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Abstract: The development of unmanned agricultural tractors (UAT) represents a significant step
towards intelligent agricultural equipment. UAT technology is expected to lighten the workload of
laborers and enhance the accuracy and efficiency of mechanized operations. Through the investigation
of 123 relevant studies in the literature published in recent years, this article reviews three aspects of
autonomous navigation technologies for UATs: perception, path planning and tracking, and motion
control. The advantages and deficiencies of these technologies in the context of UATs are clarified
by analyzing technical principles and the status of current research. We conduct summaries and
analyses of existing unmanned navigation solutions for different application scenarios in order to
identify current bottleneck issues. Based on the analysis of the applicability of autonomous navigation
technologies in UATs, it can be seen that fruitful research progress has been achieved. The review also
summarizes the common problems seen in current UAT technologies. The application of research
to the sharing and integrating of multi-source data for autonomous navigation has so far been
relatively weak. There is an urgent need for high-precision and high-stability sensing equipment.
The universality of path planning methods and the efficiency and precision of path tracking need to
be improved, and it is also necessary to develop highly reliable electrical control modules to enhance
motion control performance. Overall, advanced sensors, high-performance intelligent algorithms, and
reliable electrical control hardware are key factors in promoting the development of UAT technology.

Keywords: agricultural machines; agriculture automation; unmanned systems; autonomous
operations; intelligent technologies; path navigation; motion control

1. Introduction

Personnel loss in rural labor forces has increased in recent years, and labor costs are
rising rapidly in China [1]. Promoting the development and popularization of unmanned
agricultural tractors is crucial for improving land utilization efficiency and ensuring food
security. The unmanned agricultural tractor (UAT) enables smart, standardized, and
information-based operations [2]. It saves labor and avoids variable work quality caused
by differences in operator skills. The autonomous navigation technologies used in UATs
significantly enhance the quality and efficiency of field operations while reducing the
driving difficulty and the operator’s workload [3]. Therefore, it is imperative to study the
autonomous navigation technologies used in UATs.

Recent years have witnessed rapid developments in UATs. Research on satellite-
based global positioning systems (GPS) and BeiDou navigation satellite systems (BDS) for
unmanned tractor navigation has been conducted, and practical applications have been
implemented. These systems enable intelligent and precise operations, including plowing,
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land preparation, seeding, and harvesting. However, considerable room for improvement
exists in the realm of autonomous navigation technologies for UATs, especially in terms of
enhancing efficiency and reliability [4]. Agricultural environments are significantly more
complex and diverse than the structured environment faced by autonomous cars, resulting
in great difficulty in path planning and motion control [5]. The technologies involved in
autonomous navigation of UATs include those related to sensing and perception, path
planning, and motion control [6], as shown in Figure 1. Only through the comprehen-
sive application of these technologies can autonomous navigation operations of UATs
be achieved [7]. These aspects represent the challenges and crucial issues that must be
addressed in the implementation of autonomous tractor technology. Numerous innovative
studies in this area hold significant reference value for future research on autonomous
driving of UATs. Understanding the characteristics of autonomous navigation technolo-
gies, identifying current bottlenecks, and studying the future development directions are
important for the advancement of UATs [8].

Machines 2024, 12, x FOR PEER REVIEW 2 of 25 
 

 

unmanned tractor navigation has been conducted, and practical applications have been 
implemented. These systems enable intelligent and precise operations, including plowing, 
land preparation, seeding, and harvesting. However, considerable room for improvement 
exists in the realm of autonomous navigation technologies for UATs, especially in terms 
of enhancing efficiency and reliability [4]. Agricultural environments are significantly 
more complex and diverse than the structured environment faced by autonomous cars, 
resulting in great difficulty in path planning and motion control [5]. The technologies in-
volved in autonomous navigation of UATs include those related to sensing and percep-
tion, path planning, and motion control [6], as shown in Figure 1. Only through the com-
prehensive application of these technologies can autonomous navigation operations of 
UATs be achieved [7]. These aspects represent the challenges and crucial issues that must 
be addressed in the implementation of autonomous tractor technology. Numerous inno-
vative studies in this area hold significant reference value for future research on autono-
mous driving of UATs. Understanding the characteristics of autonomous navigation tech-
nologies, identifying current bottlenecks, and studying the future development directions 
are important for the advancement of UATs [8]. 

Based on the above considerations, this paper presents a comprehensive review of 
research progress surrounding the autonomous navigation technologies used in UATs. 
This review focuses on technical issues of perception, path planning and tracking, and 
motion control that are observed in UATs. It summarizes the advantages and limitations 
of existing technologies, analyzes the integration of autonomous navigation technologies 
in UATs, and provides several opinions on technology development. 

 
Figure 1. Sketch diagram of autonomous navigation technologies in UATs. 

The main contribution of this study lies in presenting the latest research develop-
ments in the field of UATs, which can provide scholars engaged in this field with a mac-
roscopic technical overview. The prevalent challenges and trending topics discussed in 
this paper provide potential inspiration for future UAT studies. 

The rest of the paper is organized as follows: Section 2 introduces the methodology 
of this study. Section 3 presents the perceptive techniques of UATs. Sections 4 and 5 inves-
tigate the path planning and the path tracking techniques, respectively. Section 6 presents 
motion control techniques. Applications of UATs in precision farming are reviewed in Sec-
tion 7. Sections 8 and 9 present discussions, conclusions, and future work. 

2. Methodology 
To gather data for this study, relevant papers were sourced from the Web of Science, 

Elsevier Science, Wiley, CNKI, and PubMed databases, with a focus on title searches. The 
keywords used in the search were “unmanned tractor, agricultural unmanned systems, 
autonomous agricultural machinery navigation, agricultural navigation technologies, 
path planning, path tracking, and motion control”, etc. The collected information was then 
organized, encompassing both journal articles and conference papers, and was tallied. The 
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Based on the above considerations, this paper presents a comprehensive review of
research progress surrounding the autonomous navigation technologies used in UATs. This
review focuses on technical issues of perception, path planning and tracking, and motion
control that are observed in UATs. It summarizes the advantages and limitations of existing
technologies, analyzes the integration of autonomous navigation technologies in UATs, and
provides several opinions on technology development.

The main contribution of this study lies in presenting the latest research developments
in the field of UATs, which can provide scholars engaged in this field with a macroscopic
technical overview. The prevalent challenges and trending topics discussed in this paper
provide potential inspiration for future UAT studies.

The rest of the paper is organized as follows: Section 2 introduces the methodology of
this study. Section 3 presents the perceptive techniques of UATs. Sections 4 and 5 investigate
the path planning and the path tracking techniques, respectively. Section 6 presents motion
control techniques. Applications of UATs in precision farming are reviewed in Section 7.
Sections 8 and 9 present discussions, conclusions, and future work.

