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Abstract: Understanding the temperature–working condition relationship is crucial for optimizing
machining processes to ensure dimensional accuracy, surface finish quality, and overall spindle
longevity. Monitoring and controlling spindle temperature through appropriate cooling systems
and operational parameters are essential for efficient and reliable machining operations. This pa-
per presents an in-depth analysis of the thermal equilibrium and deformation characteristics of a
high-speed motorized spindle unit utilized in grinding machine tools. Through a series of thermal
equilibrium experiments and meticulous data acquisition, the study investigates the nuanced in-
fluence of various working conditions, including spindle speeds, coolant types, and coolant flow
rates, on spindle temperatures and thermal deformations. Leveraging the power of Artificial Neural
Networks (ANNs), predictive models are meticulously developed to accurately forecast spindle
behavior. Subsequently, the models are seamlessly transitioned to a cloud computing infrastructure
to ensure remote accessibility and scalability, facilitating real-time monitoring and forecasting of
spindle performance. The validity and reliability of the predictive models are rigorously assessed
through comparison with experimental data, demonstrating excellent agreement and high accuracy
in forecasting spindle thermal behavior. Furthermore, the study underscores the critical role of key
working condition variables as precise predictors of spindle temperature and thermal deformation,
emphasizing their significance in optimizing overall spindle efficiency and performance. This compre-
hensive analysis offers valuable insights and practical implications for enhancing spindle operation
and advancing the field of grinding machine tools.

Keywords: machine tools; thermal behavior; thermal errors; artificial neural networks cloud computing

1. Introduction

With the continuous progress of industrial technology, especially in the era of Industry 4.0,
the accuracy requirements of high-speed machine tools are becoming increasingly significant.

The development of technology for high-speed machine tool manufacturing must
be observed from the point of view of machine tool applications. Before any further
consideration, it is essential to address whether a spindle is intended for machining with
high cutting force or high speeds. In the first case, the spindle stiffness is the more important
characteristic, while in the second case, the specific speed coefficient is important. Machine
tools’ exploitation characteristics, such as accuracy, which defines the workpiece quality;
productivity, which defines the speed of the working process; and profitability, which
defines the speed of return on investment, depend on the vital assembly behavior.

The high-speed motorized spindle is one of the core components that influence the
machining precision and productivity of machine tools. The factors affecting the machine
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tools’ accuracy can be divided into four different categories, namely, geometric, kinematic,
thermal, and cutting-force-induced errors. Elevated temperatures during machining with a
high-speed spindle often result in thermal expansion. Variances in temperature-induced
expansion and contraction rates between the spindle and workpiece can lead to deviations
from the intended dimensions. On the other hand, rising temperatures may also cause
thermal gradients in the spindle, leading to uneven thermal expansion. This can induce
vibrations and deflections in the spindle structure, impacting machining accuracy. Ther-
mal errors can appear from the heat generated during the machining process, leading to
deformations and deviations in the spindle. A comprehensive examination of thermal
error modeling techniques investigated and utilized over the last decade was provided
in [1]. The motorized spindle itself can contribute to heat generation through energy losses,
such as electrical losses in the motor and mechanical losses in the bearings. The material
composition of the spindle affects its coefficient of thermal expansion. As the spindle heats
up during machining, temperature distribution across the spindle will not be uniform
as it expands. Certain areas may experience higher temperatures than others, leading
to uneven thermal expansion, which may result in dimensional changes in the spindle
components. Thermal growth on the spindle components produces thermal expansion
of bearing elements, causing the so-called thermal preload. The temperature can have
a significant influence on the preload in high-speed spindles, particularly in precision
machining applications where tight tolerances are critical. Understanding the influence
of temperature on preload is crucial for maintaining the performance and accuracy of
high-speed spindles. Regular maintenance and monitoring of temperature conditions
during operation are essential to ensure consistent performance over time. The percentage
of thermal errors in total machine tool errors is between 40 and 80% [2,3]. On the other
hand, bearing deformations account for 30 to 50% of total spindle deformations [4].

Thermal behavior analysis and modeling for high-speed motorized spindles are crucial
aspects of precision machining, especially in applications where tight tolerances and high
accuracy are required. Analyzing and modeling thermal behavior in high-speed motorized
spindles is a complex task that requires a combination of advanced techniques, such as
experimental testing, numerical modeling, regression analysis, artificial neural networks
(ANNs), and a combination of various modeling methods (hybrid modeling).

An automatic modeling algorithm employing the Chebyshev polynomial-based or-
thogonal least squares regression was proposed by Li et al. [5] to improve the modeling
accuracy and the efficiency of the geometric error components. Determining the best
position of the temperature sensor by covariance characteristic of the least square value
was performed by Naumann et al. [6]. Multiple regressions were utilized to establish
a connection between one dependent variable and one or more independent variables
through statistical analysis of the experimental sample data. Chen et al. [7] used multivari-
ate regression modeling to find the right coefficient to ensure that the residual is equal at
each data point and the objective function (thermal error) value is minimized. An improved
linear multiple regression model was presented in [8]. The original objective function
was extended by incorporating the additional weighted terms related to robust criterion
functions, typically taking values smaller than one as residuals increase. The proposed
method demonstrated its effectiveness in enhancing the accuracy of machine tools. Shi
et al. [9] and Zhang et al. [10] determined the thermal deformation of screw shafts using
thermal expansion definition-based calculation and multiple regression analysis, which
required the collection of the critical temperature variables.

Application of regression analysis to a multiple-output variable model is difficult.
In contrast to employing a regression model, the thermal behavior of the spindle with
multiple variables can be represented by a single neural network, using multiple neurons
as outputs at the last layer.

