∣∣√
∑N

i=1 ( fi − f )
2
√

∑N
i=1 (Ti − T)2

(18)

Robi( fi) = (
∑n

i=1 exp(−
∣∣∣ res fi

fi

∣∣∣)
N

) (19)

where #d/d fi > 0 represents the number of eigenvalues whose derivative is greater than 0,
#d/d fi < 0 represents the number of eigenvalues with derivatives less than 0; N represents
the total number of eigenvalues; fi represents the feature sequence; and Ti represents the
time series. res fi = fi − smoothed_ f , process fi as a moving average to obtain smoothed_f.

When calculating the comprehensive index, first normalize fi and Ti to [0, 1]. When
Ti is 0, it means the monitoring start time, and when Ti is 1, it means the rolling bearing
failure time. Then, the monotonicity, temporal correlation, and robustness of the 23 features
were obtained. Since the three performance indicators are all relative quantities, the three
indicator values must first be scaled to [0, 1] according to the maximum–minimum value
and then the comprehensive indicator can be obtained. This paper selects the weighted
average of three performance indicators as the comprehensive indicator, and the weights
are 0.5, 0.3, and 0.2, respectively. Finally, features whose comprehensive index is less than
the threshold are filtered out to obtain the optimal feature set.

The three indicators of robustness, time correlation, and robustness and the compre-
hensive indicator of the 23 features in the bearing C1~C6 feature set were obtained. The
screening threshold is determined by the 3σ criterion. Figure 7 shows the three screening
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indicators and comprehensive indicator results of the 23 features in the bearing C1~C6
feature set.
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It can be seen from Figure 7 that by calculating the comprehensive index of each
feature of the four bearing feature sets, the features screened out for bearing C1 are F1, F4,
F9, F11, and F20; the features screened out for bearing C2 are F1, F3, F4, F9, F10, F11, F13,
F16, F20, F21, F22, and F23; the filtered out features of bearing C3 are F1, F3, F9, F11, F20, and
F21; the screened out features of bearing C4 are F1, F3, F4, F9, F10, and F11; the filtered out
features of bearing C5 are F1, F3, F4, F9, F10, F11, F16, F17, F19, F20, and F21; and the screened
out features of bearing C6 are F1, F3, F4, F9, F10, F11, F13, F16, F17, F18, F19, F20, F21, F22,
and F23.

3.2.3. Construction of a Rolling Bearing HI Based on Hierarchical Clustering and
PCA Fusion

There are also a large number of redundant features in the selected feature set, which
will increase the time cost of the prediction process and the complexity of the prediction
model, increase the risk of overfitting the model, and reduce the generalization ability of
the model. This paper uses the method of clustering first and then fusion to eliminate the
impact of redundant features on subsequent predictions. First, the feature set is divided
into three clusters through hierarchical clustering based on the similarity between the
features of the feature set, and the similarity evaluation index is the Euclidean distance;
then, PCA feature fusion is performed on all features in each cluster and a total of three
fusion features are obtained. Finally, the optimal feature among the three fused features
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is selected as the HI that reflects the degradation trend of the rolling bearing. Since the
full life cycle of a rolling bearing includes a healthy stage, a mild degradation stage, an
accelerated degradation stage, and a failure stage, the ideal rolling bearing HI should be
a steady-rising-accelerating rise-abnormal trend. The average height is selected as the
evaluation index, and the formula is avh = ∑n

i=1 Ii/(n − 1), where Ii is the fusion feature.
The smaller avh is, the more consistent the HI is with the bearing degradation trend.

Through the above method, the feature set can be fused into three feature sequences
with relatively small correlation coefficients to eliminate redundant features. This method
can fully mine the global and local information of the rolling bearing degradation trend.
And performing hierarchical clustering before PCA fusion of rolling bearing feature sets
can increase the contribution rate of PCA fusion features and reduce the loss of useful
information. Figure 8 is a tree diagram of hierarchical clustering of feature sets of six types
of bearings.
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As can be seen from Figure 8, hierarchical clustering divides the feature set into three
clusters from top to bottom based on the similarity of various features and uniformly
clusters redundant features and features with higher similarity, thereby eliminating the
impact of redundant features on the subsequent impact of rolling bearing RUL predictions.
The red lines, green lines, and purple lines in the figure represent the feature sequences of
different clusters after clustering. The three cluster feature sets are recorded as D1, D2, and
D3, respectively. Table 2 shows the results after PCA feature fusion.

It can be seen from the fourth column of Table 2 that the contribution rate of the
fused features of each cluster feature set of various types of bearings is greater than 95%,
indicating that the feature set only loses a very small part of the feature information after
PCA feature fusion, verifying the effectiveness of this method. It can be seen from the fifth
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column of Table 2 that by calculating the avh of the fusion features of each cluster of various
bearings, bearing C1 selects the D1 fusion feature, bearing C2 selects the D1 fusion feature,
bearing C3 selects the D1 fusion feature, bearing C4 selects the D1 fusion feature, bearing C5
selects the D1 fusion feature, and bearing C6 selects D3 fusion feature as an HI. The fusion
characteristic curves of each cluster of various types of bearings are shown in Figure 9.