2. Methodology

To gather data for this study, relevant papers were sourced from the Web of Science,
Elsevier Science, Wiley, CNKI, and PubMed databases, with a focus on title searches. The
keywords used in the search were “unmanned tractor, agricultural unmanned systems,
autonomous agricultural machinery navigation, agricultural navigation technologies, path
planning, path tracking, and motion control”, etc. The collected information was then
organized, encompassing both journal articles and conference papers, and was tallied.
The focus was on sources indexed in SCI and EI to align with research needs. Following
the literature screening process, 125 articles were selected for review. The majority of the
literature surveyed was from the past ten years, with specific details shown in Figure 2a.
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Figure 2. Literature survey analysis: (a) quantity per year; (b) literature ratio map of the three tech-
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Extensive research has been conducted on the application of UATs over the past five
years, with a gradual increase in recent years. In this review, as shown in Figure 2b, there
were 45 articles on the application of perceptive techniques, 30 articles on path planning
and tracking techniques, and 24 articles on motion control techniques. Perceptive technique
research studies were the most prevalent. The large volume of environmental perception
data available, coupled with high algorithmic requirements and diverse methods, has led
to extensive research in this field. Motion control technology has matured, and the research
quantity relating to this area was relatively small. The most widely used applications
for UATs include plowing, seeding, field management, and harvesting in large-field agri-
cultural production processes. Application research on animal husbandry was the least
common, as such an environment is not conducive to autonomous driving.

3. Perceptive Techniques of UATs
3.1. Positioning Technology

Positioning technology is critical for achieving autonomy and intelligence in UAT.
Real-time positioning is a prerequisite for UAT to achieve path planning, path tracking,
and motion control [9]. Satellite positioning enables the identification of farmland locations,
work areas, operation deviation, and driving speed [10]. Positioning technologies include
satellite positioning systems, laser radar systems, and onboard cameras. These technologies
are used in conjunction with UATs to achieve precise and efficient operations [11].

The BDS and GPS are the two most widely used global navigation satellite systems
(GNSSs) in agricultural engineering. Positioning data at the decimeter or centimeter level
is required to achieve precise navigation in UATs. This is commonly achieved using
differential GNSS technology, which enhances accuracy by transmitting corrected pseudo-
range correction values or phase information measured at known reference stations to the
mobile station. The diagram of differential positioning is shown in Figure 3. The principles
of BDS and GPS are similar, involving the measurement and comparison of signals received
by two or more receivers to eliminate signal errors.

For example, Jing et al. [12] designed an autonomous navigation control board con-
sisting of a high-precision GNSS decoding module and an inertial measurement module.
This system corrected data from the inertial navigation system (INS) and the high-precision
positioning module. It was used to control parameters, such as the direction, speed, and
heading angle of the tractors. Yang et al. [13] used the GNSS RTK receiver (Qianxun
Positioning Network Co., Ltd., Shanghai, China) to record GNSS data continuously. Its
positioning accuracy was ±2.5 cm. GNSS terminals, industrial computers, and mobile
devices were used for data reception. Trimble successfully developed real-time kinematic
(RTK) technology, enabling instant updates of GPS data while in motion. Trimble real-time
extended (RTX) technology facilitates real-time accurate positioning with centimeter-level
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precision in a quick convergence period [14]. Nowadays, GNSS systems are inexpensive;
the RTK-GNSS single-frequency receiver costs only USD800 in the USA [15]. Conversely,
according to market investigations in China, a set of agricultural machinery based on the
BDS navigation system is currently priced around USD1000 to USD3000.
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Due to the time delay and overload risk of differential positioning methods, Wang
et al. [16] proposed edge computing to reduce the load on the data center and obtained
satisfactory results. Wang and Noguchi [17] evaluated the centimeter-level enhancement
service (CLAS) for controlling UAT using the quasi-zenith satellite system (QZSS). The
QZSS transmits enhanced information through L6 signals to improve positioning accuracy
in GNSS.

The deep integration of the BDS system with agricultural systems can provide precise
and efficient support for agricultural modernization, promoting the development and
enhancement of agricultural production in China. A typical BDS navigation system of UAT
is composed as shown in Figure 4. Its application has been scaled in Xinjiang, Heilongjiang,
and other regions [18]. For example, the DF2204 tractor, an autonomous navigation tractor
with continuously variable transmission (CVT) and GNSS, was developed for unmanned
operations [19]. An attitude heading reference system (AHRS) (MTI-30, Xsens company,
Enschede, The Netherlands) sensor and an RTK-GPS positioning device were installed
in a combine harvester for obtaining heading and position information [20]. Two sets of
GNSS mobile receivers were developed for obtaining position information and ensuring
the balance of the John Deere 5-904 tractor [21]. The BDS and MTI-300 INS were installed in
the tractor and trailer, respectively, to obtain navigation information [22]. The DF2004-5A
navigation driving system based on BDS was applied for a transplanter [23], and the GNSS
AF300 navigation driving system based on BDS was developed for an AF300 tractor [24].
Alonso-Garcia et al. [25] assessed the application of inexpensive GPS receivers in a John
Deere 6400 tractor with a maximum power of 73.5 kW. Their findings indicated that it
is feasible to autonomously guide an agricultural tractor using a low-cost receiver as a
positioning sensor, with a maximum speed of around 9 km/h.

The GNSS receiver can also provide heading information for UATs. Dual and single
antennas have been used to measure heading information [26]. RTK-GPS and a four-
antenna GPS system were used to provide heading information for tractor navigation
in [27]. The dual antennas of the GNSS system are installed horizontally at the top of
the tractor, enabling simultaneous measurements of position and heading information.
GNSS can provide absolute position and heading information continuously in all weather
conditions. However, the application of GNSS in complex field environments is limited by
signal loss caused by extreme weather or blockages.

In 2016, the Galileo GNSS system emerged as the latest and most advanced devel-
opment in satellite navigation. It is recognized for its superior tracking accuracy and
speed compared to both GPS and GLONASS [28]. As of August 2021, there were 31 GPS
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satellites, 26 GLONASS satellites, 26 Galileo satellites, 15 BDS-2 satellites (which includes
four experimental satellites), and 34 BDS-3 satellites orbiting the earth [29]. In China, the
GLONASS GNSS system and the Galileo GNSS system have not been applied yet.
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3.2. Sensing Technology
3.2.1. Field Environment Perception

The autonomous navigation of UATs requires environmental perception to perform
tasks. The main objective of machine perception is to ensure that the UAT operates as
expected and safely. Typical applications include obstacle detection, recognition of work
area boundaries, and crop monitoring. Due to the challenging conditions faced by the
sensors during agricultural operations, such as dust, rain, and extreme exposure to sunlight,
sensor reliability has been a key challenge in environmental perception [30]. Currently,
various sensors are used in UATs for field environment perception, including monocular
vision, stereoscopic vision, lasers, radar, and ultrasonic sensors.