As early as the end of the last century, various types of artificial neural networks have
been proposed for the thermal error modeling of machine tools, e.g., backpropagation
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(BP) [11–15], radial basis function (RBF) [16–18], Elam Network (EN) [19], Grey Neural
Networks (GNN) [20,21], etc.

Hao et al. [11] used a genetic algorithm (GA)-based BPANNs to improve the accuracy
of the prediction of thermal deformation in the turning center. A combination of a genetic
algorithm (GA) and BP modeling is proposed in [12] and Ma [22], where GA is used to
optimize the initial weights and threshold values of the BP network until these values meet
the accuracy requirements. Yang et al. [13] analyzed how different spindle speeds affect
thermal characteristics, using a fuzzy clustering regression analysis method to optimize
variables representing thermal error sensitivity. A BP neural network with multi-input and
multi-output (MIMO) for the spindle axial thermal deformation and radial thermal errors
was used. Guo et al. [23] optimized temperature-sensitive points by grey correlation and
clustering analysis and defined the prediction model using a BP neural network with its
parameters (weights and thresholds) optimized using an artificial fish swarm algorithm
(FSA) and ant colony algorithm (ACA). Optimization of weights and thresholds of the
BP neural network using a particle swarm algorithm (PSA) and beetle antennae search
algorithm (BAS) was performed by Li et al. [14,15]. To improve the accuracy of thermal
characteristics analysis of motorized spindle, an online correction model of thermal bound-
ary conditions is proposed based on the BP neural network (BPNN), using experimental
data and simulation results to construct the BPNN model to correct the thermal boundary
conditions of the motorized spindle. Kosarac et al. [24] used BP neural networks with
the Adam optimization algorithm to optimize the initial weights, thresholds, and number
of hidden layer neurons for the prediction of the temperature of motorized spindle units
under different input conditions. Thermal characteristics analysis of a motorized spindle
employing an online correction model of thermal boundary conditions based on a BP neural
network was proposed by Yi and Fan [25]. In this case, experimental data and simulation
results were used to construct the BP model to correct the thermal boundary conditions
of the motorized spindle. Based on the cosimulation of different software, a digital twin
system for thermal characteristics was built to accurately forecast the temperature field
and thermal deformation of a motorized spindle under varied operating conditions. The
experimental results showed that the prediction accuracy of the temperature field is greater
than 98%, and the prediction accuracy of thermal deformation is greater than 96%.

Prediction models of thermal errors obtained by using the multiple linear regressions
(MLR) method, BP neural network method, and Radial Basis Function (RBF), were proposed
in [26]. The results of those experiments indicate that such models can represent the thermal
characteristics of the motorized spindle, while their degree of confidence mainly depends
on the setting of thermal load and boundary conditions; also, based on the test data,
the RBF neural network model exhibits the highest prediction precision and superior
robustness for thermal errors in the motorized spindle. Fu et al. [18] used a chicken swarm
optimization algorithm (CSO)-based RBF neural network model for thermal error modeling
of machine tool spindle. Firstly, the so-called KC-RBF, an integrated approach that includes
K-means clustering, correlation analysis, and RBF neural network, was proposed to select
temperature-sensitive points. Secondly, the RBF neural network is introduced for thermal
error modeling. At the same time, the CSO algorithm was used to optimize the initial
parameters of the RBF to improve the prediction accuracy of the model. Also, Zhang [17]
constructed the thermal error prediction model, using a PSA to optimize the weights and
thresholds of the RBF neural network.

A thermal error prediction model based on the combination of a long short-term mem-
ory (LSTM) and convolutional neural network (CNN) was proposed by Cheng et al. [27].
The K-harmonic means (KHM) clustering algorithm and grey relational analysis method
(GRA) were used to optimize the temperature measurement points. Then, an LSTM-CNN
thermal error prediction model was established and compared with the conventional model
in terms of prediction performance and robustness. The results reveal that the presented
thermal error model is significantly better than the conventional model. To improve the
spindle thermal error prediction accuracy, the least absolute shrinkage and selection op-
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erator (LASSO) was used by [28] to directly select the temperature-sensitive point subset
to guarantee the prediction performance of the thermal error model constructed using
support vector machines (SVM).

By uploading and streaming data to the cloud, manufacturers can harness the com-
putational power and scalability of cloud-based analytics tools. This enables predictive
analytics, anomaly detection, optimization algorithms, and other AI-driven capabilities
to enhance efficiency, quality, and agility in manufacturing operations [29]. Enhanced
dynamic scheduling methodologies coupled with refined optimization algorithms in cloud
manufacturing contexts were proposed in [30]. Khdoudi et al. [31] presented a comprehen-
sive framework for implementing a full-duplex digital twin system tailored for autonomous
process control. Milosevic et al. [32] presented a developed cloud-based system for mon-
itoring the condition of cutting tool wear by measuring vibration. This system applies a
machine learning method that is integrated within the MS Azure cloud system.

In the above-mentioned papers, temperature variables tested by multiple sensors are
taken as inputs, while thermal errors of machine tools are provided as outputs of various
NN models. After the network learning and training procedures had been completed, the
thermal errors of machine tools in multiple directions were accurately fitted and predicted.

In this paper, experimental testing was conducted by utilizing an acquisition system to
capture temperature and thermal deformation data across various spindle speeds, coolant
types (oil, water), and coolant flow rates in the motor and bearings, representing different
working conditions. Multiple Regression (MR) analysis is employed to delineate the
relationships between input parameters (working conditions) and output parameters
(temperatures), as well as temperature variables (input) and thermal deformation (output).
Subsequently, comprehensive Multiple-Input Multiple-Output (MIMO) backpropagation
(BP) neural network models are developed for predicting spindle temperature and thermal
deformation, respectively. The models leverage working conditions as input parameters to
predict temperatures and thermal deformations on the high-speed motorized spindle unit.
Moreover, a novel system architecture incorporating cloud computing is introduced. Cloud
Computing provides the opportunity to connect an unlimited number of geographically
distributed setups to the same cloud system, which eliminates the necessity to train models
or calculate predictions locally. Leveraging REST API calls, the system seamlessly uploads
data and retrieves calculated predictions, therefore enhancing computational efficiency
and scalability.