Table 2. Hierarchical clustering and PCA fusion results of six bearing feature sets.

Bearing Labels
Hierarchical Clustering Results

Contribution of Fused Feature avh
Cluster Feature Labels

C1

D1 F2, F5, F6, F7, F8, F14, F15 99.63% 0.1280
D2 F3, F12, F13, F16, F18, F21, F22, F23 95.40% 0.2106
D3 F10, F17, F19 97.26% 0.3415

C2

D1 F2, F5, F6, F7, F8, F14, F15 98.54% 0.1701
D2 F12, F18 98.51% 0.3551
D3 F17, F19 99.21% 0.2892

C3

D1 F2, F5, F6, F7, F8, F14, F15 99.23% 0.1500
D2 F4, F10 98.38% 0.1729
D3 F12, F13, F16, F17, F18, F19, F22, F23 95.34% 0.2642

C4

D1 F2, F5, F6, F7, F8, F14, F15 98.42% 0.1793
D2 F12, F13, F16, F17, F18, F19, F22, F23 95.51% 0.2478
D3 F20, F21 97.77% 0.4021

C5

D1 F2, F5, F6, F7, F8, F14, F15 99.61% 0.3883
D2 F12, F18 96.14% 0.4845
D3 F13, F22, F23 95.15% 0.3999

C6

D1 F2, F5, F6, F7, F8, F15 99.99% 0.2993
D2 F14 100% 0.4214
D3 F12 100% 0.2893
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(d) Bearing C4, (e) Bearing C5, (f) Bearing C6.
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As can be seen from Figure 9, the slopes of the fusion features of each cluster of the
same bearing are different, reflecting the different degradation speeds of rolling bearings in
many aspects and at multiple scales, allowing the subsequent prediction model to learn
more rolling bearing degradation information. At the same time, it was found that the
fusion features of each cluster have the same timing information, that is, the inflection
points of the three curves are all at the same time, indicating that the starting point of
rolling bearing degradation is determined by the internal degradation mechanism of the
rolling bearing, and the subsequent classification of rolling bearing degradation stages can
only be divided into an HI.

3.2.4. TPD-Based HI Health Status Classification of Rolling Bearings

The health stage of the rolling bearing life cycle contains very little degradation infor-
mation. At the same time, the health stage and the degradation stage are two distribution
trends. It is difficult for the neural network to learn different distributions. The failure stage
has lost the meaning of maintenance, so this article only discusses the degradation stage of
rolling bearings, that is, the remaining useful life is predicted. An accurate classification of
rolling bearing degradation stages can reduce the interference of health status distribution,
improve the prediction accuracy of prediction models, prevent misjudgments and waste of
computing resources, and play an important role in the subsequent maintenance decisions
of rolling bearings. The current commonly used stage division method is the 3σ criterion,
and this method is more sensitive to mutation points. When the rolling bearing health
status curve has large random fluctuations, using this method is likely to lead to early
misjudgment of degradation monitoring points. In this regard, this article introduces a
top-down (TPD) timing segmentation method [38]. The flowchart of TPD segmentation
is shown in Figure 10. Among these, T is the rolling bearing HI; ς is the algorithm stop
threshold Γ = ∅; and T̃ is the linear fitting curve of T.
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In order to verify the effectiveness of this method, a rolling bearing RUL simula-
tion curve was established. The rolling bearing RUL curve can be divided into trend
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terms and random terms. Combining reference [39] and Figure 11, it can be seen that the
degradation process of rolling bearings obeys the inverse Gaussian distribution, so the
trend term of the RUL simulation curve of rolling bearings is constructed as
xTrend = 1 − k1· exp[−((t − k2)/k3)

2]. As time goes by, the degradation process of rolling
bearings shows more significant nonlinear and random characteristics, which makes
the random term of the rolling bearing RUL curve extremely difficult to simulate with
conventional functions. In this paper, the random term of the rolling bearing RUL
curve is constructed by adding n sine functions and Gaussian white noise. That is,
xRand = ∑n

i=1 k4· sin(k5·t + k6) + η; the larger n is, xRand is closer to the actual situation.
Combined with the actual RUL curve of the rolling bearing, a mathematical model of the
rolling bearing RUL simulation curve is constructed, as shown in Equation (20).

t = 1 : 1141
x1 = 1 − 1.252· exp[−( t−1664

869.5 )
2
]

x2 = 0.3315· sin(0.0408·t − 2.667)
x3 = 0.3302· sin(0.0409·t + 0.4522)

y = x1 + x2 + x3 + η

(20)
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3.3.1. GOA Prediction Model Optimization Parameter Selection

The first 80% of the simulation data are selected as the training set, and the last 20% are
the test set. The mean square error between the prediction results and the simulation data
is used as the fitness function, the maximum number of iterations is 15, and the number of
populations is to be determined. The specific parameter settings for GOA optimization are
shown in Table 3, and the fitness curves under different population numbers are shown in
Figure 12.

