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Abstract: Torque fluctuations in drivetrains are the result of dynamic excitations and can be unfa-
vorable for the lifetime of the system. Passive ripple suppression methods exist, such as torsional
dampers and flywheels, which are often bulky and not always desired. Alternatively, performant
active control methods exist; however, their applicability to certain drivetrains is not covered. There-
fore, this paper focuses on active control from a mechanical perspective, more specifically, drivetrain
dynamics impacting active control effectiveness. A quasi-resonant controller is implemented as an
active control method, and its performance and robustness are proven both in simulation on a 3-DOF
mechanical model and experimentally at different excitation frequencies. The tests show that active
control effectiveness is highly drivetrain-dependent. In particular, the propagation of the torque
oscillation is influenced by the elastic filtering properties of the drivetrain, and the speed ripple
depends on the inertial attenuation of the drivetrain. High-stiffness, low-inertia drivetrains benefit
best from active control for ripple suppression because the inertial attenuation is limited, while
high-stiffness elements increase the mechanical bandwidth before dynamic decoupling happens
between the inertias of interest. Active control serves as a viable alternative for speed ripple reduction
when drivetrain compactness is key, instead of the current passive solutions.

Keywords: active vibration suppression; load torque compensation; speed ripple suppression;
resonant control; torsional vibration analysis

1. Introduction
1.1. Problem Statement and Literature Review

Drivetrains often suffer from unfavorable, hard-to-detect, and potentially problematic
torsional ripples. The torsional vibrations, both on the drive and non-drive sides, can be
induced by several aspects in and around the drivetrain. For instance, in electric motors,
the cogging torque and electromagnetic torque ripple can induce torsional vibrations due
to slotting effects and the current harmonics [1]. In piston engines, the pulsating drive
torque arises from non-continuous combustion strokes and the reciprocating movement of
the pistons [2]. Wind turbine drivetrains may encounter induced vibrations as the result
of aerodynamic effects on the wind turbine blades [3]. Similarly, torque oscillations in
fluid-based machines result from pressure distribution [4], among other factors.

Cyclic loads cause wear and fatigue of various drivetrain components, e.g., shafts,
gears, and couplings, which impact lifetime and result in premature failures. Additionally,
the speed oscillations induce noise [5,6], and they might also induce additional power
losses due to the continuous acceleration and deceleration of the drivetrain elements.

Three different application-dependent methods can be distinguished to reduce speed
oscillations in a drivetrain: (i) Torsional vibrations can be reduced by tackling the issue
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at its source by improving the design of the machine, e.g., by employing specific design
rules for electric motors to limit their cogging torque (e.g., rotor skewing [7], magnet
slot improvements [8]) [1]. The same is true for wind turbine drivetrains, where shape-
shifting blades are implemented to reduce loads [9]. Although this design approach can be
successful, the specific design of some machines can become costly or even impossible due
to the working principle of the machine, or in general, a re-design of an existing machine
can also be undesirable.

(ii) Additional passive or active dampers can be added to filter out the torsional vibra-
tions, e.g., the friction clutch in a car that filters out the dynamic excitation from the internal
combustion engine to the rest of the transmission [10]. Flexible coupling links can be used
between drivetrain elements to achieve torsional decoupling. An example of a complex but
well-studied type of drivetrain is the hybrid electric vehicle (HEV), which contains multiple
vibration sources and several solutions to tackle the noise, vibration, and harshness prob-
lems they face [11]. Several implemented solutions include, e.g., increasing the flywheel
inertia to filter the oscillations in a HEV [12] or introducing a torsional damper in the
drivetrain, like a tuned mass damper. But it only works on one specific frequency [13–15].

There is, however, a general tendency to limit the number of drivetrain components to
reduce manufacturing costs and obtain a more compact drivetrain. Other potential negative
effects cannot be neglected either. Introducing damping elements can affect efficiency and
even impact vehicle dynamics in HEVs.

(iii) Active damping control strategies can, therefore, become the most viable option
because neither additional drivetrain components nor redesigns are required. Examples are
active control of the electric motor in a hybrid vehicle’s powertrain to compensate for the
fluctuating drive torque of the internal combustion engine [2,16], clutch control strategies
to suppress vibrations in the transmission of vehicles [14,17], and electric machine active
damping control methods to suppress the speed ripples [18–21].

Integrating active damping requires adaptations to the standard control. Currently,
speed and current PI-controllers based on field-oriented control (FOC) are well known in
electric drive control thanks to their performance in static load conditions. Nevertheless,
the limited bandwidth of the PI controllers makes the rejection of dynamic load torque fail
at higher frequencies [22,23]. Therefore, more advanced control methods are adopted to
tackle dynamic disturbances, e.g., neural networks. However, they introduce additional
computational complexity [24]. Alternatively, a look-up table comprising the waveform of
the load machine’s dynamic excitation can be used and added as a compensation signal,
but it lacks robustness as this dynamic excitation can change with various operating points
and/or ambient conditions [25,26]. On the other hand, when dealing with a periodic
disturbance, iterative learning control (ILC), repetitive control, and resonant control can be
applied [20,21,27–30]. Regardless, ILC and repetitive control require data storage, and noise
buildup has to be addressed during the learning process. A variable sampling frequency for
repetitive control results in difficulties in adapting to changing disturbance frequencies [18].
Meanwhile, resonant control merely adds a parallel controller to the PI’s of the already
existing control to improve drivetrain dynamics. It is a promising control strategy that has
been compared with other active control methods and is seen as a popular approach [31,32],
as proven by the various applications where it is applied, e.g., photovoltaic power condition
systems [33], electric linear motor harmonic suppression [34], converters for grid applica-
tions [35,36], and electrical drives in general [21,37]. Active control (in general) increases
dynamic response and is of value for torque and speed ripple reductions, especially in
cases where the previously mentioned alternatives do not provide desired results.