(1) Visual perception

Machine vision localization, perception, and measurement are typically used for UAT
navigation at low speeds. Bakker et al. [31] proposed a row recognition method based on
the Hough transform. A color camera was used to capture images of sugar beets in a green-
house. The color images were converted to grayscale images in order to create sufficient
contrast between the plant material and the soil background, substantially improving the
image processing speed. To obtain real-time autonomous navigation information, Radcliffe
et al. [32] integrated a multispectral camera-based machine vision device on a small agricul-
tural vehicle. The root mean square errors (RMSEs) for automatic navigation were 2.35 cm
and 2.13 cm in laboratory and field environments, respectively.

A navigation algorithm for machine vision was developed for a rice field weeding
robot [33]. The results showed that the robot performed well at low weed density, with
compensation accuracy of less than 2.5◦ and an average error from the target path of
4.59 cm. Mahboub and Mohammadi [34] proposed a combined positioning method that in-
tegrated BDS and visual navigation, providing accurate and real-time obstacle information
in agricultural fields. The position deviation of the tractor was within ±0.1 m, resulting
in high accuracy of autonomous navigation. Ma et al. [35] developed a visual module for
an unmanned crawler tractor to obtain rice crop images in real time. The ExG(2G-R-B)
algorithm and the Otsu and mask method were used for segmenting the binary images. In
agricultural applications, Leica visual equipment can achieve high accuracy, and has poten-
tial in visual navigation. Some findings have indicated that the stereo viewing capability of
the Leica ADS40-SH52 improves tree species classification performance, increasing overall
accuracy by up to seven percentage points compared to nadir monoview data results [36].
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Machine vision technology utilizes cameras as position measurement sensors. Image
processing techniques are utilized to identify crop rows, determine a navigation reference
line, and measure the relative position and heading information. The key advantages
of machine vision technology are high speed, the ability to process a large amount of
information, and versatile functionality. However, the commonly used Hough transform
algorithm has disadvantages, such as difficulty in determining peak values, multiple
repetitions of line segments, and high time and space complexity.

(2) Laser-based navigation

Thanpattranon et al. [37] designed a control method for a tractor-trailer with a single-
sensor navigation system used in orchards. A control scheme for stopping the tractor-trailer
using a laser range finder was designed for various tasks. The results demonstrated that
the navigation of the tractor in orchards had high accuracy, and the trailer position was
adjusted by a sliding hitch bar, enabling wide turns in the paths between the trees. The laser
navigation method has many strengths, such as high frequency, high accuracy, and large
range. This technology is particularly suitable for agricultural robots. However, there are
high costs associated with it. In China, the market price of LiDAR used in the agricultural
machinery industry ranges from USD800 to USD2000 per unit.

(3) Inertial measurement unit

An inertial measurement unit (IMU) is a measurement instrument based on the princi-
ples of inertial navigation, usually consisting of three accelerometers and three gyroscopes.
The integration of the angular velocity and acceleration data enables the estimation of the
object’s velocity, displacement, and attitude information, achieving accurate navigation
and positioning [38]. Gyroscopes and accelerometers are the most common components of
IMUs. In UATs, gyroscopes are used for autonomous navigation, operation control, and at-
titude measurement to improve operational efficiency and precision [39]. An accelerometer
consists of one or more acceleration sensors and is widely used in inertial measurement
systems of UATs. They have good bias stability and are resistant to vibrations, shocks, and
temperature changes.

(4) Multi-sensor data fusion and perception

An INS is a closed-loop navigation system that does not have real-time external
information to correct errors during motion. Thus, a single inertial navigation system
can only be used for short-term navigation. Long-term navigation systems of UATs need
satellite navigation to correct errors periodically.

Currently, multi-sensor data fusion is the most widely used approach for UAT nav-
igation. Figure 5 illustrates the combination of inertial and satellite navigation systems.
Wang [40] proposed a navigation method consisting of satellite/inertial navigation systems.
Experiments were conducted on denoising the data from the satellite/inertial navigation
systems, resulting in a navigation accuracy improvement of 2 m. Xia et al. [41] combined
information from an IMU and a GNSS. They used a robust regression approach to align
the GNSS heading with the vehicle’s longitudinal motion. They also proposed a slip angle
estimation method based on the dynamic model. The results showed improved estimation
accuracy of the slip angle.

The Kalman filtering algorithm is the main method for sensor data fusion. It can
reduce cumulative errors in inertial navigation. Tian et al. [42] developed a field robot
integrated IMU and GNSS navigation system. Kalman filtering was used to correct the
errors in the inclination data. Liu et al. [43] proposed an integrated algorithm based on
fuzzy reasoning and adaptive Kalman filtering for vehicle navigation and positioning using
GPS and inertial navigation. The experimental results showed that the integrated algorithm
had better positioning accuracy, precision, and stability than an RTK-GPS system.

Favorable results have been obtained from research and applications of machine vision,
laser radar, inertial measurement unit, and multi-sensor data fusion. Field environment
perception enables the efficient implementation of tasks [44]. However, there are still
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many challenges, such as data susceptibility to environmental interference, large data
volumes, and insufficient real-time performance. Further efforts are needed to enhance the
robustness of detection algorithms.
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3.2.2. Operation State Perception

The perception of operational conditions of UATs primarily focuses on the engine,
steering system, transmission system, vehicle body, and wheels. Key parameters include
torque, rotational speed, emissions, attitude, vehicle speed, wheel speed, vibration, and
strain [45]. The operational condition information includes the traction force of the suspen-
sion system, suspension lifting position, power take-off (PTO) torque, PTO speed, hydraulic
flow rate, and pressure. Table 1 lists the perception methods for the operational states
of UATs.

Table 1. Perception methods for the operational states of agricultural machinery.

