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Abstract: Switched Reluctance Motors (SRMs), Permanent Magnet Synchronous Motors (PMSMs),
and induction motors may experience failures due to insulation-related breakdowns. The SRM
rotor is of a non-salient nature and made of solid steel material. There are no windings on the rotor.
However, the stator is composed of windings that are intricately insulated from each other using
materials such as enamel wire, polymer films, mica tapes, epoxy resin, varnishes, or insulating tapes.
The dielectric strength of the insulation may fail over time due to several environmental factors
and processes. Dielectric breakdown of the winding insulation can be caused by rapid switching
of the winding current, the presence of contaminants, and thermal aging. For reliable and efficient
operation of the SRMs and other electrical machines, it is necessary to take into account the physics
of the winding insulation and perform appropriate diagnostics and estimations that can monitor the
integrity of the insulation. This article presents the estimation problem using a Genetic Algorithm
(GA)-optimized Random Forest Regressor. Empirical properties and measurable quantities in the
historical data are utilized to derive temperature and leakage current estimation. The developed
model is then combined with a moving average function to increase the accuracy of prediction of
the stator winding temperature and leakage current. The performance of the model is compared
with that of the Feedforward Neural Network and Long Short-Term Memory over the same winding
temperature and leakage current historical data. The performance metrics are based on computation
of the Mean Square Error and Mean Absolute Error.

Keywords: insulation degradation; machine learning; random forest regression; genetic algorithm;
predictive maintenance; stator windings

1. Introduction

In electrical machines, effective winding insulation ensures electrical isolation by
preventing conduction in neighboring motor windings. Separation between phases also
ensures protection against short circuits. Optimal operating temperatures within the motor
can also be maintained through a thermal barrier provided by the insulation material.
Lastly, physical damage to the winding is reduced through structural support provided by
the insulation material. The general approach to the system of winding insulation in motors
involves the multi-layered arrangement of coils and slots [1]. The insulation thickness is
considered such that the design margin has an integrity against breakdown that is much
higher than the allowed voltage.

For electrical machines, there are three regions that can be pointed out along the
winding lengths, namely, slot area (coils sides), and end winding and end extension areas.
The dielectric properties of the winding insulation deteriorate gradually as a result of air
gaps in the slot area. Discharges may occur in the portions with the presence of an air
layer during voltage stresses. Over time, gradual electric erosion leads to reduced dielectric
strength of the winding insulation, eventually leading to breakdown [1–3]. Additionally,
the presence of air gaps in the insulation encourages dust penetration, which, especially
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in an area with carbon and metals, becomes conductive. To solve the problems of voids
occurring in the insulation material, researchers have come up with novel methods of
administering insulation such as the vacuum pressure impregnation of varnish and epoxy
resin. Stator winding insulation aging is accelerated by the following factors:

(i) Contamination

SRMs, as an alternative for the automotive industry, are bound to be used in different
random environments. Exposure to harsh environments such as saline contamination,
chemical impurities, dust, moisture, vibrations, oil penetration, radiation exposure, high
pressure, and ambient humidity may lead to potential discharges by making the surface
of the insulators conductive. SRMs are also applicable to agriculture, industry, and the
needs around coastal regions, which may lead to contamination of insulator surfaces. The
contaminant layers deposited over the insulator surfaces may not be conductive when dry,
but the conductivity increases with the presence of a light amount of moisture to form an
electrolyte. A progressive increase in conductivity results in more frequent and increasing
intensity of partial discharges, which may damage the insulator surface [3].

(ii) Voltage stress

The converter switching for activation of proper phase windings during SRM oper-
ation introduces voltage spikes due to high-speed switching. As a result, corona, partial
discharges, and even insulation breakdown may occur in cases where the insulation is in
the process of degradation. Rapid switching of stator currents in the phase windings leads
to high electrical exposure of the insulation during the transient states. In some cases, even
at rated voltages, exposure to an electric field leads to ionization of the layered system gases.
The layered system gaps hence develop localized partial discharges with the formation of
nitrogen oxide and ozone [4]. Partial discharges over a long time have been observed to
expose the insulating material to deep erosion, thereby compromising its dielectric strength.
Insulating materials such as pressboards, papers, and oil cloths should be avoided as they
have low resistance toward partial discharges. Mica provides the best resistance to partial
discharge [5].

