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Abstract: This paper aims to achieve precise position control of a stage used in semiconductor exposure
apparatus. The demand for smart devices, such as smartphones, is rapidly expanding, and their
performance is expected to continue to improve. To manufacture these devices, it is necessary to
miniaturize semiconductor devices and improve productivity. The precise control of semiconductor
exposure apparatus is important for the manufacture of ultra-small semiconductor devices. The stage
of semiconductor exposure apparatus uses a linear motor, and this paper performs high-precision
perfect tracking control of this stage. Perfect tracking control is a control method that always follows the
command value while the command value changes moment by moment, and requires high accuracy.
In high-precision positioning, uncertainty in the stage model has a significant impact. Therefore, this
paper proposes a method to reduce tracking errors due to the influence of uncertainty by performing
uncertainty compensation using sliding mode control with the estimated value of uncertainty. The
estimation of uncertainty uses a method that combines Kernel LMS with an observer. Instead of
the widely used Gaussian kernel, this paper uses a generalized Gaussian kernel that allows for finer
parameter settings. Furthermore, this paper proposes a method to adaptively optimize the shape
parameter of the generalized Gaussian kernel. Our simulations and experiments confirm that the
proposed method improves tracking performance compared to conventional sliding mode control.

Keywords: sliding mode control; adaptive identification; semiconductor manufacturing; uncertainty
compensation; Kernel LMS; perfect tracking control

1. Introduction

Currently, attention is focused on the advancement of the IoT society worldwide.
Specifically, smartphones and smart home appliances are examples of such devices. In the
near future, fully automated vehicles and contact lenses that perform the same functions
as smartphones by simply being worn on the eyes are expected to appear. Since semi-
conductor devices are the foundation of these devices, it is expected that semiconductor
device manufacturing technology will become increasingly important. Therefore, various
studies have been conducted in different fields to meet the manufacturing requirements of
semiconductor devices [1–7].

This paper aims to achieve high-precision positioning of the exposure stage used in
semiconductor manufacturing. To achieve high-precision positioning of the stage, a precise
mathematical model that accurately represents the dynamic characteristics of the stage
is required. However, due to the nonlinearity and disturbance effects on the dynamic
characteristics of the stage, it is difficult to construct a precise mathematical model, and its
performance is degraded due to the influence of unconsidered uncertainties. Therefore,
in order to achieve high-precision positioning of the stage, it is necessary to construct
a control system that takes into account the influence of uncertainties. Two methods
have been proposed for constructing control systems that consider uncertainties. The first
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method enhances the robustness of the controller against uncertainties to compensate
for instability under conditions that include uncertainties [8–12]. The second method
involves estimating uncertainties and model parameters and modifying the control input
based on the estimated values [13–16]. The first method focuses on stability and does not
consider improving control performance, making it unsuitable for high-precision control.
Therefore, in this paper, the second method is used to identify uncertainties and modify
the control input based on the identification results. In particular, sequential identification
of uncertainties is performed to cope with rapidly changing uncertainties. There have
been studies on sequential model identification, such as [17–21], and their effectiveness has
been confirmed.