2. Defining Prediction Model

The paper focuses on a high-speed motorized spindle unit of grinding machine tools.
Thermal equilibrium experiments were realized using an acquisition system to measure
temperature and thermal deformations for different spindle speeds, coolant types (oil, wa-
ter), and coolant flow of motor and bearings (working conditions). Choosing both coolant
types enables a more thorough analysis of the algorithm’s performance and its sensitivity
to variations in cooling conditions, contributing to a more profound understanding of its
capabilities and limitations. We have assessed their effectiveness in cooling the system
and determined which is more suitable for the specific application. The framework of the
proposed model is shown in Figure 1. Upon gathering data, we analyzed the impact of
various working conditions on spindle temperature and examined how these tempera-
tures influence thermal deformation. Multiple Regressions (MRs) are used to establish the
relationships between working conditions (input parameters) and temperatures (output
parameters), as well as temperature variables (input parameters) and thermal deformations
(output parameters). Working conditions were used as input parameters of the first ANN
model (NNet1), while temperatures of the spindle unit were given as the output parameters.
Subsequently, these temperatures are used as input parameters for the second ANN model
(NNet2), employing thermal deformations on the spindle nose as output parameters. After
successful separate training of NNet1 and NNet2 models, the models have been evaluated
in sequence, i.e., normalized values of outputs obtained from NNet1 have been used as
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inputs to the previously trained NNet2 in the validation phase. Finally, comprehensive
MIMO BP neural network (NNet) approaches were established for spindle temperature
and thermal deformation. After the network learning and training, the temperatures and
thermal deformation of the motorized spindle unit in multiple places have been accurately
fitted and predicted. Furthermore, a system architecture involving cloud computing is
developed. The models were migrated to a dedicated cloud solution developed for this
purpose, wherein all calculations regarding predictions are conducted. This architecture
relies on the REST API calls for uploading data and getting calculated predictions. Af-
terward, a new set of stochastic sample data is used to validate the model. The results
indicate that the model exhibits a high level of prediction accuracy. This implies that an
accurate model can be obtained, offering references for characteristic parameters related to
thermal equilibrium.
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3. Experimental Setup and Equipment
3.1. Experimental System

The experimental system is shown in Figure 2, which focuses on the high-speed
motorized spindle unit (GMN TSSV 100-90000) of grinding machine tools. The spindle
is mounted with two pairs of high-precision angular contact bearings, the front bearing
with EX 12 7C1 DUL SNFA, and the rear bearing with EX 10 7C1 DUL SNFA, mounted in a
“tandem” arrangement. The front bearings are equipped with a lock-ring preload, whereas
the rear bearings have a constant preload. The test system consists of the speed control
system (frequency regulator Nidec HS 72) of the motorized spindle, a cooling system,
a system for measurement of fluid flow, and a data acquisition system. The maximum
number of revolutions is n = 90,000 RPM. The cooling system consists of the motorized
spindle stator cooling system and the bearing air–oil cooling system. Cooling and oil–air
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lubrication were performed by injecting oil Qb = 0.18–0.24 L/h (permissible limits for the
type of bearing used) for all bearings simultaneously.
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Figure 2. (a) Model of the experimental test; (b) spindle unit.

Oil and water were utilized for cooling the spindle stator. The tank was cooled through
a heat exchanger, maintaining a constant temperature for the oil or water in the tank at
22 ◦C. The oil or water temperature at the exit of the stator cooling jacket ranged between 23
and 28 ◦C, depending on input parameters. Oil or water flows through the groove around
the stator with a flow rate of Qm = 4–8 L/min. The system for measurement of fluid flow
is composed of the Acrylic Flow Meters 6A01, measuring the amount of oil mist on the
bearings at all times, and an Integral Flowmeter AXF, measuring the flow of the cooling
fluid for the spindle stator.

The measuring equipment is used to determine the temperature and thermal defor-
mation. To measure the temperature of the spindle unit, K-type thermocouples with an
accuracy of ±0.2 ◦C at 100 ◦C, and a thermal imager with an accuracy of ±1% have been
used. An infrared thermometer with an accuracy of ±0.2% has been used to record the
temperature at the outlet coolant from the spindle unit. Edge current sensors (HBM) were
applied to measure the thermal deformation. The diameter of the sensor head was 3 mm,
and the degree of nonlinearity was 0.1%. The system achieves real-time synchronous acqui-
sition of the temperature and thermal deformation by utilizing an NI USB 6281 acquisition
system. The installation locations of the sensors and thermocouples are shown in Figure 3
and Table 1.



Machines 2024, 12, 194 7 of 21

Machines 2024, 12, x FOR PEER REVIEW  7  of  21 
 

 

temperature at the outlet coolant from the spindle unit. Edge current sensors (HBM) were 

applied to measure the thermal deformation. The diameter of the sensor head was 3 mm, 

and  the degree  of  nonlinearity was  0.1%. The  system  achieves  real‐time  synchronous 

acquisition  of  the  temperature  and  thermal deformation  by utilizing  an NI USB  6281 

acquisition  system.  The  installation  locations  of  the  sensors  and  thermocouples  are 

shown in Figure 3 and Table 1. 