Operation State Perception Method Advantages Disadvantages

Vehicle Speed [46] Radar speedometer, ground
wheel, and GPS

Accurate ground wheel
measurements at low speeds,

accurate radar and GPS
measurements at high speeds [47]

Inability to achieve high
detection accuracy from low

to high speeds

Tillage Depth [48]

Indirect detection using
dual inclinometers, depth

measurement using
suspension angle sensors

Overcoming errors caused by
field residue coverage and

machinery vibration

Indirect calculation of tillage
depth based on complex

mathematical models with
limited universality

Seeding Depth [49]
Combination of angle

sensors and
ultrasonic sensors

High stability and accuracy Specific to the type of
seed unit

Fertilizer Application [50] Weighing by load cells with
smart noise filtering

Simple structure, low cost, and
high accuracy Lack of long-term stability

A subsoiler equipped with flexible tines allows for obstacle avoidance while minimiz-
ing draft force. However, due to the substantial variation in soil resistance, tilling often
results in depths that are considerably lower than the desired target value. To address this
issue, researchers developed an electric-hydraulic system for a subsoiler [51]. Additionally,
they introduced a novel method for detecting the tillage depth to overcome this challenge.
The results showed that the control system improved the tillage quality of the subsoiler
with flexible tines. Wang et al. [52] devised a precise perception system for corn fertilization
planters. A capacitance sensor was designed to detect the amount of fertilizer online based
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on the different dielectric properties of fertilizer and air. The electrically driven seed meter-
ing system exhibited an impressive control accuracy of 98% for controlling grain spacing.
Liu et al. [53] developed a sensor using a seed flow reconstruction technique to monitor
seed flow rate. The technique converts continuous seed flow into distinct particles, reducing
measurement errors from seed overlap. A particle counting method was proposed based
on high-level sampling points. Real sowing results confirmed the sensor’s effectiveness in
detecting seed flow rates on grain drills. A new fertilizer volume detection system using
single-line LiDAR was developed for the acquisition of fertilizer geometry data. The system
employed escape value filtering and ordered point cloud set construction to reduce data
noise, efficiently calculating fertilizer volume and mass. Field tests showed a maximum
measurement error of 4.66% at fertilizer drain speeds between 20 and 70 revolutions per
minute, providing innovative solutions for fertilizer discharge detection [54].

4. Path Planning Techniques of UATs
4.1. Path Planning Optimization
4.1.1. Factors of Path Planning

Path planning optimization of UAT requires the consideration of multiple factors,
including operation time, turning way, quality, energy consumption, route length, and
complexity [55]. The turning way at the end of the field affects the operational efficiency of
UATs. Common turning methods include U-turns, semi-circular turns, light-bulb turns,
and switch-back turns, as shown in Figure 6a. Each method has advantages for certain
applications, and the method should be suitable for specific operation conditions. A study
presented a novel dynamic headland turning path planning method utilizing an asymmetric
switch-back turning strategy tailored for four-wheeled vehicles. The average trajectory
length measured 11.84 m, with an average completion time of 28.4 s [56]. According to
research, for the direct headland turning approach, the track length measured 3.96 ± 0.07 m,
and the turning time was 21.15 ± 1.12 s. Comparatively, the direct headland turning method
saved 46.3% of the time compared to bulb turning, 53.2% compared to fishtail turning,
and 65.7% compared to the dynamic circle-back technique [57]. Different routes are used
for different operational requirements. The patterns include S-shaped, T-shaped, square,
and diagonal routes, as shown in Figure 6b. Additionally, a research study presented a
path planning algorithm tailored for irregular field plots. This algorithm initially generated
global static operational paths based on macroscopic mapping information of the working
area. It also utilized radar sensors for real-time dynamic monitoring of the robot’s local
working environment to create local dynamic optimal paths, ensuring the smooth progress
of irregular field operations [58].
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4.1.2. Optimization Strategies

The navigation of UATs requires suitable operation paths, turning methods, and
speeds. Therefore, field mapping is performed before implementing the automated control
of UATs. The field boundaries and obstacles are identified to plan optimal paths for the
tractor operations along predetermined routes. Path planning methods can be categorized
into two types: global (macroscale) and local (microscale) [59], as shown in Figure 7. Each
method includes various path-planning algorithms. Based on a pre-existing map, global
path planning refers to the process of determining a route from the current location to a
designated target position. Local path planning adjusts the motion in real time based on
environmental sensing information.
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4.2. Global Path Planning

In UAT driving systems, global path planning utilizes prior information about the
terrain and road networks in the field to generate a global path. Real-time localization
information is then used for path tracking, enabling the autonomous navigation of the
tractor and improving operational efficiency and accuracy. Common global path planning
algorithms include Dijkstra’s, A*, ant colony, and rapid random tree (RRT) algorithms.

Many researchers have proposed improved path planning algorithms for UATs. Al-
shammrei et al. [60] modeled obstacle-free environments for mobile robots and used the
Dijkstra algorithm offline to generate the shortest path, reducing the spatial complexity of
the traditional Dijkstra algorithm. The improved algorithm achieved optimal path plan-
ning. Li et al. [61] optimized the heuristic function of the A* algorithm using the ant colony
algorithm (ACA), resulting in an improved A* algorithm. Experimental results showed a
significant reduction in the computation time with the improved A* algorithm.

A method based on real-time guided random tree expansion using sampled states was
proposed for a UAT to avoid blind searching in the traditional RRT algorithm [62]. The
improved algorithm achieved a search time of 1.208 s in the kiwifruit orchard environment,
reducing search times by 74.31%, 46.28%, and 26.60% compared to RRT algorithm, goal-
biased RRT algorithm, and RRT connect algorithm, respectively. The results (Figure 8a)
showed that the improved algorithm exhibited better path planning efficiency and adapt-
ability than the traditional RRT algorithm in a kiwi orchard. The task allocation of multiple
machines was simulated using MATLAB and an improved ACA [63]. The experimental
findings showcased the significant reduction in path costs achieved by the enhanced ACA.
He and Fan [64] applied a local block optimization strategy to optimize the subregions
separately, significantly improving the convergence speed and enhancing the optimization
capability (Figure 8b). The improved algorithm reduced path lengths by 14.6% and cut
turning points by 66.6% compared to the traditional ant colony algorithm. The traditional
algorithm converged in 21 iterations, whereas the enhanced algorithm in this study con-
verged in only 12 iterations. Wang et al. [65] developed an improved Dijkstra algorithm
based on priority queues to prevent the omission of working areas and speed up path plan-
ning. To enhance the algorithm’s effectiveness, it was integrated with various techniques,
including the reciprocating method, nested method, and an integration of internal spiral
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path and nested approaches. The nested method was the main component. The proposed
ant colony algorithm allocated tasks reasonably and effectively, reducing working path
costs by 14–33%.
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4.3. Local Path Planning

Local path planning refers to designing a short-term, localized path that guides the
UATs based on real-time information on its current position and the surrounding environ-
ment. Local path planning enables UATs to make real-time adjustments to prevent collisions
or getting stuck. Current local path planning algorithms include artificial potential field
algorithms, simulated annealing algorithms, and dynamic window algorithms.