Previous studies have proposed a control method based on operator theory for con-
structing a mathematical model that represents the dynamic characteristics of the stage,
focusing on the linear motor’s chain of magnetic flux [22]. Operator theory is a control
theory that represents the input–output characteristics of the plant using a nonlinear map-
ping method called an operator. This design method does not require the state variables
of the plant and is easy to implement. It has been proposed for various applications, such
as wireless power transmission, processes, and nano materials, as it does not require a
special form for nonlinearity [23–26]. However, previous studies did not consider the
influence of uncertainties, resulting in significant discrepancies between simulation results
and experimental results. Additionally, control methods using model estimation by AI
have been proposed [27–29]. Research on stage positioning using air pressure has also been
conducted [30–32]. In both methods, even if uncertainty compensation is performed, it is
difficult to adapt to changes in uncertainties because the uncertainty model is identified
offline or learning is performed at long intervals. In this paper, sequential identification of
uncertainty models is performed using Kernel LMS [33] and an optimal observer, and un-
certainty compensation is performed using the identified uncertainty model and sliding
mode control [34–37]. Kernel LMS is a method that can adaptively identify nonlinear
functions by approximating them using the kernel method, and it is widely used in the field
of signal processing [38–41]. There are other methods for identifying nonlinear functions,
such as Neural Networks (NNs) [42–44] and Support Vector Machines (SVMs) [45–47],
but they have high learning costs and cannot easily achieve adaptive identification. On the
other hand, Kernel LMS has the advantage of low learning costs and the ability to achieve
adaptive identification. Research applying Kernel LMS to control has been conducted,
such as in [48,49], and its ability to handle complex signals such as drones and active
noise cancellation has been confirmed. Many methods using various kernels, including
Gaussian kernels, have been proposed, but in this paper, identification is performed using
a generalized Gaussian kernel based on generalized Gaussian distribution [50,51]. Further-
more, the shape parameter included in the kernel is sequentially optimized to identify the
optimal kernel.

This paper is structured as follows. In Section 2, the equipment used in the experiments
is described. In Section 3, the problem formulation is presented. In Section 4, the derivation
of the stage model is described. In Section 5, the proposed method for the controller
is presented. In Section 6, the effectiveness of the proposed method is verified through
simulations and experiments. In Section 7, the paper is summarized.

2. Experimental System

Figures 1 and 2 depict a photograph and a schematic diagram, respectively, of the
experimental apparatus employed in this study. The plant consists of a linear motor stage
connected to an air slider via bolts, with the stage made to float and friction eliminated
by supplying compressed air to the air slider. By applying an electric current to the linear
motor, the stage can slide left and right. The position of the stage is observed using a laser
sensor attached to the device, and a position signal is sent to the DSP. The DSP processes the
position signal and inputs the resulting input voltage signal to the driver circuit, thereby
controlling the linear motor by applying a current to it.
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Figure 1. Photograph of the experimental apparatus.
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Figure 2. Schematic diagram of the experimental apparatus.

3. Problem Statement

The kinetic model of the linear stage P is represented by Equation (1), where y ∈ Y
denotes the stage position, m > 0 is the mass of the slider, f : Y × V → F is the nonlinear
external force applied to the stage, and fu ∈ F is the manipulated variable.

P : F → Y : mÿ(t) = f (y, ẏ)(t) + fu(t) (1)

Let the operator f be decomposed into a known linear operator f0 and an unknown
bounded nonlinear uncertainty operator ∆, as shown in Equation (2).

f (y, ẏ) = f0(y, ẏ) + ∆(y, ẏ) (2)

It is assumed that the following conditions hold for uncertainty ∆.

Assumption 1. ∆ is a bounded operator: For any bounded y ∈ Y and ẏ ∈ V, ∆(y, ẏ) < ∞ holds.
If this assumption is not satisfied, it is impossible to output a manipulated variable that eliminates
the estimated uncertainty ∆.

Assumption 2. ∆ is sufficiently small compared to f0: For any bounded y ∈ Y and ẏ ∈ V,
∆(y, ẏ) ≪ f0(y, ẏ) holds. Under this assumption, the influence of uncertainty can be reduced by
making the estimation error sufficiently small.
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Assumption 3. The upper limit of the second-order differential value of ∆ is known: For any

bounded y ∈ Y and ẏ ∈ V,
∣∣∣∣d2∆

dt2 (y, ẏ)
∣∣∣∣ ≤ ∆̄(2) holds. Under this assumption, it is possible to

stabilize the plant by suppressing the upper limit ∆̄(2).

Furthermore, the ideal model Pn is defined as shown in Equation (3) using the above
f0, and the difference from the actual model is defined as shown in Equation (4), where
y∗ ∈ Y is the ideal position of the stage, and f ∗u ∈ F is the ideal manipulated variable.