 

Figure 3. Location of sensors and measured temperatures. 

Table 1. Measurements temperature location. 

A method of Measurement  Temperature  Location 

Thermocouples, thermal imager  T1  near outer ring of front bearing 

Thermocouples, thermal imager  T2  near stator of spindle 

Thermocouples, thermal imager  T3  near outer ring of rear bearing 

Thermal imager  T4  between front bearing and stator 

Thermal imager  T4  between rear bearing and stator 

Thermal imager, 

infrared thermometer 
T0  at the outlet coolant from the spindle unit. 

3.2. Measuring Principle of Thermal Deformation 

The spindle thermal deformation is measured by using eddy current displacement 

sensors. After the spindle reaches a steady state, the thermal deformation expands to the 

axial and radial direction, resulting from the uneven temperature gradient distribution, 

which  is shown  in Figure 4. Also,  in Figure 4, a measurement diagram of  the  thermal 

deformation of the spindle inspection bar is presented. The spindle is oriented along the 

Z‐axis, so the axial thermal expansion can be obtained by measurement via the sensor Dz. 

The radial deformation in the Y direction is measured by the sensors Dy1 and Dy2. Based 

on  these  detections,  spindle  thermal  errors  are  calculated  according  to  the  presented 

geometry relationship as specified in [33]. 

 

Figure 4. The measurement of the spindle thermal deformation. 

   

T1

T2 T4T5

T0

δy1δy2

δz

T3

Dz

Dy2 Dy1

y

z O

δy
δy1δy2

Initial state

Thermal state

Figure 3. Location of sensors and measured temperatures.

Table 1. Measurements temperature location.

A Method of Measurement Temperature Location

Thermocouples, thermal imager T1 near outer ring of front bearing
Thermocouples, thermal imager T2 near stator of spindle
Thermocouples, thermal imager T3 near outer ring of rear bearing

Thermal imager T4 between front bearing and stator
Thermal imager T4 between rear bearing and stator
Thermal imager,

infrared thermometer T0
at the outlet coolant from the

spindle unit.

3.2. Measuring Principle of Thermal Deformation

The spindle thermal deformation is measured by using eddy current displacement
sensors. After the spindle reaches a steady state, the thermal deformation expands to the
axial and radial direction, resulting from the uneven temperature gradient distribution,
which is shown in Figure 4. Also, in Figure 4, a measurement diagram of the thermal
deformation of the spindle inspection bar is presented. The spindle is oriented along the
Z-axis, so the axial thermal expansion can be obtained by measurement via the sensor Dz.
The radial deformation in the Y direction is measured by the sensors Dy1 and Dy2. Based on
these detections, spindle thermal errors are calculated according to the presented geometry
relationship as specified in [33].
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3.3. Results of the Experimental Testing and Analysis

Using the experimental setup described above, the motorized spindle unit operated
under different working conditions. For the proposed experiments, the motorized spindle
unit operated within the range of 20,000 to 80,000 RPM. The spindle speed influences the
temperature field distribution and the value of thermal deformations. To simulate the
actual working conditions changes during processing, flow rate fluids for cooling of the
spindle stator (Qm = 4; 6 and 8 L/min) and bearing (Qb = 0.18; 0.21 and 0.24 L/h) varied
during the experiment. Oil and water were used to cool the spindle stator. Based on the
presented working condition parameters, 234 different experiments were performed, i.e.,
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234 sample data were generated for the neural network. The ambient temperature ranged
from 20 to 22 ◦C. The acquisition system recorded the data once every 10 min. The specific
distribution of working condition parameters is shown in Figure 5.
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3.3.1. Temperature Fields Distribution

Figure 6 illustrates the temperature field of the spindle system in a stationary state. The
temperature distribution within the spindle unit is nonuniform. As the rotor rotates with the
spindle shaft, the heat is transferred from the rotor to the shaft and housing. Subsequently,
the heat conducts along the shaft and bearings to the housing. Conversely, the heat from
the stator is conducted to the bearings and housing. These processes collectively result
in a pronounced temperature gradient along the axial and radial direction of the housing.
The maximum temperature near the stator reaches 36.1 ◦C for the oil cooling spindle stator
and 25.9 ◦C for the water cooling spindle stator, and the evident temperature gradient is
attributed to the outer wall of the stator being in contact with the cooling water jacket.
Despite the efficiency of the cooling system in dissipating a significant amount of the
stator’s heat, the temperature of the stator remains higher than that of other components.
When employing water cooling for the housing, a substantial amount of heat is transferred
through water. Water-based cooling is typically more efficient, primarily attributed to its
higher specific heat capacity (41.2 kJ/(kgK) at 20 ◦C for water, compared to 1.9 kJ/(kgK) for
the specialized cooling oil). The maximum temperature near the front bearing reaches up
to 35 ◦C for the oil cooling spindle stator and 23.5 ◦C for the water cooling spindle stator,
whereas the maximum temperature near the rear bearings reaches up to 32 ◦C and 23 ◦C
for oil and water cooling spindle stator.
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Figure 6. Temperature fields of the spindle at n = 80,000 rpm; (a) cooling spindle stator with oil;
(b) cooling spindle stator with water.
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The spindle unit temperature variations are shown in Figure 7. The temperatures of
both the front and rear bearings exhibit a gradual increase from the outset, followed by a
sudden rise in the early stage. Subsequently, they gradually stabilize towards the thermal
equilibrium temperature, indicating a balance between the heat generation and dissipation
into the atmosphere.
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Figure 7. Temperatures of the spindle at n = 80,000 rpm; (a) cooling spindle stator with oil; (b) cooling
spindle stator with water.