1.2. Aim and Scope

Except for the application-oriented studies on active control discussed in the intro-
duction, more often than not, contributions on active control methods are focused on the
control aspect, studying performance, stability, robustness, etc., while not considering the
feasibility aspect from a mechanical perspective. Therefore, this paper aims to demonstrate
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that the effectiveness of active control is highly dependent on the mechanical bandwidth
of the drivetrain. It introduces a multidisciplinary approach, considering control and the
drivetrain dynamics. Based on its performance proven in literature, its ease of implementa-
tion, and its popularity, the (quasi-)resonant controller is chosen and implemented as active
control. This study identifies two further mechanical factors affecting the effectiveness and
performance of active control, thereby indicating which type of drivetrain active control is
best suited to achieve torque ripple reduction. The results are validated in an experimental
setup where the mechanical filters have a low bandwidth per design.

1.3. Paper Structure

The outline of the paper is structured as follows: Section 2 is about the modeling of the
employed control methods, and the drivetrain is modeled using the principles of classical
mechanics and electromagnetism. Afterward, in Section 3, the experimental drivetrain
is introduced, the adequate active control strategy on the drive motor is studied, and
stability is analyzed. Then, its performance to compensate for dynamic load excitations is
studied. This is achieved in simulation and validated on an experimental setup. Further
interpretation of the mechanical filters, based on the obtained results, is discussed in
Section 4. Finally, conclusions about active control and its applicability from a mechanical
perspective are formulated in Section 5.

2. Modeling and Control

The complete drivetrain is modeled using the principles of classical mechanics and electro-
magnetism, following the works of [5,38] for the mechanical and electrical models, respectively.

2.1. Mechanical Drivetrain Model
2.1.1. Rigid Drivetrain

The application of the rotational equivalent to Newton’s second law on a rigid drive-
train gives the following equation:

Jt
dΩ(t)

dt
= Td(t)− Tl(t)− BΩ(t), (1)

with the drivetrain’s total polar mass moment of inertia Jt; the linear friction coefficient B,
assumed constant; the rotational speed Ω; the drive and load torque Td and Tl , respectively;
t represents time. Converting Equation (1) into the Laplace domain results in the rigid
drivetrain’s transfer function Gd, given in Equation (2):

Gd(s) =
Ω(s)

Td(s)− Tl(s)
=

1
B

1
τms + 1

, (2)

with the mechanical time constant τm = Jt
B ; s stands for the Laplace variable. Hence, a rigid

drivetrain can be modeled as a first-order filter between the external torques acting on the
drivetrain and the drivetrain’s rotational speed; this filter is further denoted as the inertial
mechanical filter.

2.1.2. Elastic Drivetrain

The elastic properties, i.e., the compliance effects of drivetrains, become important
when high-frequency dynamic excitations are present. To analyze the drivetrain dynamics
in these circumstances, a model is constructed where each drivetrain component is repre-
sented by polar inertia connected with torsional springs and damper elements. This results
in a high-dimensional model that can often be reduced to a lower-order model. For the sake
of clarity, a 3-DOF model is described in this paragraph to discuss the governing equations,
as visualized in Figure 1, where the load machine (J1) is driven by a drive motor (J3),
connected to couplings, and a central shaft with relatively high polar inertia (J2). This
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high-inertia central shaft represents a lumped set of elements, such as, e.g., a belt drive,
couplings, or a gearbox for geared applications.
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Figure 1. A 3-DOF reduced mechanical drivetrain model. J1, J2, and J3 represent the load machine,
central shaft (representing a lumped set of shaft elements), and drive motor, respectively. The spring
kij and damper cij elements represent couplings that interconnect elements i and j. Td and Tl represent
the drive and load torques, respectively. Tij is the transmitted torque over the couplings. The arrows
show in which direction the (positive) torque acts.

The application of the rotational equivalent of Newton’s second law to all inertias can
be combined in a matrix equation as follows:

[J]{
..
Θ}+ [C]{

.
Θ}+ [K]{Θ} = T, (3)

where [J], [K], and [C] are the polar inertia, torsional stiffness, and viscous damping

matrices, respectively. {T}, {Θ},
.

{Θ}, and
..

{Θ} represent the external torque, rotational
angle, speed, and acceleration vector, respectively. To determine the natural frequencies, a
harmonic solution of the following form is introduced:

{X} =
{

X̂
}

ejωt, (4)

where ω is the natural pulsation of the torsional vibrations, belonging to the exponen-
tial that contains the temporal information of the vibrations, while the arbitrary

{
X̂
}

contains the amplitude and phase information of these vibrations. The combination
of Equations (3) and (4) results in the following:(

[K] + jω[C]−ω2[J]
){

Θ̂
}
=

{
T̂
}

, (5)

the well-known frequency-domain representation of a mass–spring–damper system’s
dynamics. Such a system has natural frequencies with corresponding resonance mode
shapes. To find the natural frequencies and mode shapes, a mathematical eigenproblem
must be solved for the undamped and non-driven system (

{
T̂
}
= 0

)
. The solution to the

eigenproblem becomes:
det

(
[K]−ω2[J]

)
= 0, (6)

where det(.) represents the determinant operator. The solutions of Equation (6) are the
eigenfrequencies of the system; introducing them into Equation (5), still assuming an
undamped and non-driven system, gives the mode shapes of the system.

The importance of the elastic drivetrain model is that it allows to model the propaga-
tion of the excitations from one end of the drivetrain to the other end, which can be damped
or amplified depending on the frequency.
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In most cases, the inertia and stiffness properties of a drivetrain are known via
CAD drawings and/or datasheets or obtained with finite element calculations. The damp-
ing terms of the interconnections can be estimated using the following:

cij =
2ξkij

ωk
, (7)

where ξ is the damping ratio, kij is the stiffness of the connection under study, and ωk is the
resonance pulsation at which this specific connection is under a large torsion moment. For
mechanical parts in a drivetrain, typical values of 1–2% are used for ξ. For elastic couplings
with polymer or rubber components, the damping value is much higher and is often stated
in the datasheet. The different drivetrain parameters are given in Tables A1–A3.