(iii) Thermal stress

Over time, the dielectric strength of the winding insulation material may reduce due
to the accelerated aging of insulation material. Aging of the insulation material may be
aided by high operating temperatures outside and within the motor [6]. Due to unfavorable
working conditions, permanent damage may be incurred in the structure of the insulation
material. The insulation structural properties affected include permittivity, dielectric
strength, dielectric loss, and mechanical strength due to evaporation of the varnish. It is
therefore imperative that the motor operating temperature is monitored for the preservation
of insulation integrity. This paper uses empirical data on stator winding temperatures
to create a prediction model for temperature estimation over time. In view of this, it is
possible to plan for the preventive maintenance of motor insulation.

2. Diagnostic Mechanisms of Winding Insulation Health and Monitoring

It is important to track the integrity of insulators in electrical machines to prevent
unexpected breakdowns over time. Three important aspects of insulation diagnostics are
DC polarization, loss of the insulation system, and partial discharge. The diagnostic criteria
allow for a prediction of the duration of reliability of the motor. It also allows for repair
and maintenance planning of the machine. The commonly used diagnostic techniques are
as follows:

2.1. Insulation Resistance Test

Measurement of the SRM winding insulation integrity, also known as the ground wall,
can be accomplished through an insulation resistance test. Here, the motor frame is used as
a ground reference while the DC voltage is applied across the motor leads. The applied
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voltage is sustained for over 60 s so that the leakage current from the winding insulations
can be measured. The megohmmeter, the instrument used for the measurement, gives the
insulation resistance as calculated from the sustained leakage current. Table 1 gives the
IEEE 43 guideline standards for the application of IR tests with regard to voltage ratings [7].

Table 1. IR test voltage rating guidelines in relation to winding voltages.

Rated Voltage (V) Insulation Resistance Test Voltage (V)

<1000 500

1000–2500 500–1000

2501–5000 1000–2500

5001–12,000 2500–5000

>12,000 5000–10,000

The insulation integrity is classified in Table 2 with regard to the insulation resis-
tance value.

Table 2. Classification of insulation integrity.

Value of Insulation Resistance Level of Insulation

Less than 2 MΩ Bad

2–5 MΩ Critical

5–10 MΩ Abnormal

10–50 MΩ Good

50–100 MΩ Very good

More than 100 MΩ Excellent

This paper uses empirical data on winding leakage current for different test runs to
predict insulation degradation over time by applying different machine learning techniques
for leakage current estimation in a time series forecast.

2.2. Insulation Thermal Imaging

Generally, motor winding insulations are based on classes. The National Electrical
Manufacturers Association (NEMA) dictates operating temperatures for every insulation
class, as shown in Table 3 [8,9]. These allowable temperatures are based on a full-load
operation.

Table 3. Temperature rating for motor winding insulation.

Class Temperature Rating Ambient Temperature Hotspots

A 105 +40 +5

B 130 +40 +10

F 155 +40 +10

H 180 +40 +15

The insulation classes are categorized according to the polarization index, PI, which is
the ratio of insulation resistance measurement after 10 min, as is shown in Equation (1), [9].

PI =
R600

R60
(1)



Machines 2024, 12, 220 4 of 18

where R600 and R60 are the insulation resistance values after 600 min and 60 min, respec-
tively. The recommended values of the PI are as shown in Table 4 [9,10].

Table 4. Polarization Index for classification of insulation condition.

PI The Insulation Condition

1.0–2.0 Incorrect

2.0–4.0 Good

>4.0 Very good

The categorization of insulation classes is shown in Table 5 [9,10].

Table 5. Polarization Index categorization of insulation classes.

PI Insulation Class

1.5 A

2.0 B

2.0 F

2.0 H

Infrared cameras can be used to scan for winding hotspots due to temperature vari-
ations within the motor. Additionally, infrared thermography was applied to a nonde-
structive test to detect temperature variations on the surface of the motor. Hotspots on
the windings are an indication of insulation degradation. SRM nameplates have a nor-
mal operating temperature indicated on them. The exterior motor temperature increases
with an increase in internal temperature. It has been found that a winding temperature
increase of 10 ◦C above the rated nameplate temperature degrades the life of winding
insulators by approximately 50 percent. Since the infrared camera does not access the
internal operating temperatures of the motor, the motor surface temperature is captured
by the infrared camera. Therefore, for temperature readings from the middle of the motor
frame, abnormally high temperature sources within the motor, i.e., coupling, windings,
and bearings, can be easily pointed out from an infrared image. Ref. [11] uses an infrared
thermograph for inspection and then applies deep learning-based hotspot localization
based on segmentation of the motor windings. Smith et al. [12] present an experimental
study on novel insulation wire materials for stator winding designs that can withstand high
temperatures. Various materials were tested for temperature dependency performance,
including a MAGNETEMP CA-200 wire, standard Class H enamel wire, CERAFIL 500 wire,
VonRoll SK650 wire, S-2 glass fiber, and Photonis glass-coated wire. The materials were
investigated, as prospective winding material wires, for insulation systems operating in an
over 375 ◦C thermal environment.