In response to the limitations of artificial potential field algorithms, İlhan [66] proposed
an improved cross-operator simulated annealing algorithm called ISA-CO to enhance the
convergence speed. Li et al. [67] employed a multi-neighborhood search approach to
generate novel solutions, while simultaneously enhancing the temperature decay func-
tion. As a result, they achieved improved solution quality and accelerated convergence
speed. Khan and Mahmood [68] combined two heuristic search algorithms, i.e., simulated
annealing and ant colony algorithms, to improve the global search performance and time
efficiency, demonstrating good practicality and robustness. Yin et al. [69] proposed a dy-
namic path planning method that integrated improved A* and dynamic window approach
(DWA) algorithms. This achieved highly intricate and challenging robot path planning by
avoiding obstacles, calculating optimal paths in real time, and maintaining high real-time
performance and robustness.

A combination of global and local path planning techniques is often used for au-
tonomous navigation of UATs in complex environments. Global path planning primarily
focuses on route planning between the start and destination points, where motion speed
is not a primary concern. On the other hand, local path planning emphasizes speed and
direction to cope with complex and dynamic environmental changes. Global and local path
planning work in conjunction to derive optimal paths. Table 2 lists the classification of path
planning algorithms for the operational states of UATs.
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Table 2. Classification of path planning algorithms.

Types Algorithm Advantages Disadvantages

Global Path Planning

Dijkstra’s algorithm High accuracy, high success rate,
good robustness

High complexity, low efficiency,
time-consuming

A* algorithm Optimality, completeness, efficiency Low efficiency, high complexity

Ant colony algorithm Positive feedback, strong robustness,
strong adaptability

high complexity, prone to local
convergence, low accuracy

RRT algorithm Simple algorithm, simple structure,
strong applicability High spatial complexity

Local Path Planning

Artificial potential field
algorithm

Low complexity, small computational
load, good real-time performance Easily trapped in local minima

Simulated annealing
algorithm

Strong global optimization capability,
easy implementation, high efficiency

Slow convergence,
randomness involved

Dynamic window
algorithm

Low complexity, efficiency,
good robustness

Speed and safety cannot be
simultaneously optimized

5. Path Tracking Techniques of UATs
5.1. Motion Model for Path Tracking

Control algorithms are used for path tracking to ensure that UATs travel on the desired
path at the required speed. In the navigation control system, the motion model regards the
tractor as a rigid body, considering the tractor’s physical properties and the forces acting
on it. The linearized bicycle motion model is a simple and widely applicable approach.
The UAT is abstracted as a two-wheeled vehicle in this motion model, using the X and Y
coordinates of the rear wheel center of the tractor in the Cartesian coordinate system. The
front wheel steering angle of the vehicle is controlled based on the position, attitude, and
velocity of the tractor [70].

Fan et al. [71] developed an improved quantum genetic algorithm and weighting
matrix optimization for weight selection of a UAT. The Ackermann steering principle
was utilized to establish a kinematic model of the tractor. Subsequently, the model was
discretized and linearized, as shown in Figure 9. A vehicle model was proposed for a
four-wheeled steered robot used in agricultural applications. The robot was assumed
to move without skidding in a two-dimensional planar environment [72]. The vehicle
state and the input driving coordinates were obtained from steering encoders, and the
information was translated into vehicle navigational commands.

Machines 2024, 12, x FOR PEER REVIEW 12 of 25 
 

 

wheeled steered robot used in agricultural applications. The robot was assumed to move 
without skidding in a two-dimensional planar environment [72]. The vehicle state and the 
input driving coordinates were obtained from steering encoders, and the information was 
translated into vehicle navigational commands. 

 
Figure 9. Single-track kinematic model of an UAT [71]. 

The planned navigation path represents the intended trajectory for UATs. It is crucial 
to research various aspects to track and control the path, including UAT motion models, 
navigation decision control, as well as steering and braking control. Furthermore, future 
efforts may focus on developing scientifically accurate motion models to enhance the effi-
ciency and precision of path tracking. 

5.2. Path Tracking Algorithms 
5.2.1. Pure Pursuit Method 

By employing the pure pursuit method, UATs can assess deviations in both position 
and orientation from the desired trajectory. This method effectively calculates distance 
and orientation errors to facilitate precise navigation. Control algorithms are then used to 
minimize the errors and achieve accurate path tracking. The pure pursuit method is com-
putationally simpler to implement than other path tracking approaches. It also provides 
high path tracking accuracy in most scenarios. This method utilizes a lookahead point, as 
shown in Figure 10 [73]. The rear axle center of the UAT is the reference point, and a target 
point on the desired path is selected at an appropriate distance (lookahead distance). The 
front wheel steering angle is then calculated based on the real-time lateral and heading 
deviations. The UAT follows an arc toward the lookahead point to reach the desired target 
point at a certain velocity [74,75]. Yang et al. [76] proposed a path tracking algorithm of a 
UAT based on an optimal target location. This algorithm optimizes the lookahead distance 
adaptively by simulating the driver’s lookahead behavior. It determines the lookahead 
region, establishes an evaluation model, and searches for the optimal target position based 
on the predicted model of the tractor’s position. The proposed method exhibited a track-
ing error that was 20% lower in comparison to the pure pursuit algorithm. 

Figure 9. Single-track kinematic model of an UAT [71].



Machines 2024, 12, 218 12 of 24

The planned navigation path represents the intended trajectory for UATs. It is crucial
to research various aspects to track and control the path, including UAT motion models,
navigation decision control, as well as steering and braking control. Furthermore, future
efforts may focus on developing scientifically accurate motion models to enhance the
efficiency and precision of path tracking.

5.2. Path Tracking Algorithms
5.2.1. Pure Pursuit Method

By employing the pure pursuit method, UATs can assess deviations in both position
and orientation from the desired trajectory. This method effectively calculates distance
and orientation errors to facilitate precise navigation. Control algorithms are then used
to minimize the errors and achieve accurate path tracking. The pure pursuit method
is computationally simpler to implement than other path tracking approaches. It also
provides high path tracking accuracy in most scenarios. This method utilizes a lookahead
point, as shown in Figure 10 [73]. The rear axle center of the UAT is the reference point, and
a target point on the desired path is selected at an appropriate distance (lookahead distance).
The front wheel steering angle is then calculated based on the real-time lateral and heading
deviations. The UAT follows an arc toward the lookahead point to reach the desired target
point at a certain velocity [74,75]. Yang et al. [76] proposed a path tracking algorithm of a
UAT based on an optimal target location. This algorithm optimizes the lookahead distance
adaptively by simulating the driver’s lookahead behavior. It determines the lookahead
region, establishes an evaluation model, and searches for the optimal target position based
on the predicted model of the tractor’s position. The proposed method exhibited a tracking
error that was 20% lower in comparison to the pure pursuit algorithm.
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5.2.2. Pole-Zero Configuration

Pole-zero configuration refers to selecting the positions of poles and zeros in a signal
processing system. It is used to design filters or controllers to meet UAT system performance
requirements. An appropriate pole-zero configuration ensures high stability, fast response,
and minimum disturbances in a control system [77]. For example, adjusting the positions
of the proportional–integral–derivative (PID) controller’s poles and zeros can control the
system’s overshoot, response time, and steady-state error.