2.2. Electrical PMSM Model

The drive motor is a three-phase interior Permanent Magnet Synchronous Motor
(iPMSM). The electrical equations are given in the rotor reference dq-frame as follows [39],
where vd,q, id,q and Ld,q are the d- and q-axis voltages, currents and inductances, respec-
tively; ΨPM is the flux-linkage in the d-axis due to the permanent magnets in the rotor, Rs is
the stator resistance; and p is the polepair number. This yields:{

vd(t) = Rsid(t) + Ld
did(t)

dt − pΩ(t)Lqiq(t)

vq(t) = Rsiq(t) + Lq
diq(t)

dt + pΩ(t)(L did(t) + ΨPM)
. (8)

The d- and q-axis currents id,q produce an electromagnetic torque Te that can be
calculated as:

Te(t) =
3
2

piq(t)
(
ΨPM −

(
Lq − Ld

)
id(t)

)
. (9)

2.3. Field-Oriented Control

Field-oriented control (FOC) is an established and well-known electric motor current
control method and is most commonly used with PI controllers in the industry [22,39–41].
It consists of decoupling the dq-axes by aligning the d-axis with the motor permanent
magnet (PM-) flux. Here, FOC is employed as an inner loop current control within the
outer loop speed controller. The current control strategy used is the so-called Maximum
Torque per Ampere (MTPA) control strategy [42]. All PI controllers are implemented with
the following transfer function:

PI(s) = Kp

(
1 +

1
τIs

)
(10)

The current PI-controller gains are tuned based on the pole-zero cancellation principle
for a first-order system, which eliminates the dominant pole and allows the choice of a
cut-off frequency fc,co f of the closed loop system. Feedforward is implemented to com-
pensate for the back-electromotive force. The current loop cut-off frequencies are set to
fc,co f = 200 Hz. The speed controller is similarly tuned based on pole-zero cancellation of
a first-order transfer function of a rigid drivetrain with the choice of a cut-off frequency
fs,co f = 10 Hz. It can be tuned independently of the current control, as the latter can be
assumed to have infinitely faster dynamics. The control block diagram is visualized in
Figure 2. The rigid drivetrain parameters are given in Table A2. The gains and time con-
stants for all PI controllers are summarized in Table A4 for the drive motor and Table A5
for the load motor. The parameters of the power electronics converter (PEC) employed as
drive are given in Table A6.
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Figure 2. Block diagram of the field-oriented control strategy.

2.4. Resonant Control

The bandwidth of the classic PI speed controller is limited as its purpose is to suppress
constant speed errors. Fluctuating dynamic excitations are only slightly attenuated. The
obtained attenuation gets worse for higher frequencies. For this reason, the resonant
controller is implemented to cope with the dynamic component of the load torque and is
placed in parallel with the FOC speed controller, as visualized in Figure 3. As mentioned
earlier, different options exist to achieve speed and torque oscillation reduction. A resonant
controller is chosen based on its proven attenuation capabilities and its easy implementation
as an extension of an existing speed controller [18,28,29,43,44].
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The basic resonant controller, following the internal model principle (IMP), has the
same denominator as the Laplace transform of a sine wave time signal [45,46]:

RESs(s) = Kres
s

s2 +ω2
0

, (11)

where Kres and ω0 are the gain and resonance pulsation of the resonant controller, respec-
tively. Only the gain is free of choice for the user, as the resonance pulsation should match
the frequency of the dynamic excitation that is imposed on the drivetrain. To increase
robustness, and since the frequency of the excitation is not always a priori known, a damp-
ening effect can be added to the resonant controller, resulting in the so-called quasi-resonant
controller with the following transfer function [47]:

RESs(s) = Kres
2ωcs

s2 + 2ωcs +ω2
0

, (12)

where ωc is the bandwidth of the quasi-resonant controller. The addition of the resonant
controller to the regular PI speed controller extends the bandwidth of the control around
a frequency level f0 = ω0

2π that can be chosen by the user, considering the right damping
factor. The latter reduces the gain at that frequency from infinity to a finite value when
compared to the resonant controller without a damping term but increases robustness.
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3. The Resonant Controller: Simulation and Experimental Validation

In this section, the resonant controller is simulated and validated on an experimen-
tal test setup. First, the test setup is described, then the stability of the PI and quasi-
resonant controller for the setup is studied, and finally, simulation and experimental results
arę shown.

3.1. The Experimental Drivetrain

The experimental drivetrain consists of a shaft and two IPMSMs. One acts as a drive
motor, the other as a load motor. Both motors are connected to a central shaft with a
coupling and a torque transducer. The shaft acts solely as an additional inertia to the
drivetrain. The experimental setup is shown in Figure 4. The parameters of the drive and
load motors are shown in Table 1.
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Figure 4. The drivetrain test setup is used for the experimental validation of the models and
associated simulations.

Table 1. The nominal parameters of the drive and load motors.