Pn : F → Y : mÿ∗(t) = f0(y∗, ẏ∗)(t) + f ∗u (t) (3)

e(t) = y(t)− y∗(t) (4)

The dynamics of e are expressed as follows:

ë(t) = ÿ(t)− ÿ∗(t)

=
1
m
( f0(e, ė)(t) + ∆(y, ẏ)(t) + fu(t)− f ∗u (t)) (5)

In this paper, a control system that ensures e → 0 using a kernel adaptive filter
to eliminate uncertainty ∆ is proposed. Furthermore, it achieves perfect tracking to a
continuous set point r by employing sliding mode control with an integral term.

In this paper, we adopt two notations for the differential quantity of a given state x, ẋ
and x(n), with ẍ representing the second-order differential and x(n) the higher-order cases.

That is, ẍ = x(2) =
d2x
dt2 .

4. Model

In this paper, an improved version of the model from [22] is used as the model for the
plant, which is represented below:

mÿ(t) = −cẏ(t) + Φ(y)i(t)− W ′(y)(t) (6)

Li̇(t) = −Ri(t)− Φ(y)ẏ(t) + u(t) (7)

Φ(y) = â − b̂
(

cosh(k̂y)− 1
)

(8)

W ′(y) =
LxLz

(
µ0 − µ f

)
2µ0µ f

(
−b̂2 sinh

(
k̂ly
)

sinh
(

2k̂y
)
+ 4
(

âb̂ + b̂2
)

sinh

(
k̂
2

ly

)
sinh

(
k̂y
))

(9)

where c > 0 is the velocity resistance of the stage, Φ(·) is the operator representing the
magnetic flux crossing the coil of the linear motor, W ′(·) is the operator representing the
force due to the magnetic potential of the linear motor, L > 0 is the inductance of the linear
motor, R > 0 is the electrical resistance of the linear motor, â > 0, b̂ > 0, and k̂ > 0 are the
parameters of the magnetic flux, and µ0 > 0 and µ f > 0 are the permeability of the vacuum
and the coil, respectively. Lx > 0 and Lz > 0 are the lengths of the linear motor in each axis
direction, and ly > 0 is the length of the coil in the y axis direction, and these parameters
correspond to the structure of the linear motor shown in Figure 3.

This chapter describes the derivation of this model.

Derivation of the Model

This model considers the spring-like characteristics caused by the permanent magnet
of the linear motor. Due to its structural features, the linear motor exerts a force that tries to
slide the stage position towards the center based on the gradient of the magnetic potential
of the permanent magnet. A conceptual diagram is shown in Figure 3.
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Figure 3. Structure of the linear motor.

The magnetic energy per unit volume ϕ is represented by Equation (10) using the
magnetic flux density Φ:

ϕ =
1

2µ
Φ2 (10)

where µ is the magnetic permeability. Assuming that the magnetic flux density in the
regions with and without coils in Figure 3 is constant in the x and z directions, the total
magnetic energy W of the linear motor is represented by Equation (11):

W(y) = LxLz
1

2µ0

∫ Ly
2

− Ly
2

Φ2(y)dy + lxLz

(
1

2µ f
− 1

2µ0

) ∫ ly
2 +y

− ly
2 +y

Φ2(y)dy (11)

where Lx, Ly, and Lz are the lengths of the linear motor in the x, y, and z directions, and lx
and ly are the lengths of the coil in the x and y directions, respectively. The first term of this
equation represents the total magnetic energy when the coil is not present, and the second
term represents the change in magnetic energy when the coil is added. When the coil is not
present, the permeability of the entire region is µ0, so the entire region is integrated as in
the first term. When the coil is present, the region of lx × ly is replaced by the coil, so the
region of the coil lx × ly is integrated as in the second term. By substituting Equation (8)
into Equations (11) and (12), we obtain

W(y) =
LxLz

2µ0

(
â2 + 2âb̂ +

3
2

b̂2
)(

Ly − ly +
µ0

µ f
ly

)

+
LxLz

4µ0k̂

(
b̂2 sinh

(
k̂Ly

)
− 8
(

âb̂ + b̂2
)

sinh

(
k̂
2

Ly

))