5.2.3. Model Predictive Control

Model predictive control (MPC) utilizes predictive models to select appropriate control
actions based on the optimization objectives. It applies the control signal in the first-time
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step and applies updated control signals at subsequent sampling intervals. Kayacan
et al. [78] proposed a robust trajectory-tracking error control method for UATs. They
designed a linear model predictive controller based on the tracking error. This controller
combines feedforward and robust control actions, significantly reducing tracking errors.
Liu et al. [79] presented a path tracking MPC method for autonomous navigation vehicles.
A comparison experiment was conducted with linear model predictive controllers. The
proposed method resulted in fewer horizontal and longitudinal deviations from the track
during circular path tracking. He et al. [80] developed a linear model, objective function,
and constraint function using MPC for a paddy field tractor. They utilized the tractor’s
pose to establish a path tracking MPC method and proceeded to conduct field experiments.
The results indicated that the pose-corrected MPC path tracking method prevented sudden
lateral position errors caused by changes in relative position and attitude.

5.2.4. Linear Quadratic Regulator

A linear quadratic regulator (LQR) is a control system optimization method. It op-
timizes the control parameters of linear dynamic systems to achieve improved system
performance [81,82]. Bevly et al. [83] designed an LQR path tracking approach based on a
yaw dynamic model. The experimental results demonstrated that this model could control
the tractor’s lateral movement within 4 cm at speeds of up to 8 m/s, providing accurate
high-speed navigation control of the tractor. The block diagram of the principle is shown
in Figure 11.
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5.2.5. Other Novel Approaches

In order to improve the adaptability of the full field path tracking algorithm, Cui
et al. [84] proposed an improved fuzzy path tracking control method for a UAT and
modified the Stanley model. It dynamically adjusts the gain coefficient. Field tests showed
that the maximum path tracking error for straight and curved trajectories at the rated
operating speed was less than 3 cm. Bodur et al. [85] developed an automatic path tracking
system that used two lookahead reference points (2-LARP) to compensate for attenuated
oscillations at curvature transitions. They found that the proposed algorithm reduced
the peak lateral error to 20% of the error of the 1-LARP controller, significantly reducing
lateral tracking deviation. Table 3 lists the classification of path tracking algorithms for the
operational states of UATs.

Table 3. Classification of path tracking algorithms.

Algorithms Advantages Disadvantages

Pure pursuit method Easy to calculate, easy to implement, strong
robustness Moderate accuracy and limited to low-speed scenarios

Pole-zero configuration High stability, fast response Not suitable for complex systems

Model predictive control Suitable for large curvature conditions Not suitable for high-speed conditions

Linear quadratic regulator Easy to design and to implement Strong dependence on model accuracy, not suitable for
paths with large curvature
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6. Motion Control Techniques of UATs
6.1. Control Methods for Automatic Navigation

The automatic navigation control of UATs primarily focuses on lateral position control.
This ensures that the tractor remains on the planned operational path. It can also guarantee
that any lateral position deviation from the path remains within a certain range. Therefore,
motion control is required for the autonomous navigation of UATs [86].

6.1.1. PID Control

The most commonly used control method for unmanned vehicles is PID control [87,88].
He et al. [89] researched unmanned tracked peanut harvesters and improved the PID path
tracking algorithm. They proposed a dual-PID path tracking control algorithm based on
preview tracking and a virtual rotation angle. This method exhibits smooth control and
small steady-state errors.

6.1.2. Neural Networks

Backpropagation (BP) neural networks possess strong adaptive capability to deal with
uncertainties and low robustness of unmanned driving control. They have been used
to optimize the parameters of navigation algorithms and improve the control accuracy
and applicability [90]. Vargas-Meléndez et al. [91] proposed an integrated method of
neural networks and Kalman filtering to estimate the vehicle’s tilt angle. This method
achieved better results than an estimator that used the suspension deflection to obtain
pseudo-tilt angles.

6.1.3. Fuzzy Control

Unlike traditional control methods, fuzzy control does not require precise mathemati-
cal models and geometric relationships. Instead, it converts fuzzy linguistic descriptions
into mathematical forms to describe imprecision and ambiguity. Meng et al. [92] proposed
an improved particle swarm optimization-based adaptive fuzzy control method. This
method quickly eliminates lateral errors in navigation operations of UAT and has a small
overshoot and fast response. Xue et al. [93] designed a path tracking controller for agri-
cultural robots using fuzzy control and machine vision methods with a variable field of
view. This controller enabled the autonomous navigation of robots in cornfields, and field
experiments demonstrated its effectiveness.

6.1.4. Sliding Mode Control

Sliding mode control (SMC) is utilized to address system uncertainties and distur-
bances by employing robust and adaptive controllers. It has high robustness, fast response
times, and high control accuracy [94]. Li et al. [95] proposed a sliding mode variable
structure method to design a path-following control algorithm for a UAT. The implemented
control system allowed the tractor to efficiently carry out plant protection operations in
maize rows during the late season. Jia et al. [96] proposed a radial basis function (RBF)
network for the adaptive SMC of the tractor’s steering angle. The method exhibited high
fault detection capability, reliability, and accuracy. Additionally, the method reduced the
failure rate of front-wheel steering angle measurement devices. He et al. [97] utilized the
SMC method based on the exponential terminal sliding mode (TSM) surface to accelerate
the system’s response speed. They provided evidence that the SMC-active steering (AS)
control method exhibited superior performance compared to the PID-AS control technique
in terms of minimizing peak roll angles.