Parameter Unit Drive Side Load Side

Nominal power kW 7.9 15
Nominal shaft torque Nm 8.9 24

Nominal speed rpm 8500 6000
Nominal RMS phase current A 15.5 27
Nominal RMS line voltage V 399 372

Pole pair number / 5 2
Stator phase resistance Ω 0.315 0.152

D-axis inductance mH 2.67 2.30
Q-axis inductance mH 3.53 6.06
PM flux linkage Wb 0.0514 0.158

The drivetrain can be represented by a 12-Degree of Freedom (DOF) torsional model,
as depicted in Figure 5. The required parameters are given in Table A1. However, such
high-DOF models are not intuitive to work with and are not required to understand
the drivetrain dynamics in the vicinity of the lower resonance frequencies. They also
increase the computational burden. Therefore, reduction methods exist where inertia and
compliances are lumped together to form a lower-order model. For the present drivetrain,
the distribution of the inertias and compliances allows for a reduction to 3-DOF, where
the two motors and the central shaft in its housing are the dominant inertias. The main
compliance effects are coming from the couplings and torque transducers. This is In line
with the elastic model. The reduction is performed with Rivin’s algorithm [48], with the
results listed in Table 2 and (repeated in) Table A3.
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Figure 5. The 12-DOF mechanical drivetrain model with inertia–spring–damper elements. The
12-DOF model is only used for determining the mode shapes, where damping elements are not
included by definition.

Table 2. The parameters of the 3-DOF mechanical drivetrain model.

Station Ji (kgmm2) Connection kij (kNm/rad) cij (mNms/rad)

1 4160 1–2 1.78 99
2 15.013 2–3 2.01 55
3 1019

When Equation (6) is solved for the present drivetrain in both the 12- and 3-DOF ver-
sions, the mode shapes of Figure 6 are obtained.
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Figure 6. Mode shapes for the elastic drivetrain model. (a) 12-DOF model, with the first and second
resonant frequencies at 114 Hz and 235 Hz, respectively; (b) reduced 3-DOF model, with the first and
second resonant frequencies at 117 Hz and 232 Hz, respectively.

The reduction in the model to a 3-DOF model has only a small impact on the location
of the resonance frequencies. Moreover, the mode shapes of the 3-DOF model show a
clear decoupling of the torsional resonances. At the first resonance frequency, the load
(Station number 1) oscillates out of phase with respect to the central shaft and the motor
together. While at the second resonance, the motor (Station number 3) oscillates out of
phase with respect to the other two inertia’s, the same is also visible on the 12-DOF system.
Therefore, it can be said that the load and the motor are decoupled at their respective
torsional resonance frequencies, as the oscillations are not transmitted further, as visualized
with the mode shapes.

The drivetrain torsional model represents the real drivetrain quite well up until at least
the second resonant frequency. This is confirmed by the color plots in Figure 7. To obtain
Figure 7, torsional vibration analysis is performed with an LMS data-acquisition module
on the drivetrain to validate the simulated observations regarding the torsional resonances
and introduce the notion of dynamic decoupling. This analysis consists of measuring the
signals from the two torque transducers at the drive and load sides during a sweep over
the rotational speed of the drivetrain. The obtained data from the torque transducers are
then put under a Fourier decomposition, resulting in the color plots.
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Figure 7. Color plots were obtained through torsional vibration analysis, visualizing the Fourier
amplitude spectrum of the measured torque signal for various rotational speeds of the drivetrain.
(a) Load-side torque transducer. (b) Drive-side torque transducer.

The torsional resonance frequencies are independent of the rotational speed of the
drivetrain; these frequencies can, therefore, be identified as vertical lines of increased torque
levels triggered by the different orders of the operating speed during the sweep-up. With
this reasoning, Figure 7 shows, in the given frequency range, two torsional resonances at
115 and 233 Hz, closely corresponding to the ones found theoretically, as shown in both
plots of Figure 6.

As can be seen, the torsional resonances are not as pronounced in both plots since
the load-side torque transducer experiences a higher torque level at the first resonance
compared to the torque transducer on the drive side. The opposite applies in the vicinity of
the second torsional resonance. This color plot behavior was predicted by the model mode
shapes visualized in Figure 6. The mode shape at 115 Hz shows that there is no significant
twist between the inertia J2 and inertia J3, which is confirmed by the experimental test since
the drive-side torque transducer does not show a significant torque level at 115 Hz. Vice
versa, the same is true for the mode shape at 233 Hz. No significant twist is present between
the inertia J1 and inertia J2, and no significant torque level is measured at the load-side
torque transducer. This shows that both mode shapes are decoupled from each other.

3.2. Controller Stability and Design

To prove the stability of the speed control loop on the experimental setup and obtain
insight into the control parameter design, the open-loop speed control bode diagrams are
studied. The control system includes the reduced 3-DOF mechanical model with friction
and the resonant controller in parallel with the PI-speed controller (as in Figure 3). The
PI-speed controller has fixed parameters since the quasi-resonant controller is added to
an existing stable speed control loop. The current controller dynamics are an order of
magnitude faster; therefore, their influence is neglected for the speed control loop. All poles
of the open loop system contain negative real parts, resulting in bounded input bounded
output stability of the open loop system.

The resonant controller has three parameters to be defined: the resonant controller
gain Kres, the bandwidth pulsation ωc and the resonant pulsation ω0. The influence of each
parameter is depicted in Figure 8. In order to evaluate the sensitivity, only one parameter
has been adapted per subfigure. Assuming the load torque frequency is known, the
resonant pulsation ω0 is fixed accordingly. The reference values of the different controller
parameters are Kres = 10, f0 = 5 Hz, and fc = 0.5 Hz. The presence of the quasi-resonant
controller is clearly visible with the peak at the resonant pulsation ω0. The peaks at 117 Hz
and 232 Hz are the torsional resonance frequencies of the mechanical 3-DOF system.
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Figure 8. Bode Diagrams of the open loop control system. The reference values of the resonant
controller used are Kres = 10, f0 = 5 Hz and fc = 0.5 Hz. (a) Sensitivity of Kres, (b) sensitivity of f0,
and (c) sensitivity of fc.

The influence of Kres shows a clear magnitude increase around the resonance pulsa-
tion ω0 in Figure 8a. This means the steady state remaining speed ripple will lower for
higher Kres. Regarding the stability of the closed-loop system, changing Kres will lower the
phase margin, which might compromise stability. fc has a dampening effect around the
resonant frequency of the quasi-resonant controller, as shown in Figure 8b. A higher value
can be set when the load torque frequency is not known a priori. Increasing f0 results in a
peak shift of the resonance frequency and a lower amplitude at this peak. Furthermore, it
shows a decreased dampening effect for a constant fc. To keep the same dampening effect,
changing fc proportionally with f0 is required, as was conducted in [49].