Furthermore, during the period when thermal equilibrium is not yet achieved, the
temperatures undergo real-time dynamic changes. Experimental data show fluctuations
(especially for water cooling) near the thermal stationary state, and these fluctuations
are primarily attributed to the performance of the cooling system. During the cooling
process, the front bearing, rear bearing, and the motor undergo separate cooling proce-
dures. However, temperatures are restrained from rising significantly, as the cooling fluid
removes an amount of heat energy that is less than the heat generated by the spindle motor.
Consequently, the overall trend remains an increase in temperature. The temperatures at all
measuring points generally rise over time, yet this overall increase exhibits cyclical changes
with a recurring time cycle.

In Figure 8, the thermal stationary state temperatures of the spindle system’s key
components are presented at various rotational speeds. The temperatures of these key
components show an increase corresponding to the rotational speed, with the stator and
bearings. These elements register higher temperatures compared to other components.
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Figure 8. Change in temperature depending on the spindle speed during cooling of the stator with
(a) oil, (b) water.
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Figure 9 depicts the temperature rise as a function of the flow rate, Qm, at a spindle
speed of n = 80,000 RPM. The temperature gradient ∆T2 exhibits its most notable increase
at the minimum flow rate, Qm = 4 L/min, peaking at ∆T2 = 24.1 ◦C and 8.9 ◦C, depending
on the cooling type. Subsequently, a slight decrease is observed at Qm = 6 L/min, with ∆T2
values of 22.2 ◦C and 5.8 ◦C, respectively. The smallest increase in temperature gradient
occurs at Qm = 8 L/min, yielding ∆T2 values of 20.1 ◦C for oil cooling and 4 ◦C for water
cooling. Based on these observations, it can be inferred that both the flow rate and the type
of cooling fluid exert influence on the temperature distribution, whereby an increase in
flow rate correlates with a decrease in maximum temperature.
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Figure 9. Change in temperature depending on the cooling flows of the stator with (a) oil, (b) water.

3.3.2. Thermal Deformation

The test results for the motorized spindle are presented in Figure 10. When the thermal
deformation reaches over 90% of its maximum value, it is considered to be in a steady state.
It can be observed that the time taken to reach the thermal steady state was consistently
around 10 to 15 min for various rotational speeds. The trend of the thermal deformation
initially increased rapidly, then slowed down, and eventually stabilized. The periodic
fluctuation in the thermal deformation, as shown in the figures, was caused by variations
in the cooling oil and water temperature. Table 2 illustrates the thermal deformation values
when the motorized spindle reached a steady state for different rotational speeds. Based on
the provided diagrams (Figure 10) and data from Table 2, it is evident that variations in flow
rate have a discernible impact on spindle deformation. Specifically, in the radial direction
(vertical plane), at a spindle speed of n = 80,000 RPM, deformations at Qm = 4 [L/min] are
notably 10 [%] to 13 [%] larger compared to those at Qm = 8 [L/min]. Furthermore, the
choice of cooling medium significantly influences the spindle deformations. When water is
used to cool the housing, axial and radial deformations are consistently reduced by 8 [%] to
18 [%] and 6 [%] to 15 [%], respectively, in comparison to cooling with oil.

Table 2. Thermal deformation in stationary state at different spindle speeds.

RPM

Steady-State Thermal Deformation Values in [µm]

Oil Cooling Water Cooling

δz δy δz δy

50,000 1.61 −1.94 1.58 −1.71
60,000 1.77 −2.31 1.68 −2.29
70,000 2.15 −2.57 1.97 −2.41
80,000 2.46 −3.51 2.26 −2.96
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Figure 10. Thermal deformation of the spindle at n = 80,000 rpm; (a) cooling spindle stator with oil;
(b) cooling spindle stator with water.

3.4. Selection of Input Variables

A multitude of input parameters can negatively impact the prediction accuracy and
quality of a thermal prediction model. The machine tool’s spindle can be compensated with
the temperature that correlates with the temperature of the working conditions (such as the
spindle speeds, type of coolant, and coolant flow of motor and bearings). Also, the spindle
can be compensated with thermal deformations that correlate with thermal deformations
of the temperature variables. A multiple regression is applied in this paper to assess the
association between two or more independent variables and a single continuous dependent
variable. The multiple regression equation for assessing the association between working
conditions (spindle speeds, type of coolant, and coolant flow of motor and bearings) and
temperature is expressed as

Ti = β0 + β1n + β2Qm + β3Ql + β1n2 . . . + βiQmQl + ε; i = 1, 2, 3, . . . n (1)

where Ti is the temperature; n, Qm, and Ql are changes in the input parameters: spindle
speeds and coolant flow of the spindle stator and bearings, respectively; β represents
regression coefficients, which is a p-dimensional parameter vector; ε is residual. The
previous relation is valid for both types (oil and water) of spindle stator cooling. A special
experiment was carried out for “oil” and “water”. The experiment, as defined in this way,
is divided into two blocks. The role of the blocks is to reduce or eliminate the variability
caused by interference factors that may affect the response but are not directly related, as a
design factor. The multiple linear regression equation to assess the association between
temperatures and thermal deformation is given as:

δ = β0 + β1T1 + β2T2 + . . . βiTi + ε; i = 1, 2 . . . n (2)

where T represents the change of the temperature variables. In the equations, i = 1, 2, . . ., n,
are the temperature and thermal deformation measurement points. Correlation coefficients
(p) are shown in Tables 3 and 4. According to the ANOVA method, all values of p < 0.05
indicate a significant mutual influence of the considered parameters.