6.2. Motion Control of UATs
6.2.1. Steering Control

The structure of a typical control system for UATs is shown in Figure 12 [98]. The
control of the execution unit is critical for achieving autonomous navigation. The steering
actuator controls the steering motion of the UAT. It converts the control signals from
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the steering controller into steering torque to cause the wheels to turn. Mechanical and
hydraulic steering actuators are commonly used. The mechanical type has an electric motor
to power the steering axle of UAT. It is easy to install and widely adaptable.
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Mechanical and hydraulic steering systems have low accuracy, slow response times,
and large error potential. They are unsuitable for high-precision operations of UATs.
Electronic steering control is widely used. Electronic devices precisely control the motor’s
speed and steering angle. Zhang et al. [99] used a PLC (programmable logic controller) and
a stepping motor to control the steering wheel’s rotation (Figure 13) and achieve automatic
navigation. Li et al. [100] proposed a PID control method for a four-wheel steering system.
They designed a hydraulic multi-wheel steering system to improve the maneuverability
and operational efficiency of a sprayer. The autonomous driving of UATs requires the
control of basic functions like forward motion, stopping, and the ability to make quick
turns. Therefore, steering control is crucial, and lateral torque control ensures rapid turning
of the UAT [101]. Xu et al. [102] proposed a method to estimate a UAT’s steering state
and parameters. The controller analyzed the required steering torque and calculated the
appropriate current to activate the steering motor, thereby facilitating the desired rotation
of the motor.
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6.2.2. Brake Control

The brake control module is a key component of the automatic control system. It
controls the brakes to decelerate the vehicle. The objectives of brake control in UATs are to
adjust the braking force, stop the vehicle, reduce the speed, and ensure that the moving
object operates in a safe and stable manner. The design of the brake control module must
consider multiple factors, such as control algorithms, brake types, dynamic adjustment,
real-time control, and safety. It requires targeted design and implementation to achieve
efficient, precise, and safe brake control.
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6.2.3. Speed Control

Precise speed and turn control improve operational efficiency, enhances work quality,
and ensures operational safety of UAT. Speed control autonomously adjusts the vehicle’s
velocity based on the required tasks or environmental changes. Automated speed control
can adjust the speed with high precision based on the required tasks, work site, and terrain.
Li et al. [103] designed an experimental platform based on a crawler tractor and an RTK-
GPS control system. This system enabled the UAT to follow predetermined routes and
achieve low tracking errors.

Common control techniques for turn control include steering wheel angle, differential,
and dual-layer PID control methods. Turn control for autonomous driving systems requires
multiple data sources, such as GPS position information, to improve control accuracy and
vehicle safety. Zhou et al. [104] proposed a hybrid electro-hydraulic steering system with
an improved method based on a competitive multi-objective particle swarm optimization
algorithm. This system facilitated steering with an improved steering feel and reduced
steering wheel backlash.

6.3. Controller Area Network Bus Technology for UATs

Advances in controller area network (CAN) bus technology have resulted in increased
applications for UATs. Communication between electronic control units using CAN bus
has been achieved in some developed countries [105]. The intelligence of smart agricultural
machinery depends on the communication level, hardware structure, software architecture,
and algorithms. Communication is required to ensure intelligent applications. Rohrer
et al. [106] investigated the CAN bus technology for tractor data acquisition. The results
showed that Leaf Light v2 (EAN: 73-30130-00685-0, Kvaser Inc., Mission Vieho, CA) and
CanKing (v. 5.06.057, Kvaser Inc., Mission Vieho, CA, USA) software could provide raw
logging data. CANcaseXL_log hardware combined with the CANalyzer software enabled
the conversion of the raw logging data into a file to visualize the data. To examine variations
in data acquisition and conversion, Marx et al. [107] utilized diverse data acquisition
methods to collect CAN bus data from tractors. The results showed that using the waveform
CAN bus data maintained the accuracy of digital data and reduced the processing time and
memory requirements. Liu et al. [108] developed a CAN communication network system
following the ISO 11783 [109] protocol specifically designed for a bifurcated power electric
tractor. The results showed that the bus load rate of the proposed CAN bus network system
was 12%, meeting the communication requirements. The research status of the use of CAN
bus technology for the autonomous navigation of UATs reveals that this technology has
been commercialized internationally, whereas China is in the research and experimental
stage. Table 4 presents the characteristics of various control methods for the operational
states of UATs.

Table 4. Comparison of characteristics for various control methods.

Control Method Modeling Applicable
Systems Advantages Disadvantages

PID Control No Linear Robustness, simple structure,
easy implementation

Trade-off between overshoot
and response time

Neural Networks Yes Nonlinear Strong adaptability, robustness,
high precision

Slow convergence,
susceptibility to local optima

Fuzzy Control No Nonlinear Robustness, adaptability,
disturbance rejection, stability

Lower control precision,
static error

Sliding Mode Control No Nonlinear Robustness, fast response,
simple implementation

Potential high-frequency
oscillations
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7. Application of UATs in Precision Farming
7.1. Applications in Plowing

The application of unmanned driving systems in plowing has already seen heavy
implementation. A control method was developed for unmanned tractors to improve
rotary tillage accuracy using model predictive control. Their method resulted in minimal
yaw angle (0.06 rad) and lateral deviations (0.013 m) during rotary tillage. Cooperative
control enhanced overall performance [110]. Crisnapati et al. [111] created a path planning
system for autonomous tractors using Laravel and Google Maps. The algorithm generated
paths based on user parameters, validated for rice field plowing missions with a maximum
error of 2.61 m between waypoints and tractor position. This method allowed farmers to
customize path distances based on puddler widths.

7.2. Applications in Field Management

Weed control, pesticide spraying, and orchard monitoring can be efficiently performed
with UATs. An unmanned weeding machine for maize fields using navigation data from
the seeding tractor was developed [112]. Based on this data, the intelligent autonomous
weeder autonomously weeded the field, excluding the headlands. With a 50 cm hoe width
and 75 cm row spacing, the study proved the feasibility of achieving precise weeding at the
field level. Pan et al. [113] introduced a novel semantic mapping and navigation framework
to enhance robot autonomy in orchards. This framework consisted of a semantic processing
module and a navigation module. The developed visibility graph provided efficient global
navigation guidance for autonomous vehicles in orchards, crucial for tasks like automated
orchard harvesting and monitoring. By utilizing density, mean height, and angle features,
the method significantly reduced processing time to just 0.1949 s.

7.3. Applications in Seeding

Using UATs for seeding can improve the standardization of planting. Hensh et al. [114]
created an unmanned wetland paddy seeder that demonstrated precise seed metering and
excellent maneuverability, achieving superior seeding quality compared to manual drum
seeders. It enabled accurate remote seeding in wetlands with a tight turning radius of 0.8 m
and minimal deviation from a straight path at 22.13 mm. Minn et al. [115] used RTK-GNSS
positional sensors for real-time data collection of a multi-crop seed broadcaster on an
autonomous seeding vehicle. The system performed optimally at a speed of 0.351 m/s,
with seed distribution uniformity variations of 19% for green peas, 22% for cowpeas, and
25% for chickpeas.