The set values of the quasi-resonant controller parameters for the following simulations
and experiments are in Table 3. The value of Kres was chosen together with fc based on
transient response to avoid overloading the drive motor. Also, the goal was to reach a
steady state ripple of only a few percentages of the nominal speed. fc could stay relatively
low since the load torque frequency is known a priori during the tests, thereby improving
the speed oscillation rejection at the quasi-resonant resonance frequency. The resulting gain
and phase margin, Gm = In f and Pm = 13.4o, respectively, are shown in Figure 9a and
prove closed-loop stability.
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Table 3. Quasi-resonant controller parameters.

Parameter Value

Kres 10
f0 Equal to load torque frequency
fc 0.5 Hz
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The corresponding closed-loop speed disturbance rejection bode diagram is depicted
in Figure 9b for f0 = 5 Hz. It shows, indeed, a strong attenuation of the speed ripple at the
resonance frequency of the quasi-resonant controller while increasing the ripple further
when the load torque frequency is too high with respect to the quasi-resonant controller
rejection frequency f0. This could be attenuated again with an increased dampening effect.

3.3. Simulation Results

To show the performance of the resonant controller, a simulation model is set up based
on the experimental drivetrain. The drivetrain is modeled as a 3-DOF mechanical model.
The load torque is applied directly to the load inertia station, while the drive-side machine
is controlled by FOC and a quasi-resonant filter to suppress the speed oscillations measured
at the drive side. As mentioned, the quasi-resonant controller requires an approximate
knowledge of the torque perturbation frequency to work optimally. In the following
simulations, it is assumed that the controller and the torque perturbation frequency match.

In the simulations, a sinewave load torque is applied with an amplitude of 3 Nm and
an offset of 3 Nm at multiple frequencies (3, 5, and 15 Hz); the reference speed is 1000 rpm.
The quasi-resonant control is switched on at 5 s. Figure 10 shows the resulting speed of the
drive-side machine. The quasi-resonant control works well once a steady state is reached
since the original speed ripple almost disappears completely, although the remaining ripple
is slightly larger for higher frequencies, which is related to the active control performance.
However, before the quasi-resonant controller is on, a speed ripple attenuation is already
visible as the speed oscillation amplitude decreases with increasing frequency. This is
due to the relatively high inertia of the central shaft, which works as a flywheel, thereby
passively attenuating the speed ripple.
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ripple frequency, in Figure 11b, the phase shift is higher while the amplitude is lower (1.2 
Nm with respect to 8.2 Nm). This difference is due to the bandwidth of the PI controller. 
The purpose of a PI controller is to compensate for constant errors, and it cannot handle 
ripples properly. Having a more aggressive PI controller will handle oscillations better 
and up to a higher frequency, but an aggressive PI controller lowers robustness. Using a 
parallel-placed quasi-resonant controller solves this issue; more precisely, the phase shifts 
disappear completely, and the amplitude of the drive motor torque matches the load 
torque amplitude of 6 Nm. 

Figure 10. Simulated speed of the drive motor is subject to a load torque of multiple frequencies
(3, 5, and 15 Hz). The load torque is 3 Nm, with an additional sinewave ripple of 3 Nm. A quasi-
resonant controller is switched on at 5 s. Two enlarged figures are provided: one to show the
decreasing ripple for increasing frequencies before the use of the quasi-resonant control (3–4 s) and
another to show the (relative) effect of the quasi-resonant control (8.5–9 s).

The effects of the oscillating load and control on the shaft torques are shown in
Figure 11 for a load torque frequency of 1 and 5 Hz in Figure 11a,b, respectively, together
with a torque offset to overcome the friction torque. For the lower frequency, in Figure 11a,
the PI control, without the resonant control, results in a slight phase-shifted torque ripple
on the gear-drive shaft with respect to the torque ripple on the load-gear shaft. For the
higher ripple frequency, in Figure 11b, the phase shift is higher while the amplitude is lower
(1.2 Nm with respect to 8.2 Nm). This difference is due to the bandwidth of the PI controller.
The purpose of a PI controller is to compensate for constant errors, and it cannot handle
ripples properly. Having a more aggressive PI controller will handle oscillations better
and up to a higher frequency, but an aggressive PI controller lowers robustness. Using a
parallel-placed quasi-resonant controller solves this issue; more precisely, the phase shifts
disappear completely, and the amplitude of the drive motor torque matches the load torque
amplitude of 6 Nm.
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Figure 11. Simulated shaft torques of the 3-DOF model of the drivetrain, where the load torque is
3 Nm with an additional sinewave ripple of 3 Nm. The quasi-resonant controller is switched on at 5 s.
The sinewave load torque ripple is (a) 1 Hz and (b) 5 Hz.

In relative numbers, for the three frequencies, 3 Hz, 5 Hz, and 15 Hz, the remaining
speed fluctuation is 2.8%, 6.2%, and 25.8% of the original fluctuation, respectively. This
decrease in relative effectiveness is due to the lower initial speed ripple, which is caused
by the high inertia present in the drivetrain, acting as an inertial attenuator. Although
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the resonant filter seems less effective at higher ripple frequencies due to the inertial
attenuation, it actively lowers the speed ripple to a maximum of 8 rpm pk–pk regardless
of the ripple frequency. This clearly shows that the performance of the active controller is
highly affected by the mechanical bandwidth of the drivetrain. Consequently, it also shows
that active control is especially interesting for relatively low (with respect to the torque
oscillation levels) inertia drivetrains, with a higher mechanical bandwidth and a speed
attenuation that is less pronounced, resulting in a higher speed ripple for the same torque
oscillation amplitude. The inertial filter is explained in more detail in Section 4.1.