Based on Table 3, it can be seen that the considered working conditions, to a greater or
lesser extent, affect the observed temperatures of the main spindle. So, the temperatures
T4 and T5 mostly depend on the amount of heat transfer from the stator and bearing and
the construction of the spindle. Therefore, it can be concluded that working conditions
indirectly affect these temperatures, but to a lesser extent than temperatures T1, T2, and
T3. T0 is the outlet temperature of the spindle stator coolant, and its temperature depends
on coolant flow and the heat generated into the spindle. The comprehensive correlation
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between the temperature and output variables can be expressed by correlation coefficients
given in Table 4.

Table 3. Correlation coefficients (p) between input (working conditions) parameters and temperature.

Te
m

pe
ra

tu
re

s
(o

ut
pu

t
va

ri
ab

le
s)

T1 0.018 0.022 0.025 0.015
T2 0.010 0.015 0.012 0.061
T3 0.021 0.021 0.023 0.016
T4 0.064 0.081 0.056 0.095
T5 0.063 0.081 0.059 0.096
T0 0.051 0.091 0.024 0.099

H n Qm Qb

Working conditions (input variables)

Table 4. Correlation coefficients (p) between input (temperatures) parameters and thermal deformation.

Thermal deformat.
(out. variables)

δy 0.0010 0.00181 0.00281 1.2351 1.246 0.0785
δz 0.0015 0.00185 0.00275 1.2422 1.268 0.0742

T1 T2 T3 T4 T5 T0

Temperatures (input variables)

Table 4 shows a correlation coefficient (p) for all input variables. The correlation be-
tween outputs and input variables T1, T2, and T3 indicates that they are strongly correlated.
The correlation between output variables and input variable T0 has values of 0.074 and
0.078. That indicates the presence of correlation, but not as significant as in the previous
case. The correlation between output variables and input variables T4 and T5 is negligible,
indicating that the relationship is not noticeable. Bearing those facts, T1, T2, and T3 are
chosen as the typical temperature variables.

4. MIMO Neural Network Models

A multi-input multi-output spindle thermal model was created using a simple feed-
forward neural network with backpropagation (BP). Neurons serve as the fundamental
components of a neural network. Based on their characteristics and functions, neurons
function as nonlinear information processing units with the capability of handling multiple
inputs and generating multiple outputs. Numerous neurons with similar structures are
interconnected to compose the network structure. Considering the number of training
samples in our dataset as well as the complexity of input and output training data, three
different neural network architectures have been proposed. After the comprehensive
testing, the proposed models were connected into one complex model.

4.1. Temperature Modelling Based on MIMO BP Neural Network

Let us consider the input to the BP neural network (BPNN) as Wi(n, Qm, Qb, H),
representing variables related to working conditions. Let us also denote the output of the
BPNN as Temp, representing the temperatures. If wij(i = 1, 2, 3, 4; j = 1, 2, 3) denotes the
weights between the input layer and the hidden layer, ϕj(j = 1, 2, 3) denotes the biases
of hidden nodes, Tj(j = 1, 2, 3) denotes the weights between the hidden layer and the
output layer, and θ represents the bias of the output node, the computational procedure for
determining the temperatures can be expressed as follows:

Ii =
3
∑

j=1
wijWi + ϕj

Oi = f (Ii) 1 ≤ i ≤ 4

Temp =
3
∑

j=1
TjOi + θ

(3)
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The first neural network (denoted as NNet1) (depicted in Figure 11) is designed to
capture the relationship between the working conditions—specifically, the spindle speed n
(given in revolution per minute—RPM), the coolant type H (represented in a binary form
as 0 and 1 for oil and water, respectively), the coolant flow of the motor Qm [L/min], and
the coolant flow of the bearings Qb [L/h], versus the output temperatures T1, T2 and T3
[◦C], acquired through experimental testing. All input values have been normalized to
the [0, 1] range. The network consists of one input (4,3) layer, one output (3,3) layer, and
a hyperbolic tangent (tanh) layer between them (the numbers in brackets represent the
number of inputs and the number of neurons, i.e., the outputs).
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4.2. Thermal Deformation Modelling Based on MIMO BP Neural Network

The second neural network model (denoted as NNet2) retains a similar structure,
containing one input (3,2) and one output (2,2) linear layer, and a hyperbolic tangent layer
between them, modeling the connection between the normalized values of temperatures T1,
T2, and T3, and thermal deformations of the motorized spindle unit obtained by experimen-
tal testing, δy and δz. The third neural network model (denoted as NNet3) establishes the
relationship between the input parameters {n, H, Qm, Qb} and the resulting thermal defor-
mations {δz, δy} directly, using two linear layers with sizes (4,2) and (2,2) and a hyperbolic
tangent layer positioned between them. The dimensions of these layers correspond to the
input and output network parameters. This model functioned as a control and monitoring
framework. The architectures of the proposed neural network models modeling thermal
deformations are illustrated in Figure 12.
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In our experiments, all networks were trained using a Stochastic Gradient Descent
(SGD) optimizer, with a learning rate set to 0.1, and the L1 loss criterion, measuring the
mean absolute error (MAE) between the predicted and measured data as:
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L1l f =
m
∑

i=1

∣∣∣Yexp − Ypred

∣∣∣
MAE =

L1l f
m

(4)

Following the successful individual training of NNet1, NNet2, and NNet3 models, the
models have been evaluated in sequence. Specifically, the normalized values of outputs
obtained from NNet1 have been used as inputs to the previously trained NNet2 in the
validation phase, i.e.,:

NNnet. = NNet2[NNet1((n, H, Qm, Qb))norm.] (5)

The architectures of the proposed neural network models for predicting and monitor-
ing thermal elastic behavior are presented in Figure 13.
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4.3. Evaluation of BP Neural Network Models