7.4. Applications in Harvesting

There are also many applications for UATs in harvesting. Shang et al. [116] presented
an obstacle detection algorithm using 2D lidar to prevent collisions between harvesters and
obstacles in unmanned agricultural operations. They utilized a density-based clustering
method to assess obstacle quantity and width. The algorithm achieved 95.06% accuracy in
detecting multiple obstacles and 92.67% accuracy in stopping for hazardous obstacles.

7.5. Other Applications

In recent years, unmanned vehicles have gradually started to be applied in the breed-
ing industry. Anzai and Sakurai [117] researched how cattle respond to herding by un-
manned vehicles and its impact on grazing patterns. They used a small, unmanned ground
vehicle to herd cows for seven days, strategically approaching them to influence their move-
ment. The study suggested that robotic herding with unmanned vehicles can help control
grazing distribution. To address low-light and low-stress environments in livestock and
poultry houses, a method using “magnet-RFID” marks on the ground to detect navigation
paths was proposed. This enables robots to automatically move between cages and be
utilized as automatic disinfectant sprayers in livestock and poultry houses [118].
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8. Discussions

The current trend shows a dwindling agricultural workforce, especially among the
younger generation. Therefore, the urgent task for agricultural development is to invest in
unmanned agricultural machinery to reduce dependency on manual labor. Consequently,
numerous experts and scholars have initiated research on UAT technology. This article
offers a comprehensive examination of advancements in perception, navigation, and control
of UATs. Beyond these aspects, research on UAT technology also includes studies on me-
chanical structures like power shifting and CVT technologies [119], which are also essential
for autonomous driving of tractors. This study focuses on the intelligent technology of
UATs, leaving discussions on advancements in mechanical structures for future exploration.

Currently, UATs in China are still in the research and development stage and have not
been fully commercialized. There are several companies working on them. For instance, in
September 2023, China’s YTO Group successfully rolled out 100 intelligent tractors [120],
yet they have not undergone large-scale production. The John Deere company has also
produced autonomous tractors [121], but their technology is only suitable for local use.
Therefore, in actual production, semi-automated tractors with human-assisted driving
are primarily used [122]. However, the development of UAT technology will inevitably
have a potential impact on existing situations. UATs can save labor, increase operational
standardization, and eliminate the inconsistencies of manual work. Once they are commer-
cialized, the use of traditional tractors will decrease, promoting traditional manufacturers
to transition into intelligent manufacturers [123].

UATs are mainly intended for medium to large-scale farms with highly standardized
fields and sufficient economic capacity to purchase such equipment [124]. Traditional
manually operated tractors, on the other hand, will primarily be used in small family farms
and by individuals, as they are suitable for small and irregular fields. Of course, some
manually operated tractors will still be used on large scale farms, such as tractors used
for road transport [125], due to the complexity of agricultural roads, making autonomous
driving both challenging and unnecessary.

9. Conclusions and Future Work
9.1. Conclusions

Extensive and comprehensive research has resulted in advances in the autonomous
navigation of UAT. Critical intelligent technologies include GNSS, inertial navigation
systems, fusion of positioning data and sensor information, integration of global and local
path planning, and precise motion control. Based on a thorough summary and analysis of
current research, the following conclusions can be drawn:

(1) The perceptive technique, including positioning, and internal and external sensing of
tractors, are currently the two most widely studied technologies in the UAT field. GPS
and BDS are widely used GNSS technologies for differential positioning. By using
centimeter-level positioning data from GNSS satellite navigation systems, combined
with inertial sensors, vision sensors, radar, etc., precise positioning and sensing of
UATs can be achieved. Nevertheless, the utilization of GNSS technology for the
autonomous navigation of UATs remains relatively limited due to extreme weather
conditions and signal disruptions. Various sensors used in this field have both merits
and drawbacks. Sensor fusion methods are commonly employed to increase position-
ing accuracy and reliability. Widely adopted information fusion approaches include
Kalman filtering and particle filtering.

(2) Path planning and tracking are influenced by field conditions, types of machinery,
and turning radius. The motion model precision significantly impacts the accuracy of
UAT navigation, especially in complex field environments. Achieving effective and
practical automatic boundary steering remains a challenging issue in autonomous
navigation control, particularly for turns at field boundaries. Dividing the field into
different types and then implementing full-coverage path planning for the target
area is the main approach. Obstacle detection in the field can be accomplished using
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machine vision methods or laser ranging. Stopping machinery is the simplest obstacle
avoidance measure because a real-time path planning approach for obstacle avoidance
is not yet available.

(3) Speed control and steering control form the foundation of motion control for UAT,
while navigation tracking control constitutes its primary focus. The control of speed,
and steering is crucial for ensuring the working precision and motion reliability
of UAT. The combination of traditional and intelligent control algorithms, coupled
with high-performance steering controllers, is essential for improving the navigation
efficiency and precision of UAT. The key to whether a motion control method can
adapt well to its environment lies in how control parameters are adjusted to enhance
the speed and accuracy of the control system. The role of machine learning algorithms
in motion state recognition and parameter optimization has become increasingly
prominent in recent years.

9.2. Future Work

(1) In terms of perceptive techniques, high-precision maps of farmland with a priori
knowledge will be a key focus of future research. It is necessary to conduct research
on creating practical and efficient autonomous navigation scheduling systems tai-
lored to China’s conditions. It is crucial to design appropriate sensor combinations,
select reliable and effective sensor fusion strategies, and leverage the advantages of
sensors to ensure data redundancy or complementarity. Accelerating the usage of
the Internet of Things and communication technology for environmental perception
is also essential for the autonomous navigation of UAT. A big data cloud platform
with 5G high-speed networks needs to be established for UATs to promote the remote
monitoring technology.

(2) In terms of path planning and tracking techniques, full-coverage path planning al-
gorithms suitable for irregular fields, multiple obstacles, and multiple constraints
need be developed to achieve adaptive path planning for tractors and implements
with different turning radii. It is required to develop advanced obstacle avoidance
measures suitable for the operating environment of UAT. Real-time obstacle avoidance
path planning should be implemented for the dynamic control of tractor and obstacle
avoidance. Extensive research may be conducted to develop science-based mathe-
matical models and algorithms for path planning and tracking to enhance efficiency
and precision.

(3) In terms of motion control techniques, due to factors like varying loads, the meth-
ods based on kinematic models lack robustness and fail to account for changes in
dynamic characteristics, making it difficult to achieve the desired results. The future
trend should be to establish high-fidelity nonlinear dynamic models for autonomous
driving agricultural equipment. Employing machine learning methods to create a
tractor motion model can prevent inaccuracies in modeling. This can also help avoid
significant changes in model parameters that might impact the efficiency of tractor
motion control. This strategy is steadily emerging as a primary focus of research.
Extensive research is required to be conducted in order to achieve high-precision and
high-reliability motion control units.
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