Table 3. GOA parameter settings.

Parameters to be Optimized Initial Value Optimization Boundary

LSTM layer units 40 [20, 200]
Dropout rate 0.2 [0.1, 0.4]

Training period 100 [30, 300]
Learning rate 0.01 [10 × 10−4, 0.1]
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It can be seen from Figure 12 that as the number of populations increases, the corre-
sponding fitness decreases more rapidly in the early iterations and the fitness becomes
smaller after the iteration is completed, indicating that increasing the number of GOA
populations can increase the optimization effect of the GOA on the TPA-LSTM model pa-
rameters. When iterating 12 times, the fitness of all populations has stabilized. Considering
that increasing the number of populations will increase the time cost, the number of GOA
populations in this article is set to 20.

3.3.2. Simulation Data Prediction Results

In order to verify the prediction effect of each module of the prediction model in this
article, the prediction results of the model in this article are compared with the LSTM,
GOA-LSTM, and TPA-LSTM models, denoted as M0~M3. Except for the GOA and TPA
modules, the structures of each model are consistent. The M1 and M3 model parameters
are selected from the initial values in Table 3. In order to describe the prediction effect more
intuitively, the root mean square error (RMSE) and the coefficient of determination (R2) are
used as evaluation indicators for the prediction results. The calculation method is shown in
Equations (21) and (22).

RMSE = 100·

√√√√ 1
T

T

∑
i=1

(yi − ŷi)
2 (21)

R2 = 1 − ∑T
i=1 (yi − ŷi)

2

∑T
i=1 (yi − yi)

2 (22)
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where T is the size of the data set; yi is the real value; ŷi is the predicted value; and yi is the
average of the real values. The smaller the RMSE, the higher the prediction accuracy; the
smaller the

∣∣1 − R2
∣∣, the better the fitting effect.

Through calculation, the prediction results of the simulation data training set and test
set based on the four prediction models are shown in Table 4, and the prediction curve is
shown in Figure 13.

Table 4. Simulation data prediction results under four prediction models.

Index Data Set
Prediction Model

M0 M1 M2 M3

RMSE
Training 0.78 3.70 0.83 0.86
Testing 0.94 7.69 2.31 1.69

R2 Training 0.999 0.906 0.995 0.997
Testing 0.997 0.539 0.971 0.991
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The prediction results of each model in the training set can be seen in Table 4. The
RMSE of GOA-LSTM is reduced by 77.57% compared to the traditional LSTM and the
RMSE of TPA-LSTM is reduced by 76.76% compared to the traditional LSTM. Compared
with the traditional LSTM, the RMSE of this model is reduced by 78.92%, indicating that
adding the GOA module or TPA module can improve the prediction accuracy of the model,
and this effect can be superimposed. For the prediction results of each model in the test
set, the RMSE of GOA-LSTM is reduced by 69.96% compared to the traditional LSTM;
the RMSE of TPA-LSTM is reduced by 78.02% compared to the traditional LSTM; the
RMSE of the model in this paper is reduced by 87.78% compared to the traditional LSTM,
indicating that adding the TPA module can improve the long-term prediction ability of the
model, allowing the model to maintain a high accuracy in the later stages of prediction.
Combining Table 4 and Figure 13, we can see that traditional LSTM cannot effectively track
and predict simulation data starting at 600 min. Compared with the prediction results of its
own training set, the R2 of the LSTM test set dropped by 40.51%; the R2 of the GOA-LSTM
test set dropped by 2.41%; the R2 of the TPA-LSTM test set dropped by 0.61%; the R2 of
the model test set in this article was only a decrease of 0.20%, proving that adding the
TPA module can enhance the model’s ability to recognize and remember key time series
information and improve the model’s tracking and prediction capabilities.

3.4. Experimental Research

In order to verify the actual prediction ability of the rolling bearing RUL of the method
in this article, the BiLSTM, CNN-LSTM, and TCN models were used as the control group
to form a comparative experiment, denoted as M0~M3. The control group models all used
GOA parameters for optimization.
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In order to quantify the model prediction uncertainty of the rolling bearing RUL
point prediction, quantile regression is integrated with the prediction model. This method
retains the nonlinear prediction ability of deep learning while obtaining rolling bearing
RUL interval probability prediction. The objective function of the fused prediction model
is as follows:

Lq(yi, yq
i ) = ∑n

i=1 [q(y
q
i − yi) + (q − 1)(yq

i − yi)] (23)

where yi is the true value; yq
i is the predicted value when the quantile is q; and the first term

is the objective function when the predicted value is greater than the true value and the
second term is the objective function when the predicted value is less than the true value.