This paper uses empirical data on stator winding temperature for different test runs to
predict insulation degradation over time by applying different machine learning techniques
for leakage current estimation in a time series forecast.

2.3. Partial Discharge Test

Most converter-powered electric motors experience voltage stress due to the rapid
switching of currents in the windings. These short operating times of phase windings
result in latent defects that are only detectable through partial discharge measurements.
Sometimes the applied voltage may not be able to break down the insulation material and
the fault may go unnoticed over a period of time. Performing an AC dielectric strength test
simultaneously with a partial discharge test can identify and filter out the insulation defects.
On mitigating partial discharge in motor windings, [13] adds a thin layer of conducting
material on the surface of the enamel wire used in constructing the motor winding. The
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objective is to localize the PD occurrences to avoid random instances that would otherwise
have been experienced in the residual voids. The PD activity is highly reduced through the
addition of varnish in small quantities in the ascertained critical zones.

2.4. Online and Offline Monitoring

Sensors can be used to provide online monitoring of insulation conditions by measur-
ing physical quantities such as magnetic flux, stator current, and motor internal temperature.
Offline, historical data from the sensors can be used to perform time series forecasting
of the behavior of factors influencing the health of the insulation materials. Predictive
maintenance of the motor windings relies on diagnostic techniques to ascertain when
significant aging of the insulation of material has occurred and, thus, help in planning
for avoidance of failure during service. Online monitoring and offline diagnostics such
as partial discharge, magnetic flux, end winding vibration, and temperature have been
well explored by researchers over the years. New methods such as dielectric spectroscopy,
polarization current, and online leakage current monitoring are currently being introduced.
However, the monitoring of stator winding temperature and leakage currents requires
efficient sensors, which may occasionally fail. It is for these reasons that there is a need to
utilize historical data from the sensors to estimate future trends of the physical quantities
that point toward the aging of insulation material.

2.5. Prediction of Stator Winding Temperature

For air-cooled machines, thermal stress has been the major cause of insulation de-
terioration. Thermal stress accelerates the breakdown of chains between molecules into
smaller ones in the process of insulation aging. Insulation delamination is also caused by
overheating. Therefore, the main purpose of monitoring the stator winding temperature
is to ensure insulation integrity, which ensures the mitigation of future damage resulting
from inter-turn faults. Insulation aging caused by inter-turn short-circuit faults results in
high winding temperatures. Moreover, hotspots around the insulation accelerate aging due
to higher localized temperatures.

Thermocouples are the main devices utilized in temperature measurement of the
stator windings. However, such devices only provide an alarm notification for abnormal
temperature values during operation. These sensors may also suffer false-positive and
false-negative phenomena. Therefore, there is a need to use historical data to estimate and
predict future temperature trends even when the sensors have long failed. Temperature
analysis of the SRM in relation to insulation integrity has not been extensively studied. The
service life of winding insulations critically depends on the internal motor temperatures
and the ambient temperature. Copper losses, core losses, and friction losses are the common
sources of temperature rise within the motor. Stator copper losses are a major contributor to
temperature variations within the motor, even though the lack of rotor windings contributes
to temperature rise limitations. Moreover, the alternating electric field leads to dielectric
polarization and incomplete discharges. The discharges result in rising local temperatures.
The internal heat due to high internal temperatures is given in Equation (2) [14].

Hg =
Copper Losses (W)

Coil Volume (m3)
(2)

The stator coils are the source of copper losses. The copper losses are defined in
Equation (3) [15].

Pcu = RP I2
P (3)

In switched reluctance machines, the core losses were determined experimentally
from [16] as:

Pcore = a f b(
V
f
)

c
(4)

where a, b, and c are constants, and f is the second mode natural frequency.
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The viscous flow experienced over the rotor, and the relative motion of the bearings,
presents friction losses given in Equation (5) [16].