NNet1, NNet2, and NNet3 models underwent training over 200 epochs, a duration
determined through observation of error rates during the validation phase to optimize
the results and mitigate overfitting. A total of 234 samples {n, H, Qm, Qb, T1, T2, T3, δy, δz}
were employed, i.e., 200 samples within a 1-fold training scenario, while the remaining
34 samples were set aside for validation purposes. Figure 14a represents the results
for NNet1, focusing on validation loss, calculated as the average discrepancy (L1 norm)
between the predicted and measured temperature values (T1, T2, and T3) for the final
epoch of each fold. The mean error value, encompassing all outliers, was 1.48 ◦C. Similarly,
in Figure 14b, the results obtained for NNet2 are depicted following a parallel training
approach. NNet2 employed normalized temperature values from areas adjacent to the
front and rear bearings, as well as the stator of the motor (T1, T2, T3), as inputs, while the
previously determined thermal deformations {δy, δz} were designated as output values.
The mean error value was 0.10 µm. Finally, in Figure 14c, the results obtained for NNet3
are showcased. The model underwent training using normalized input parameters {n, H,
Qm, Qb}, utilizing thermal deformations {δy, δz} as outputs. The mean error value was
determined to be 0.20 µm.

Following individual training of NNet1, NNet2, and NNet3 models, a sequential
evaluation was carried out, wherein the normalized outputs from NNet1 were em-
ployed as inputs for the previously trained NNet2 during the validation phase, i.e.,
NNet. = NNet2(NNet1({n, H, Qm, Qb})norm). The outcomes, illustrated in Figure 14d, indi-
cated a reduced error rate of 0.08 µm, using 34 training samples that were not seen by
NNet1 and NNet2 models during the training phase.
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5. Cloud Computing

After the offline development of the model for predicting temperature and thermal
deformations, the calculation of predictions was moved to a cloud computing system.
For this purpose, a web application that is based on the Python Django web framework
that implements desired model calculations is developed. REST API was used to upload
input data and obtain model outputs in the response. The architecture of this part of
the proposed solutions is given in Figure 15. The architecture ensures that predicting
temperature and thermal deformations is not only locally available but can be used no
matter where setup and equipment are mounted as far as the setup is connected to the
internet. Connection between the cloud platform and the physical model is established
through the PC that serves as a gateway. The gateway captures the real-time data of
equipment workload, working conditions (spindle speeds, type of coolant (oil, water), and
coolant flow of motor and bearings), spindle temperature, and thermal deformations from
the physical equipment. The data are preprocessed and sent to the cloud platform where
spindle temperature or deformation is predicted, which is later used on the gateway to
adapt working conditions. The preprocessed data are encapsulated in a JavaScript Object
Notation (JSON) format. Mainly, the gateway is used to acquire the working conditions data
(spindle speeds, type of coolant (oil, water), and coolant flow of motor and bearings) and
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sensor data (spindle temperature and thermal deformations) of experimental equipment
using different communication and acquisition interfaces (i.e., Modbus, OPC DA, and NI
Acquisition Cards). The PC gateway then makes local analysis, preprocessing this data and
formatting it into an adequate object that is sent to the cloud platform.
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6. System Validation

Following the offline development of the temperature and thermal deformation pre-
diction model, the computation of forecasts was transitioned to a cloud computing system
where monitoring and forecasting of temperatures and thermal deformations were carried
out. A comparison with the results of experimental tests is presented below. To ascertain
the model’s validity, newly acquired data samples (20 samples in total) were employed to
predict spindle thermal behavior. Figure 16 illustrates the spindle speeds and flow rate
map corresponding to these data samples.
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The comparison between the temperature results predicted by the model and the exper-
imental data for cooling the spindle stator with oil and water are shown in Figures 17 and 18.
Figure 17 illustrates temperature variations corresponding to different oil flow rates (Qm)
through the housing as a function of the spindle’s revolutions. Elevating the spindle
speed from 33,000 to 73,000 RPM resulted in a temperature rise of 38% at an oil flow of
Qm = 5 L/min according to experimental testing, and a 35% increase is predicted by the
model. Similarly, for an oil flow of 7 L/min, experimental testing shows a temperature
increase of 35%, while the prediction model indicates a 33% rise. Conversely, increas-
ing the flow from 5 to 7 L/min induces a temperature decrease of approximately 3% at
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n = 33,000 RPM or 5% at n = 70,000 RPM for T1 and T3, according to experimental results,
and 1% and 3%, respectively, as per the prediction model. Regarding T2, a reduction of 2%
at n = 33,000 RPM and 8% at n = 73,000 RPM is observed in experimental testing, whereas
the prediction model anticipates a decrease of 6%. The residual temperature spans from
0.05 to 1.87 ◦C, depending on oil flows and spindle speed.
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Figure 17. The results of temperature predicted by the model and the experimental data for cooling
the spindle stator with oil: (a) Qm = 5 L/min; (b) Qm = 7 L/min.
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Figure 18. The results of temperature predicted by the model and the experimental data for cooling
the spindle stator with water; (a) Qm = 5 L/min; (b) Qm = 7 L/min.

Temperature variations concerning different water flow rates (Qm) through the hous-
ing in relation to the spindle’s revolutions are illustrated in Figure 18. Increasing the spindle
speed from 33,000 to 73,000 RPM produced a temperature rise of 13% at an oil flow of
Qm = 5 L/min according to experimental testing and 12% based on the prediction model.
At a flow of 7 L/min, experimental testing shows a temperature increase of 10%, while
the prediction model indicates an 8% rise. Conversely, augmenting the flow from 5 to
7 L/min results in a temperature decrease of approximately 3% at n = 33,000 RPM or 4%
at n = 73,000 RPM for T1 and T3, as observed through experimental testing. According to
the prediction model, the corresponding decreases are 2% and 3%, respectively. Regarding
T2, a decrease of 4% at n = 33,000 RPM and 10% at n = 73,000 RPM is observed through
experimental testing, while the prediction model predicts a decrease of 9%. The residual
temperature ranges from 0.03 to 0.61 ◦C, depending on water flows and spindle speed. The
predictive model provides R-squared values ranging from R2 = 0.95 to 0.98, which can be
considered as good for all temperature outputs.