+
LxLz

(
µ0 − µ f

)
4µ0µ f k̂

(
b̂2 sinh

(
k̂ly
)

cosh
(

2k̂y
)
− 8
(

âb̂ + b̂2
)

sinh

(
k̂
2

ly

)
cosh

(
k̂y
))

(12)

By differentiating Equation (12) with respect to y, the force due to the total magnetic
energy of the linear motor W ′ in Equation (9) is obtained.
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5. Proposed Control Method

This chapter describes a method for estimating uncertainty using a kernel adaptive
filter and perfect tracking control with sliding mode control, which is proposed in this paper.

5.1. Uncertainty Estimation

The estimated value of uncertainty ∆̂ is expressed by using the model with kernel
regression, as shown in Equations (13)–(16):

∆̂(t) = ŵ(t)Tk(x(t)) (13)

k(x(t)) =
(
κ(x(t), x̃1) · · · κ(x(t), x̃N)

)T (14)

κ(x, x̃) = exp
(
−
(

g(γ)∥x − x̃∥
σ

)γ)
(15)

g(γ) =

√
Γ(3/γ)

Γ(1/γ)
(16)

where x =
(
y ẏ

)T is the state variable of the plant, ŵ ∈ RN is the adaptive weight vector
of the model, and k(·) : R2 → RN is the kernel function vector. In this paper, k uses
the generalized Gaussian kernel expressed by Equations (15) and (16), where x̃i ∈ R2

represents the learning data, σ > 0 is the standard deviation of the kernel, γ > 0 is the
order of the norm, and Γ(·) is the gamma function.

The estimation error ε of uncertainty is defined as shown in Equation (17).

ε(t) = ∆(t)− ∆̂(t)

= ∆(t)− ŵ(t)Tk(x)(t) (17)

In order to minimize ε, an observer based on the evaluation function J shown in
Equations (18) and (19) is considered, where ·̂ represents the estimated values of each
variable, P = diag

(
py, 1

)
, py > 0 is the weight for the state variable, and pε > 0 is the

weight for the uncertainty estimation error.

J(ŵ) =
1
2

(
(x − x̂)T P(x − x̂) + pεε

2
)

(18)

x̂(t) =
(
ŷ(t) ˆ̇y(t)

)T (19)

The observer is designed as shown in Equation (20), where v1, v2, and v3are the state
correction inputs of the observer.

d
dt

 ŷ
ˆ̇y

ŵ

(t) =

 ˆ̇y(t) + v1(t)
1
m
{

f0
(
ŷ, ˆ̇y
)
(t) + ∆̂(t) + fu(t)

}
+ v2(t)

v3(t)

 (20)

To adaptively minimize the evaluation function shown in Equation (18), it is desirable
for it to be a Lyapunov function. Therefore, let us consider the time derivative of it.

J̇(ŵ) = (x − x̂)T P(ẋ − ˙̂x) + pεεε̇ (21)

By substituting Equations (1), (17), and (20) into Equation (21), Equation (22) is expressed.
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J̇(ŵ) = (y − ŷ)py(ẏ − ˆ̇y − v1)

+ (ẏ − ˆ̇y)
1
m
( f0(y − ŷ, ẏ − ˆ̇y) + ε − mv2)

+ pεε
(

∆̇ − ŵT k̇(x)− vT
3 k(x)

)
= −py(y − ŷ)v1

+ (ẏ − ˆ̇y)
{

py(y − ŷ) +
1
m
( f0(y − ŷ, ẏ − ˆ̇y))− v2

}
+ ε

{
1
m
(ẏ − ˆ̇y) + pε

(
∆̇ − ŵT k̇(x)

)
− pεvT

3 k(x)
}

(22)

In order to make the first and second terms of Equation (22) negative and the third
term sufficiently small, v1, v2, and v3 are designed as shown in Equations (23)–(25), where
G1 > 0 and G2 > 0 are design parameters.

v1 = G1(y − ŷ) (23)

v2 = py(y − ŷ) +
1
m

f0(y − ŷ, ẏ − ˆ̇y) + G2
(
ẏ − ˆ̇y

)
(24)

v3 =
k(x)

mpε∥k(x)∥2

(
ẏ − ˆ̇y

)
(25)

By substituting Equations (23)–(25) into Equation (22), Equation (26) is expressed.