Pf ric = a·rpm + b·rpm2 (5)

The above losses are shared in different sections of the motor as heat flow sources.
Recently, researchers have performed a thermal field analysis of switched reluctance

motors for reliable and safe operation. However, the vulnerability of SRM drives due to
insulation degradation faults needs attention. It is therefore imperative to develop intelli-
gent methods of insulation health monitoring and diagnosis. Motor surface temperatures
have easily been monitored using sensors mounted near the couplings. However, internal
temperatures, which generally affect the integrity of the insulation, have been a challenge
for a number of reasons. The performance of temperature sensors inside the motors is
easily affected by the heat from the copper losses, resulting in sensor faults. The thermal
problem can be easily solved by the introduction of sufficient and adequate ventilation
during motor design and manufacture. However, the introduction of ventilation would
require more space and, therefore, an increase in costs. Consequently, it is critical to devel-
oping intelligent methods of insulation health monitoring and diagnosis based on the time
series forecasting of temperature behavior within and around the stator windings. This
paper considers low-voltage stator windings of below 700 V. For windings of these voltage
levels, inter-turn shorts rapidly develop into phase-to-phase shorts. This kind of insulator
failure can be very rapid as compared to high-voltage stator winding insulation breakdown.
Therefore, there is a need for inter-turn short-circuit diagnosis due to insulation degradation
as this will provide an early warning of low-voltage stator insulation faults.

According to [17], stator winding insulation faults account for 20% to 39% of overall
motor faults, and one of the most prominent causes of insulation failure is the rising temper-
ature over time. Online and offline analysis of the temperature trend is therefore necessary.
Online monitoring enables identification of faults in the initial phases and, therefore, pre-
ventive actions can be planned to alleviate critical downtimes of the machine. However,
online monitoring can face challenges such as sensor faults and the increased cost of sensor
installations. Although offline techniques investigated in this paper depend on historical
data, they are non-invasive and operate on anomaly detection within the data. Temperature
monitoring methods can also be categorized into contact direct measurement techniques,
such as infrared and contactless estimation methods. The applicability of contact-based
methods is limited by the need for accessibility within the mechanical structure of the motor,
thereby increasing the cost of manufacturing. On the other hand, sensorless estimation
methods use temperature derivations based on intelligence algorithms. Refs. [18,19] present
models and iterative algorithms with measurable quantities to estimate temperature values
for a permanent magnet synchronous motor. However, from a technical point of view, these
methods can be categorized, as shown in Figures 1 and 2 [20]. Over the last decade, artificial
intelligence techniques such as particle swarm optimization (PSO), neural networks (NNs),
and the genetic algorithm have been utilized in temperature monitoring [20].
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This paper uses historical data on stator winding temperatures to predict temperature
behavior over time and, hence, provide information for preventive maintenance. Recently,
artificial intelligence and machine learning-based techniques have attracted the attention of
researchers in the assessment of insulation conditions since they are non-intrusive and easy
to apply.

2.6. Prediction of Stator Winding Leakage Current

Insulation breakdown leads to the establishment of abnormal paths that encourage
the flow of leakage currents. Thermal, electrical, environmental, and mechanical stresses
on the insulation material will cause leakage current paths to develop within the winding
insulation. The level of severity of the insulation deterioration is a perfect indicator of
the magnitude of the leakage current flowing in the abnormal path. It is often difficult to
precisely localize the source of the leakage current within the winding insulation.

The resultant leakage current is due to capacitive and resistive leakage currents, which
is shown in Equation (6)

it = ir + ic (6)

The capacitive leakage current, ic, occurs as a result of alternating current flowing
between conductors separated by a dielectric. Resistive leakage current, ir, is a result of
current loss via the insulation around the conductor. Resistive and capacitive leakage
currents are dependent on the supply voltage. It is only the magnitude of the resistive
leakage current that determines the integrity of the insulation material. Deterioration of
the insulation resistance is escalated through rising values of the resistive leakage current.
Additionally, the leakage current has a direct proportionality to surface contaminants
on the insulator, that is, more leakage current flows with more contaminant deposits.
For instance, water trappings under a layer of contaminants cause the insulation surface
resistance to decrease. Therefore, Equation (7) shows that for an area S of a contaminant
layer, then [21,22]:

S = π(r2
2 − r2

1) (7)

where r1 and r2 are the insulator radius and the total radius of the contaminant layer
and the insulator, respectively. Notably, a fault is not implied when the leakage current
suddenly rises, followed by a decreasing steady trend over a short period of time. It can,
however, imply that there has been a humidity increase around the insulators. Preventative
maintenance should be performed if the leakage current values do not decrease with time.
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Therefore, it is important to estimate the flow of these currents over time using
historical data in order to assess the health of the insulation material. Monitoring of
motor winding insulation can be performed by tracking physical properties such as the
leakage current. Common techniques employed by researchers include wavelet transform,
Fourier transform, and matched filters [23–25]. The drawbacks to these approaches include
intensive computations, while wavelet and Fourier transforms are only efficient for steady-
state diagnoses. Recently, several machine learning and artificial intelligence techniques
have been developed for classification and prediction problems. For instance, neural
networks, support vector machines (SVMs), K-nearest neighbors, and long short-term
memory (LSTM) deep learning have gained popularity in anomaly detection. In [26], a
support vector machine is applied in the classification of inter-turn leakage currents in the
stator windings. The SVM frequency pattern is presented in [27] for leakage current fault
detection in motor windings. However, SVM is limited by the careful need to precisely
choose its parameters and those of the optimization algorithms. Neural networks are
utilized in [28,29] for the detection of leakage current faults in stator windings. However,
the neural network technique demands a large amount of data for training and testing. The
deep learning classification of leakage currents between phases and phase-to-neutral is
studied using LSTM in [30].

3. Methodology: Optimization of Random Forest Regression

The classical random forest algorithm structure is shown in Figure 3 [31]. Multiple
prediction models were combined from several learning algorithms, i.e., decision trees, to
achieve the most accurate prediction model. The mean from several trees was used as the
overall output.

Machines 2024, 12, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 3. Conventional Random Forest regressor structure. 

Bootstrap aggregating was used for training the tree learners in random forest. For 𝑋 = 𝑥 , … , 𝑥   as the training data set and 𝑌 = 𝑦 , … , 𝑦   as responses, random samples 
with replacements were selected repeatedly 𝐾  times from the training set. Trees were 
then fitted to the selected samples as follows. 

For 𝑘 = 1, … , 𝐾: 
1. 𝑀 Training examples are sampled with replacement from 𝑋  and 𝑌 ; 
2. A regression tree 𝑓  is trained on 𝑋  and 𝑌 ; 
3. For all the predictions from different regression trees, the average is computed as 

follows: 𝑓 = ∑ 𝑓 (𝑥 ) where 𝑥  represents the unseen samples. 

3.1. Hyperparameter Tuning in Random Forest Regression 
The hyperparameters in the random forest algorithm include a number of decision 

trees (n_estimators), number of features (max_features) for node splitting, minimum num-
ber of samples (min_samples_split) that can cause node splitting, and maximum depth 
(max_depth) of an individual tree. The choice of these parameters depends on expert 
knowledge and may therefore be challenging to determine. Several algorithms have been 
proposed in the literature for hyperparameter tuning where a large number of parameters 
are presented to choose from. Some of the common hyperparameter tuning methods in-
clude the Bayesian approach [32], GridSearch [33], and RandomizedSearch [34]. 
GridSearch is commonly used in the literature as it is efficient in determining the best 
hyperparameters from a large search space as compared to RandomizedSearch. However, 
with an increased number of evaluations, the computation time also increases exponen-
tially with the GridSearch algorithm. 

Research results from [35–37] have shown that the genetic algorithm (GA) can be 
used to effectively optimize the random forest algorithm (RF). However, most of the GA 
optimization under study focuses on classification problems with categorical data. 

The main contribution of this article involves RF optimization for estimation problem 
with continuous data. The stator winding temperature and leakage current data were ob-
tained from a laboratory setup as in [30]. GA was used to intricately generate the best 
parameters, which were then used to fit the training data. A moving average function was 
then applied to the output to increase the accuracy of the prediction. The proposed process 
is shown in Figure 4. The performance of the proposed method was then compared with 
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Bootstrap aggregating was used for training the tree learners in random forest. For
X = x1, . . . , xn as the training data set and Y = y1, . . . , yn as responses, random samples
with replacements were selected repeatedly K times from the training set. Trees were then
fitted to the selected samples as follows.