In order to obtain the 90% confidence interval of the model prediction, the value of q
is [0.1:0.1:0.9] and a total of nine prediction curves form the confidence interval. Use kernel
density estimation to obtain the probability density map of the prediction interval and use
the predicted values at each quantile as the input value of the kernel density estimation.
The probability density function formula is as follows:

fh(yi) =
1

nh

Q

∑
q=1

K(
yi − yq

i
h

) (24)

{
K(x) = 1

2π exp(− x2

2 )

h ≈ 1.06·std(yi)·n− 1
5

(25)

where n is the total number of samples; Q is the total number of quantiles; K(·) is the
non-negative kernel function; and h is the sampling bandwidth.

In order to describe the interval prediction effect more intuitively, the prediction
interval coverage probability (PICP) and the prediction interval normalized averaged
width (PINAW) are used as evaluation indicators for the prediction results. The larger
the PICP, the more reliable the model prediction results; the smaller the PINAW, the more
reliable the model prediction results and the higher the clarity. The calculation method is
shown in Equations (26) and (27).

PICP =
1
n

n

∑
i=1

Ci (26)

PINAW =
1

nyi

n

∑
i=1

(ui − li) (27)

where ui and li are the upper and lower bounds of the prediction interval of the i prediction
point, respectively; when the true value yi ∈ [li, ui], Ci = 1, otherwise Ci = 0.

Select the bearings C1 and C2 under the first working condition as the training set and
C3 as the test set; select the bearings C4 and C5 under the second working condition as the
training set and C6 as the test set. Each type of bearing data is processed through the above
Section 3.2 to obtain the degradation stage feature sequence of three fusion features of each
type of bearing data, which is projected into the [0, 1] interval as the input of the prediction
model, so the input layer dimension of the prediction model is 3, the label expression is
as follows:

yi =
N − i

N
i ∈ [1, N] (28)

Through calculation, the prediction results of the measured data test set based on
the four prediction models are shown in Table 5, the prediction curves are shown in
Figures 14 and 15, and the prediction result PDF is shown in Figure 16.
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Table 5. Test set bearing RUL prediction results under four models.

Bearing Index
Prediction Model

M0 M1 M2 M3

C3

RMSE 2.390 6.505 6.166 6.084
R2 0.993 0.950 0.955 0.956

PICP 0.737 0.426 0.481 0.467
PINAW 0.965 1.318 0.926 0.907

C6

RMSE 3.944 11.118 8.048 4.509
R2 0.981 0.861 0.923 0.976

PICP 0.435 0.122 0.157 0.524
PINAW 0.943 0.737 0.906 0.925
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It can be seen from Table 5 that for the prediction results of bearing C3, the RMSE
of this method is reduced by 63.26%, 61.24%, and 60.72%, respectively, compared with
BiLSTM, CNN-LSTM and TCN; for the prediction results of bearing C6, the RMSE is
reduced by 63.26%, 61.24%, and 60.72%, respectively. It shows that the model in this
paper can still maintain a high accuracy in prediction on measured data. The TCN model
has good prediction results on bearing C6, but the prediction results on bearing C3 are
not ideal. However, the prediction results RMSE of this method on bearings under two
different working conditions are both lower than four, indicating that the model in this
paper has high general accuracy. It is adaptable and can be applied to model prediction
under different working conditions.

Combining Table 5 and Figures 14 and 15, it can be seen that for the early and late
stages of rolling bearing degradation, the true value is covered by the prediction interval at
a higher rate. However, in the middle and late stages of rolling bearing degradation, the
prediction interval becomes narrower and the coverage of the true value by the prediction
interval becomes lower. This phenomenon is more obvious in bearing C6. In Figure 16b, the
model predicts that multiple “peaks” appear in the PDF graph between 1000 and 2000 min,
indicating that multiple degradation distributions occur here. This is caused by the fact
that different bearings exhibit different states such as gradual or sudden changes from the
early stage of degradation to the middle stage of degradation.

4. Conclusions

(1) The LSTM that introduces the TPA and uses GOA parameter optimization strength-
ens the connection between the hidden layer at different times in the past and the hidden
layer at the current time, which is beneficial to improving the long-term series prediction
performance of the model. Compared with other networks, the prediction performance of
this method is superior and has practical application value.

(2) Using QRLSTM to quantify the uncertainty of RUL prediction results is helpful to
quantify decision-making risks when optimizing rolling bearing maintenance decisions.
However, through analysis, it is found that the prediction accuracy of this model is affected
by the uncertainty of individual bearing differences, and this problem remains to be solved.
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