3.4. Experimental Results

The active control with the quasi-resonant controller proves to be effective and robust
in the experimental setup described earlier. AdSPACE MicroLabBox II with software
version 2021.B is used for data acquisition and rapid control prototyping. The experimental
test is depicted in Figure 12.
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Figure 12. Experimental results. The reference sinewave load torque has an offset of 3 Nm and an
amplitude of 3 Nm, and the frequency is speed-dependent and set to 1

5 of the actual speed. The
quasi-resonant controller is set to mitigate the speed ripple at 1000 rpm and turned on at 2.5 s. The
speed reference goes in steps from 500 to 1000 to 1500 rpm, while the load torque frequencies go
from 1.67 to 3.33 to 5 Hz, respectively. (a) The measured speed; (b) the measured shaft torques
when the quasi-resonant controller is turned on; (c) the measured shaft torques in a steady state at
different speeds.

During the whole test, the reference sinewave load torque had an offset of 3 Nm and an
amplitude of 3 Nm. The torque ripple frequency is speed-dependent and set to one-fifth of
the reference speed to cover different ripple frequencies. The quasi-resonant controller is
turned on at 2.5 s. The speed reference goes in steps from 500 to 1000 to 1500 rpm, while
the load torque oscillating frequencies go from 1.67 to 3.33 to 5 Hz, respectively. Initially,
the speed ripple is 200 rpm pk–pk at 500 rpm without the quasi-resonant control active.
The initial speed ripple without active control would decrease for higher torque oscillating
frequencies due to the inertial filter. However, this is not shown in Figure 12, since once the
active control is activated, it is not turned off again.

The measured speed is shown in Figure 12a; the initial speed ripple of 200 rpm pk–pk
is reduced to about 30 rpm pk–pk at the three different speeds. The test shows that, like in
the simulations, the quasi-resonant controller can reduce the oscillations to the same level,
regardless of the excitation frequency. Additionally, the resonant controller parameters are
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not altered during the whole test and kept at the ideal parameters for a ripple frequency
of 3.33 Hz, while in simulation they were altered to stay ideal with the changing ripple
frequency. This proves the robustness of the quasi-resonant controller, as the speed ripple
is still diminished to 30 rpm pk–pk for the deviating ripple frequencies.

The shaft torques are visible in Figure 12b,c. The load-side torque shows the load
torque at the shaft between the load machine and the gear, while the drive-side torque
is measured at the shaft between the gear and the drive motor. It, therefore, reflects the
torque reference of the PI and resonant speed controllers. In Figure 12b, it is visible that
the PI controller alone cannot counteract the speed and torque oscillations properly; more
precisely, there is a phase shift present, and the amplitudes do not match between the load
and drive-side shaft torques. Once the resonant controller is turned on and the steady state
is reached at different speeds, the phase shift disappears almost completely; the remaining
offset is present to compensate for the friction present on the drivetrain. Figure 13 compares
the simulation and experimental drive and load-side torques at a 5 Hz load torque ripple
frequency. Properly identifying mechanical and electrical parameters to create a reliable
model can be tedious. The experimental results closely resemble the simulation results,
with the same friction offset and similar amplitudes of the torques, which validates the
simulation model. The only difference is the phase shift of about 3◦ between load and
drive-side torques for the simulation and about 18◦ for the experiment. This increased
phase shift explains the higher remaining speed ripple for the experiments.
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Figure 13. Comparison between simulation and experimental load- and drive-side torques of the
quasi-resonant controller at 5 Hz load torque ripple frequency.

4. The Inherent Drivetrain Factors Affecting Active Control

There are two types of drivetrain-specific factors that affect the effectiveness of active
control. These factors are seldom mentioned in active control papers, as these discuss
mainly the control aspects: performance, stability, robustness, etc. Therefore, this section
covers these limits. A first factor was already encountered in the simulation results, where
the speed ripple decreased for higher frequencies before turning on the resonant controller.
This limit is related to the inertia present in the drivetrain. Also, the dynamic decoupling of
the load and drive sides of the setup by the torsional resonances affects active control.

4.1. The Inertial Attenuation

The speed ripple finds its cause in a torque ripple of a certain amplitude, which comes,
for example, from the load. The relationship between torque and speed is described by
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Newton’s second law. Considering a rigid drivetrain, Newton’s second law becomes
Equation (1), and its transfer function, Equation (2), is repeated here for convenience:

Gd(s) =
Ω(s)

Td(s)− Tl(s)
=

1
B

1
τms + 1

, (13)

where the time constant τm = Jt
B contains the drivetrain total inertia Jt, and the friction

coefficient B. The bode plot of such a transfer function is depicted in Figure 14 This
figure shows the decreasing amplitude of the speed ripple with an increasing frequency
of the torque ripple. The attenuation gets less pronounced when the drivetrain inertia
decreases. Since the graph with the central shaft in Figure 14 represents the experimental
test setup, it explains why, in the experimental setup at hand, it is only possible to show
the resonant control performance at relatively low ripple frequencies. It was already visible
in the simulations in Figure 10 that at higher frequencies (15 Hz), the ripple disappears
even without employing the resonant controller. This is due to the presence of the central
shaft, which has a relatively high contribution to the drivetrain inertia in comparison
to the torque ripple amplitude. In Figure 14, the smallest inertia shows the case where
the central shaft high inertia component is removed from the drivetrain. An increase
of 12 dB is obtained, which would result in a speed ripple four times higher. In actual
applications, higher inertias usually go hand in hand with higher torque ripple amplitudes,
thereby maintaining an important speed ripple anyway. The inertial attenuation with the
central shaft explains why the initial ripple amplitude rapidly lowers with increasing ripple
frequencies in the simulation and experiments.
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This inertial attenuation is already well known and can be exploited for passive
ripple attenuation by adding a big flywheel to the drivetrain, e.g., piston engines. The
gear in the experimental setup takes on the role of a flywheel. Adding a flywheel for
ripple attenuation is, however, a more costly solution, and it is less compact. Therefore, if
adding a flywheel is unwanted or not possible, active control is a viable option for rigid
drivetrains, as shown by the simulations and experimental results. More precisely, the
control attenuated the speed ripple to 8 rpm pk–pk independently of the ripple frequency,
proving the drivetrain-dependent effectiveness of the active control.