The comparison between the thermal deformation predicted by the model and the ex-
perimental data at different speeds, cooling types and flow are shown in Tables 5–8. The
absolute values of the residuals for axial thermal deformation fall within the range of 0.02
to 0.35 [µm], while the radial thermal deformation residuals range from 0.01 to 0.37 [µm].
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The average absolute values of the residuals for axial and radial thermal deformation are
0.16 and 0.14 [µm], respectively. Moreover, the predictive ability of the thermal deforma-
tion was 90% and 93%, indicating the model exhibits good predictive ability and perfect
generalization. However, the average prediction error in the thermal deformation was
approximately 0.3 µm.

The average coefficient of the determination, at 0.969, signifies that the ability of
prediction is 96.9%, indicating that the four working conditions variables are robust and
accurate predictors of the temperature and thermal deformation of the spindle unit. In
a large number of previous papers, the average prediction accuracy was from 87 to 96%
(most often around 95%).

Table 5. Thermal deformation predicted by the model and the experimental data for cooling the
spindle stator with oil at Qm = 5 L/min.

Spindle
Speed RPM

Measurements Data Predictions Data Error

|δy| δz |δy| δz |δy| |δz|

33,000 1.28 1.06 1.37 0.98 0.09 0.08
47,000 1.82 1.42 1.93 1.31 0.11 0.11
53,000 2.04 1.56 2.22 1.49 0.18 0.07
67,000 2.46 2.06 2.83 1.96 0.37 0.10
73,000 3.20 2.24 3.29 2.13 0.09 0.11

Table 6. Thermal deformation predicted by the model and the experimental data for cooling the
spindle stator with oil at Qm = 7 L/min.

Spindle
Speed RPM

Measurements Data Predictions Data Error

|δy| δz |δy| δz |δy| |δz|

33,000 1.21 1.01 1.12 0.99 0.09 0.02
47,000 1.44 1.19 1.54 1.41 0.10 0.22
53,000 1.66 1.27 1.72 1.59 0.06 0.31
67,000 2.04 1.71 2.14 2.01 0.10 0.30
73,000 2.54 2.13 2.32 2.19 0.22 0.06

Table 7. Thermal deformation predicted by the model and the experimental data for cooling the
spindle stator with water at Qm = 5 L/min.

Spindle
Speed RPM

Measurements Data Predictions Data Error

|δy| δz |δy| δz |δy| |δz|

33,000 1.13 1.04 1.21 1.13 0.08 0.09
47,000 1.61 1.42 1.77 1.55 0.16 0.13
53,000 2.02 1.48 2.01 1.73 0.01 0.25
67,000 2.31 1.89 2.57 2.15 0.26 0.27
73,000 2.70 2.06 2.81 2.33 0.11 0.27

Table 8. Thermal deformation predicted by the model and the experimental data for cooling the
spindle stator with water at Qm = 7 L/min.

Spindle
Speed RPM

Measurements Data Predictions Data Error

|δy| δz |δy| δz |δy| |δz|

33,000 1.04 0.97 1.13 0.75 0.15 0.21
47,000 1.24 1.19 1.35 1.03 0.20 0.15
53,000 1.60 1.18 1.78 1.15 0.05 0.02
67,000 1.87 1.53 2.24 1.43 0.32 0.09
73,000 2.50 1.91 2.59 1.55 0.12 0.35
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The high coefficient of determination underscores the robustness and accuracy of the
model in predicting spindle temperatures and thermal deformations under different work-
ing conditions. The comparison between simulated and measured results highlights the
potential of this thermal model, based on artificial neural networks and cloud computing,
to forecast spindle thermal behaviour in real time.

7. Conclusions

In summary, the transition of the temperature and thermal deformation prediction
model to a cloud computing system has enabled efficient monitoring and forecasting of
spindle temperatures and thermal deformations. Validation of the model was achieved
through comparison with experimental tests, utilizing newly acquired data samples.

The comparison between predicted temperature results and experimental data for both
oil and water cooling methods demonstrated close alignment, with residual temperatures
within acceptable ranges. The predictive model exhibited strong performance, as evidenced
by R-squared values ranging from 0.95 to 0.98, indicating good predictive accuracy for all
temperature outputs.

Similarly, the comparison between predicted thermal deformations and experimental
data showcased the model’s reliability, with low residual values and high predictive ability
percentages. The average coefficient of determination further confirmed the robustness of
the model, with a high prediction accuracy of 96.9%.

Based on these findings, insights into the historical temperature distribution of the
motorized spindle unit can be gleaned, facilitating the selection of optimal coolant types
and flow rates to mitigate temperature elevation and thermal expansion. The temperature
results derived from the presented model enable the identification of optimal solutions and
quantitative evaluation of enhancements in high-speed motorized spindle thermal charac-
teristics. Selecting the suitable coolant and flow rate not only enhances the energy efficiency
of the machine tool but also mitigates temperature fluctuations and errors stemming from
heat load.

Overall, these findings suggest that the developed model, leveraging cloud comput-
ing and experimental validation, is an effective tool for predicting the temperature and
thermal deformation of spindle units under various working conditions. This model holds
promise for real-time monitoring and optimization of spindle performance, with potential
applications in improving manufacturing processes and equipment reliability.
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