J̇(ŵ) = −G1(y − ŷ)2 − G2(ẏ − ˆ̇y)2 + pεε
(

∆̇ − ŵT k̇(x)
)

(26)

Since pε is an arbitrary positive constant, if pε is sufficiently small, the third term
of Equation (26) can be ignored, and Equation (26) becomes locally negative. From
Assumption 2, the uncertainty ∆ is assumed to be small, so ε is sufficiently small and
the third term in Equation (26) can be ignored. Therefore, Equation (18) becomes a Lya-
punov function if ε is sufficiently small, and ε can be minimized.

5.2. SMC with Uncertainty Compensation

The tracking error e∗ with respect to the command value r of the ideal model is defined
as shown in Equation (27).

e∗(t) = y∗(t)− r(t) (27)

The dynamics of e∗ are expressed as shown in Equations (3) and (28).

ë∗(t) = ÿ∗(t)− r̈(t)

=
1
m
( f0(y∗, ẏ∗)(t) + f ∗u (t))− r̈(t) (28)

For these two variables, e and e∗, the sliding surface s is defined by using the constants
p1, p2, p3, p4, p5 ∈ R+, as shown in Equation (29).

s(t) = p1e(t) + p2 ė(t) + p3 ë(t) + p4e∗(t) + p5 ė∗(t) + ë∗(t) (29)

For the switching surface s shown in Equation (29), the Lyapunov function V is defined
as shown in Equation (30).

V(s) =
K1

γ1 + 1
|s|γ1+1 +

1
2

ṡ2 > 0 (30)

where 0 < γ1 ≤ 1 and K1 > 0 are constants. The time derivative of V is represented
as follows:
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V̇(s) = ṡ(K1|s|γ1sign(s) + s̈) (31)

Let, f ∗u and fu be determined as shown in Equations (32)–(34).

f ∗u (t) = p−1
3 m(−p1e∗(t)− p2 ė∗(t))− f0(y∗, ẏ∗)(t) + mr̈(t) (32)

fu(t) = f ∗u (t) + m(−p4e(t)− p5 ė(t))− f0(e, ė)(t)− K∗∆̂(t)− m fq(t) (33)

f̈q(t) = K1|s(t)|γ1sign(s(t)) +
(

K2 +
¯̈∆
)

sign(ṡ(t)) (34)

where 0 < K∗ < 1 and K2 > 0 are design parameters, ¯̈∆ > 0 is the upper limit of the
absolute value of uncertainty ∆̈, and ∆̂ is the estimated value of uncertainty.

By substituting Equations (32)–(34) into Equation (31), Equation (35) is expressed.
Here, since K∗ < 1,

∣∣∣∆̈(t)− K∗ ¨̂∆(t)
∣∣∣ ≤ ∣∣∆̈(t)∣∣ holds, and the absolute value is greater than

the original value, so Equation (35) is expressed as Equation (36). Since Equation (36) holds,
V is a Lyapunov function, and the asymptotic stability of the control system is guaranteed.
Therefore, e → 0 and e∗ → 0 are guaranteed, and the response of the ideal model and the
actual system follows the command value r.