For k = 1, . . . , K:

1. M Training examples are sampled with replacement from Xk and Yk;
2. A regression tree fk is trained on Xk andYk;
3. For all the predictions from different regression trees, the average is computed as

follows:
f̂ =

1
K ∑K

k=1 fk
(
x′
)

where x′ represents the unseen samples.
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3.1. Hyperparameter Tuning in Random Forest Regression

The hyperparameters in the random forest algorithm include a number of decision
trees (n_estimators), number of features (max_features) for node splitting, minimum num-
ber of samples (min_samples_split) that can cause node splitting, and maximum depth
(max_depth) of an individual tree. The choice of these parameters depends on expert
knowledge and may therefore be challenging to determine. Several algorithms have been
proposed in the literature for hyperparameter tuning where a large number of parameters
are presented to choose from. Some of the common hyperparameter tuning methods in-
clude the Bayesian approach [32], GridSearch [33], and RandomizedSearch [34]. GridSearch
is commonly used in the literature as it is efficient in determining the best hyperparam-
eters from a large search space as compared to RandomizedSearch. However, with an
increased number of evaluations, the computation time also increases exponentially with
the GridSearch algorithm.

Research results from [35–37] have shown that the genetic algorithm (GA) can be
used to effectively optimize the random forest algorithm (RF). However, most of the GA
optimization under study focuses on classification problems with categorical data.

The main contribution of this article involves RF optimization for estimation problem
with continuous data. The stator winding temperature and leakage current data were
obtained from a laboratory setup as in [30]. GA was used to intricately generate the best
parameters, which were then used to fit the training data. A moving average function was
then applied to the output to increase the accuracy of the prediction. The proposed process
is shown in Figure 4. The performance of the proposed method was then compared with
that of the feedforward neural network and long short-term memory algorithms using the
same preprocessed data set.
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Predefined values were initialized for the hyperparameters in N, the number of
models. The accuracy of every model was determined, and only a fraction of the best-
performing models was retained after an iteration. Offsprings similar to the selected
hyperparameters were then generated for replacement back to the same number of models
of the N population. A repeat cycle was performed for the given number of generations
where only the best models survive when the process comes to an end.
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3.2. Moving Average Filtering

Here, the next value of a variable,
⌢
y , of the data set is dependent on the average of the

previous values k:
⌢
y =

1
k

k

∑
m=1

yt−m (8)

Moving average window = 100 is implemented using the Python library bottleneck. A
wider window was observed to present a smoother trend in the predicted output and to
increase accuracy.

4. Results and Discussion

Since it is challenging to measure stator temperature, torque, and leakage currents in
practical applications, a well-trained prediction model can be used to eliminate practical
measurement devices. The effects of temperatures and leakage currents on insulation
winding have been discussed in Section 1, and their trends can be utilized to inform on
insulation integrity over time. In this paper, the performance of GA-based random forest
regression, neural networks, and long short-term memory was compared in the time series
forecasting of stator winding temperatures using historical data. The data used here for
a demonstration of insulation health monitoring using physical quantities were acquired
from a public data set presented by [30] from real laboratory experiments. The data were
then preprocessed according to the requirements of the utilized estimation algorithm.
Mean Absolute Error, Mean Square Error, and validation loss were used to validate the
performance of the modeled algorithms.

4.1. Stator Winding Temperature Estimation with the Proposed Method
4.1.1. Estimation with Optimized Random Forest Regression

The data set was split into training and test data at 70% to 30%, respectively. GA
was used to search for the best hyperparameters, which were then used for model fitting.
Figure 5 shows the performance of the prediction model with the stator winding tempera-
ture as the target value for test run 51. The Mean Absolute Error (MAE) and Mean Squared
Error (MAE) were calculated to gauge the performance of the model. In Figure 5, the black
line plot represents the true value, while the red plot is the prediction plot.
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The moving average function not only filtered the noise, Figure 6, it also improved the
MSE and MAE values. Metrics without moving average smoothing: MSE: 0.0163 and MAE:
0.0615, while Metrics with moving average smoothing: MSE: 0.0140 and MAE: 0.0505.

4.1.2. Estimation with Feedforward Neural Network

For 200 epochs and a batch size of 1000, a feedforward neural network was trained on
the same data set as linear regression. Figure 7 shows the performance of the prediction
model with the stator winding temperature as the target value for test run 51.
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Figure 8 shows the performance of the prediction model for the stator winding tem-
perature as the target value for test run 51 but with moving average function added to the
GA-RF model.
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4.1.3. Estimation with Long Short-Term Memory (LSTM)

An LSTM model of window size = 100, sample rate = 10, epoch = 200, and batch
size = 500 is used for Figure 9.
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4.1.4. Performance Evaluation

The MSE and MAE of the three prediction models are compared in Table 6.