4.2. The Elastic Filter

Active control acts on the speed error between actual speed and reference speed, which
is usually constant. To attenuate the speed ripple to acceptable levels, the control must first
be able to observe the speed ripple and then be able to counteract its source. Considering
the elasticity of the drivetrain, however, this is only possible in the frequency range beneath
the relevant torsional resonance frequency of the drivetrain that dynamically decouples the
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drive motor and the torque ripple source (load) from each other. To understand the role of
the elastic filter and the propagation of an applied torque through the drivetrain, a forced
response torque analysis is required.

A forced torque response torsional analysis is shown in Figure 15a. As a forced
torque oscillation, 1 Nm is applied to the drive motor inertia. Figure 15a clearly shows
the resonance frequencies at both the load and drive sides of the drivetrain and reveals
how a forced torque oscillation of 1 Nm propagates through this specific drivetrain from
the drive side to the load side. The first resonance frequency is clearly visible in the load-
side torque measurement, while it has almost no impact on the drive-side torque, which
is in accordance with the first mode shape. For frequencies below this first resonance
frequency, about 0.2 Nm remains at the load side. Above the first resonance frequency,
the propagated torque from the drive to the load side is much lower, which is due to the
presence of the second mode shape, where the drive motor has much less impact on the
load-side torque. This is clearly visible at the second resonance frequency: 1 Nm of applied
torque is amplified to 23 Nm at the drive side, while only 1.8 Nm remains at the load
side. Therefore, torque oscillations coming from the drive motor’s active control will be
effective beneath the first resonant frequency while being less effective above due to the
lower propagation torque ratio from the drive to the load side. Figure 15b shows the ratio
between the drive-side and load-side torques, and this shows that, indeed, above the first
resonance frequency, active control will be ineffective, as almost no torque propagates
through the drivetrain anymore.
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Figure 15. Forced response torsional analysis of the 3-DOF model of the drivetrain. The forced torque
of 1 Nm is applied by the drive motor. (a) The absolute shaft torques both at the drive and load side
and (b) the ratio between drive- and load-side torques.

To reveal the drivetrain and direction dependency of the torque propagation for active
control, the load inertia is now considered the counteracting torque oscillation source, and
the forced response torsional analysis is given in Figure 16. The analysis, and especially
Figure 16b, shows that torque propagation from the load to the drive side is lower than in
the analysis where propagation is considered from the drive to the load side (Figure 15).
This is due to the higher inertia of the load motor with respect to the drive motor. Therefore,
active control will already be less effective. However, even though the propagation ratio
is lower, the resonance frequencies are visible. At the first resonance frequency (117 Hz),
the applied (load side) torque of 1 Nm is amplified to 20 Nm and propagated to the drive
side, where 1.6 Nm remains. This is because the load-side torque is strongly amplified, as
shown by the first mode shape. At the second resonance frequency, even a low torque at
the load side is amplified to a higher torque level, which is in accordance with the second
mode shape, where it mostly impacts the oscillations of the drive side. The torque ratio
(drive-side torque overload-side torque), shown in Figure 16b, reveals that, indeed, torque
propagation is already lower than in Figure 15b but completely disappears after the second
resonance frequency.
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Figure 16. Forced response torsional analysis of the 3-DOF model of the drivetrain. The forced torque
of 1 Nm is applied by the load-side motor. (a) The absolute shaft torques both at the drive and load
sides and (b) the ratio between load- and drive-side torques.

The relatively low resonance frequency is a result of the presence of flexible couplings
weakly linking different parts of the drivetrain, which lowers the resonance frequency
considerably and dynamically decouples certain drivetrain elements early on. As men-
tioned, the inertia of the drivetrain has an impact on the torque propagation too. Under the
resonance frequency, higher inertia in the drivetrain results in a lower propagation ratio.
Consequently, the mechanical bandwidth and impact of the active control are limited by
the inertial attenuation and the elastic filter. Therefore, it is concluded that active control is
most effective in stiff, direct-drive drivetrains with high resonance frequencies.

To prove the benefit of direct-drive drivetrains for active control, a simulation is run
with a 2-DOF model, where the central shaft with high inertia is virtually removed from the
experimental setup. It results in only the load inertia being attached with a flexible coupling
to the drive motor. Drivetrains with higher stiffness and less flexible couplings result in
increased compactness where the torque ripples from the load will reach the drive motor
less attenuated and vice versa, while also the first resonance frequency lies higher, which
means the dynamic decoupling of both sides happens at higher frequencies. The decreased
inertia of the drivetrain also results in a lower inertial attenuation of speed ripple.