V̇(s) = −K2|ṡ|+
((

∆̈(t)− K∗ ¨̂∆(t)
)

ṡ − ¯̈∆|ṡ|
)

(35)

≤ −K2|ṡ|+
(∣∣∆̈(t)∣∣− ¯̈∆

)
|ṡ| < 0 (36)

In actual implementation, Equation (34) is transformed into Equation (37) to imple-
ment it for chattering removal. Through this implementation, chattering is suppressed by
making the control input continuous.

f̈q(t) = K1|s(t)|γ1sign(s(t)) +
(

K2 +
¯̈∆
)
|ṡ(t)|γ2sign(ṡ(t)) (37)

5.3. Shape Parameter Identification of Generalized Gaussian Kernel

In this section, the method of identifying the shape parameters from the observation
information is explained. In the generalized Gaussian kernel, σ and γ exist as shape pa-
rameters. The n−th central moment Mn(·), n ∈ N of the generalized Gaussian distribution
is used for the identification of the shape parameters. Mn(·) is expressed as shown in
Equation (38).

Mn(x) =
N

∑
i=1

xn
i (38)

In the case of the generalized Gaussian distribution, the even-order central moment
M2m(·), m ∈ N is expressed as shown in Equation (39).

M2m(x) =
{

σ2 Γ(1/γ)

Γ(3/γ)

}m Γ((2m + 1)/γ)

Γ(1/γ)
(39)

From this equation, kurtosis ϕ is expressed as shown in Equation (40).

ϕ =
M4(x)

(M2(x))2 =
Γ(5/γ)Γ(1/γ)

(Γ(3/γ))2 (40)

From these equations, the evaluation function J(γ) with respect to γ is defined as
the difference between the observed value of kurtosis and the value calculated from γ, as
shown in Equation (41).
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J(γ) =
1
2

(
ϕ − Γ(1/γ)Γ(5/γ)

Γ(3/γ)2

)2

(41)

γ is updated by Equation (42) so that the evaluation function J(γ) is monotonically
decreased, where ηγ > 0 is the update gain, and Γ′(·) is the first-order derivative of the
gamma function.

˙(
1
γ

)
= ηγ

Γ(3/γ)3
(

ϕ − Γ(1/γ)Γ(5/γ)
Γ(3/γ)2

)
Γ′(1/γ)Γ(3/γ)Γ(5/γ) + 5Γ(1/γ)Γ(3/γ)Γ′(5/γ)− 6Γ(1/γ)Γ′(3/γ)Γ(5/γ)

(42)

By updating γ according to Equation (42), the updated equation of the evaluation
function J(γ) becomes Equation (43), and J(γ) monotonically decreases, so the convergence
of γ is guaranteed.

J̇(γ) = −ηγ

(
ϕ − Γ(1/γ)Γ(5/γ)

Γ(3/γ)2

)2

= −2ηγ J(γ) < 0 (43)

Summarizing the above, the following steps are performed for each control cycle for
the identification of the shape parameters.

Step 1: Set the initial values of σ and γ.
Step 2: Observe the state variable x using the sensor.
Step 3: Calculate the 2nd and 4th central moments using Equation (39) when m = 1, 2.
Step 4: Calculate the kurtosis ϕ using Equation (40).
Step 5: Update σ as the square root of the 2nd moment.
Step 6: Update γ using Equation (42).

5.4. Summary of Proposed Method

Summarizing the above, a block diagram of the control system is shown in Figure 4,
where C represents Equation (32), P represents Equation (1), Pn represents Equation (3),
S represents Equations (33) and (37), and Adaption Law represents Equation (20) and
Section 5.3.

𝑃

𝑃𝑛

Adaption

Law

𝐶

𝑆

Figure 4. Control system of proposed method.

In actual program, the following steps are executed for each control cycle.

Step 1: Observe the stage position y using the sensor.
Step 2: Observe the stage velocity ẏ by differentiating y.
Step 3: Update the shape parameters, σ and γ, according to the procedure in Section 5.3.
Step 4: Estimate the uncertainty ∆̂ using Equation (20). Here, the initial value of the

state variable is 0, and v1, v2, and v3 are the inputs to the observer, as shown in
Equations (23)–(25).

Step 5: Calculate the ideal operation amount f ∗u using Equation (32).
Step 6: Calculate the actual operation amount fu using Equations (33) and (37), and

input it to the stage.
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6. Verification

In this section, the proposed method is verified. The verification is divided into two
parts: a simulation and an experiment.