Table 6. Performance metrics for different prediction models.

GA-RF Feedforward NN LSTM

MSE 0.01403 0.14774 0.03696

MAE 0.05056 0.30563 0.16622

Table 6 shows that the proposed method has the lowest MSE and MAE values followed
by LSTM. The optimized random forest regressor performs better than feedforward NN
and LSTM in predicting stator winding temperature for the given data set. However,
random forest regression plots are very noisy, especially where there is a lot of variation
in the true data. Moreover, the GA-RF combination requires a lot of computation time
and more powerful machine hardware. LSTM did not present any noise in its output;
however, feedforward NN presents better model accuracy than LSTM, as shown in Table 7.
The accuracy of the three models was determined using R-Squared Score with the values
validating the better performance of the proposed algorithm.

Table 7. Comparison of model accuracy.

GA-RF Feedforward NN LSTM

Accuracy 92.56% 87.45% 67.56%

The accuracy of each model calculated using the R-Squared Score is shown in Table 7.
The validation loss and the training loss curves are depicted in Figures 10 and 11. The

LSTM model is underfitting and therefore needs improvement. However, this is outside
the scope of this study.
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4.2. Leakage Current Estimation with the Proposed Method

Similarly, the effects of stator leakage currents on insulation winding have been
discussed in Section 1. In this section, the performance of the GA-tuned random forest
regression, feedforward NN, and LSTM was compared in the time series forecasting of
stator leakage current using historical data. The data used here for a demonstration of
insulation health monitoring using physical quantities were acquired from a public data set
presented by [30] from laboratory experiments. The data were then preprocessed according
to the requirements of the utilized estimation algorithm. Mean Absolute Error, Mean
Square Error, and validation loss were used to validate the performance of the modeled
algorithms.
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4.2.1. Leakage Current Estimation with Optimized Random Forest Regression

Figure 12 represents the performance of the proposed model on estimation of leakage
current. Moving average filter is introduced to improve the metrices as represented in
Figure 13.
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4.2.2. Leakage Current Estimation with Feedforward Neural Network

Figures 14 and 15 shows the performance of the feed forward neural network model
with three hidden layers. Introduction of moving average filter does not present noticeable
improvement as shown in Figure 15.
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4.2.3. Leakage Current Estimation with LSTM

Figure 16 shows the performance of the LSTM model in leakage current estimation.
The LSTM model poor performance could be attributed to under fitting problem.
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4.2.4. Performance Evaluation in Leakage Current Estimation

The MSE and MAE of the three prediction models are compared in Table 6.
Table 8 shows that random forest performs better than feedforward NN and LSTM

in predicting stator winding leakage current for the entire data set. The performance of
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the models is also depicted in Figures 13, 14 and 16. Random forest regression is seen to
perform better than the two algorithms. However, random forest regression plots are very
noisy, especially where there is a lot of variation in the true data. The combination of GA
and RF demands high computation power and also the computation time is very long.
LSTM is less noisy compared to both NN and RF.

Table 8. Performance metrics for different prediction models for the entire data set.

GA-RF Feedforward NN LSTM

MSE 0.005973 0.012353 0.16967

MAE 0.058421 0.091112 0.31292

5. Conclusions

The insulation integrity of SRM highly influences its efficiency and reliability. Two of
the related factors that degrade the winding insulation are the stator winding temperature
and the winding leakage current. Thermal modeling of SRMs is usually very complex
since the precise calculation of core losses, as the cause of heat generation, is a difficult task.
Additionally, insulation wires can be designed to withstand high-temperature operations,
but this would introduce additional costs at the point of manufacture. With these in
mind, this article has successfully investigated new methods of winding temperature and
leakage current estimation and prediction to solve the complexity of thermal modeling
and analysis. Moreover, these methods can also address the uncertainty of sensor faults.
Early detection of anomalies in air temperature inside the motor and leakage currents
can be used in planning for preventive maintenance of the winding insulations. Three
prediction and estimation techniques were investigated, namely, random forest regression,
feedforward neural networks, and long short-term memory. The optimized random forest
regression performed better than the two techniques. However, the structure of LSTM can
be improved to realize better performance at the expense of a larger computation memory.
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