The simulation results are shown in Figures 17 and 18. Due to the strongly decreased
drivetrain inertia, the propagation torque ratio, shown in Figure 17, lies higher (the graph
of Figure 15b has been included as a comparison). Additionally, the increased torque ripple
will result in an even higher speed ripple (due to the ±12 dB difference shown in Figure 14).
The performance of the active control for the stiffer 2-DOF model is illustrated in Figure 18
at three different load torque frequencies, namely, 15, 25, and 50 Hz. The load torque is a
sinewave and has an offset of 3 Nm and an amplitude of 6 Nm pk–pk. The reference speed
is 1000 rpm, and the quasi-resonant controller gains remain unchanged. The 15 Hz load
torque simulation proves the higher initial speed ripple of the 2-DOF model with respect
to the 3-DOF model, from 14 rpm to 65 rpm, proving the ±12 dB mentioned. After 5 s,
the active controller is turned on. When a steady state is reached, the remaining speed
ripple is 16 rpm pk–pk for both 15 and 25 Hz, while it is slightly higher for the 50 Hz load
torque with 24 rpm pk–pk. This simulation shows again that, in absolute terms, regardless
of the initial speed ripple, the quasi-resonant controller can consistently reach (almost) the
same speed ripple, thereby proving the performance of the active control. For the stiffer
2-DOF model, however, a much higher initial speed ripple is present with respect to the
3-DOF model because of the decreased inertia and, therefore, decreased inertial attenuation.
As postulated, when compared to the 3-DOF model, this shows that the performance of
the active controller is highly dependent on the drivetrain’s mechanical bandwidth, which
is limited by the inertial attenuation and the elastic filter.
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Figure 17. Ratio between load-side and drive-side shaft torque for a forced response with a torque
ripple applied on the drive motor. In blue, with the central shaft, as in Figure 15, is the 3-DOF model
representing the experimental setup. In black, without a central shaft, for the direct-drive version of
the experimental test setup modeled with a 2-DOF system.
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Figure 18. Simulated speed of the drive motor in the stiff drivetrain, subject to a load torque of
multiple frequencies (15, 25, and 50 Hz). The load torque is 3 Nm, with an additional sinewave
ripple amplitude of 3 Nm. A quasi-resonant controller is switched on at 5 s. Two enlarged figures
are provided: one to show the decreasing ripple for increasing frequencies before the use of the
quasi-resonant control (3–3.12 s) and another to show the (relative) effect of the quasi-resonant
control (8.8–8.92 s).

This simulation shows again that active control is an interesting alternative for speed
ripple rejection instead of the intentional decrease in the drivetrain’s mechanical bandwidth
caused by the addition of flexible couplings and big flywheels. This is because active
control favors a more compact direct-drive drivetrain, as its performance benefits from the
higher stiffness and compactness while also being less costly if the required hardware is
nonetheless present.

5. Conclusions

In this paper, the quasi-resonant controller is implemented as an active control to sup-
press speed ripples by introducing a counteracting torque ripple. Its easy implementation
complements the regular PI controller found in most drives by increasing the control band-
width around a set frequency. The stability of the controller was proven, and simulation and
experiments show the performance and robustness of the resonant controller against torque
disturbance variations. The experiments on the test setup show a constant, remaining ripple
of 15 rpm pk–pk for all the tested speed levels, independent of the torque ripple frequency.

The results have proven that the implemented active control’s performance is highly
dependent on the mechanical bandwidth of the drivetrain. The drivetrain’s bandwidth,
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and thereby the active control’s performance, is from a mechanical perspective determined
by two phenomena, more specifically, the inertial attenuation and the elastic filter. The
high inertias present in a drivetrain act as an inertial flywheel, passively filtering out the
speed ripple, while the presence of flexible elements in the drivetrain lowers the resonance
frequencies and acts as a mechanical elastic filter by dynamically decoupling drivetrain
elements from each other. Therefore, both factors impact the useful bandwidth of the quasi-
resonant controller, regardless of the active controller’s bandwidth itself, as the controller
remained unchanged in this study.

Stiff and compact direct-drive drivetrains have higher resonance frequencies and
lower inertia, resulting in a higher bandwidth for active control and better performance.
Therefore, this study also shows that active control is an interesting solution, instead of
the addition of flexible couplings and big flywheels, for speed ripple issues, resulting in
stiffer and more compact direct-drive drivetrains. This is in favor of the trend towards
direct-drive drivetrains.
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Appendix A

This appendix is devoted to the mechanical and electrical drivetrain models. Different
tables with different parameters used throughout this study are given.

Inertia values come from the CAD models of each drivetrain element, and shaft
stiffness values too. For the couplings and torque transducers, the datasheet values were
used, and the couplings and damping coefficients were estimated based on Equation (7).

Table A1. The parameters of the 12-DOF mechanical drivetrain model.

Station Inertia of . . . Ji (kgmm2) Connection kij (kNmrad−1)

1 Load Motor 3749 1–2 18.4
2 Coupling 160 2–3 5.5
3 Transducer 280 3–4 17.1
4 Coupling 167 4–5 5.5
5 Coupling 160 5–6 11.7
6 Gear 7216 6–7 261.9
7 Rotor 7060 7–8 27.6
8 Coupling 160 8–9 5.5
9 Coupling 167 9–10 17.1
10 Transducer 280 10–11 5.5
11 Coupling 160 11–12 24.6
12 Drive Motor 632

Table A2. Rigid drivetrain parameters.

Parameter Value

B
(

Nmsrad−1
)

0.013

Jt
(
kgm2) 0.02

τm (s) 1.55
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Table A3. The parameters of the 3-DOF mechanical drivetrain model.

Station Ji (kgmm2) Connection Stiffness (kNm/rad) Damping (mNms/rad)

1 4160 1–2 1.78 99
2 15,013 2–3 2.01 55
3 1019

Table A4. FOC’s PI-controller parameters for the drive motor.

Parameter PIc,d PIc,q PIs

Cut-off frequency (Hz) 200 200 10
Time constant τI (ms) 8.48 11.21 1.55

Gain Kp 3.36 4.44 1.27

Table A5. FOC’s PI-controller parameters for the load motor.

Parameter PIc,d PIc,q

Cut-off frequency (Hz) 200 200
Time constant τI (ms) 15.13 39.87

Gain Kp 2.89 7.62

Table A6. PEC parameters.

Parameter Drive Motor Load Motor

Switching frequency (kHz) 4 4
Sampling frequency (kHz) 20 20
Inverter time constant (ms) 0.3 0.3
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