The model of f0 used in the verification is given by

f0(y, ẏ) = −cẏ − ky (44)

where c > 0 and k > 0 are parameters set so that f0 ≈ f .

6.1. Simulation

A simulation of the proposed method was conducted. The simulation parameters are
presented in Table 1, and the results are shown in Figure 5. Figure 5a–c show a comparison
of the stage position, input voltage, and tracking error with and without uncertainty
compensation. Figure 5d shows the magnitude of uncertainty with respect to the command
force. The parameters were determined through trial and error. The reference value r(t) is
given by Equation (45). This is a sine wave with a frequency of 2 Hz and an amplitude of
1 mm.

r(t) = (1 − cos(4πt)) [mm] (45)

In this simulation, Gaussian noise with a standard deviation of 1 was used for x̃i.

Table 1. Simulation parameters.

Symbol Value Unit Symbol Value Unit
m 0.0755 kg p1 625,000 −
c 0.105 kg/s p2 5000 −
k 2.5 kg/s2 p3 10 −
R 17.5 Ω p4 5,250,000 −
L 27.5 × 10−3 H p5 5000 −
â 31.7 N/A K1 500 −
b̂ 12.0 N/A K2 200 −
k̂ 100 /m γ1 0.8 −

Lx 0.01 m γ2 0.7 −
Lz 0.05 m K∗ 0.9 −
µ f 6.3 × 10−3 H/m ¯̈∆ 100 N/s2

µ0 4π × 10−5 H/m ηγ 0.1 −
ly 0.05 m σ 0.1 −
G1 10 − G2 10 −
py 100 − pε 7 −
N 100 −

From the simulation results, it can be observed that perfect tracking is achieved with
respect to the reference value, regardless of whether uncertainty compensation is applied
or not. The effectiveness of perfect tracking control using sliding mode control is confirmed.
Furthermore, the proposed method of uncertainty compensation reduces the tracking error
compared to the case where no compensation is applied, demonstrating its effectiveness in
achieving high-precision stage control. Additionally, it can be seen from Figure 5d that the
uncertainty satisfies the assumptions in Section 3.
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Figure 5. Simulation results: (a) stage position, (b) input voltage, (c) tracking error, (d) command
force vs. uncertainty.

6.2. Experiment

An experiment was conducted on the designed control system. The same parameters
as those used in the simulation were employed in the experiment. A sine wave with an
amplitude of 1 mm and a frequency of 2 Hz was used as the command value r. The experi-
mental results are presented in Figure 6. It can be seen from Figure 6d that the uncertainty
is sufficiently small compared to the command force, and it satisfies the assumptions in
Section 3. From Figure 6, it can be observed that without uncertainty compensation, suffi-
cient tracking cannot be confirmed due to the uncertainties, and an error of up to 0.5 mm
can be observed. However, by applying uncertainty compensation, it can be improved
to within 0.2 mm at maximum. The effectiveness of the proposed method for uncertainty
compensation is verified. However, it can be seen that higher-order vibrations occur in the
proposed method. This is believed to be due to the fact that the uncertainty identifier picks
up the sensor noise. Therefore, appropriately filtering the sensor value is a future task that
can be performed to suppress higher-order vibrations.
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Figure 6. Experimental results: (a) position, (b) voltage, (c) error, (d) command force vs. uncertainty.

7. Conclusions

In this paper, we proposed a method to compensate for uncertainty using sliding mode
control with an estimated uncertainty value, which represents the motion model of a linear
slider as a linear operator and uncertainty. We designed a new observer using Kernel LMS for
estimating uncertainty and succeeded in identifying uncertainty without directly observing
it. By conducting experiments, we confirmed that it is possible to track the position of the
stage even when the uncertainty is large in many cases. Specifically, under conditions that
typically result in an error of about 0.5 mm using general sliding mode control, it was possible
to reduce the error to about 0.2 mm using the proposed method.

Author Contributions: T.H. performed sliding mode control with uncertainty compensation and
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