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Abstract: A set of online inspection systems for surface defects based on machine vision was designed
in response to the issue that extrusion molding ceramic 3D printing is prone to pits, bubbles, bulges,
and other defects during the printing process that affect the mechanical properties of the printed
products. The inspection system automatically identifies and locates defects in the printing process
by inspecting the upper surface of the printing blank, and then feeds back to the control system to
produce a layer of adjustment or stop the printing. Due to the conflict between the position of the
camera and the extrusion head of the printer, the camera is placed at an angle, and the method of
identifying the points and fitting the function to the data was used to correct the camera for aberrations.
The region to be detected is extracted using the Otsu method (OSTU) on the acquired image, and
the defects are detected using methods such as the Canny algorithm and Fast Fourier Transform,
and the three defects are distinguished using the double threshold method. The experimental results
show that the new aberration correction method can effectively minimize the effect of near-large
selection caused by the tilted placement of the camera, and the accuracy of this system in detecting
surface defects reached more than 97.2%, with a detection accuracy of 0.051 mm, which can meet the
detection requirements. Using the weighting function to distinguish between its features and defects,
and using the confusion matrix with the recall rate and precision as the evaluation indexes of this
system, the results show that the detection system has accurate detection capability for the defects
that occur during the printing process.

Keywords: machine vision; ceramic 3D printing; defect detection; image processing; extrusion
molding; process optimization

1. Introduction

Additive manufacturing, or 3D printing, is a common intelligent manufacturing
method that has grown significantly in the last several years and attracted much interest
and study [1]. In contrast to conventional machining techniques, 3D printing technology
is a novel form of additive manufacturing. It builds a discrete part model with computer
assistance and then builds up the target component entity layer by layer using the material
layer-by-layer process [2]. In the mechanical, electronic, energy, medical, biological, chemi-
cal, environmental protection, national defense, aerospace, and other fields, ceramic materi-
als are among the three basic materials along with polymer and metal materials because of
their excellent mechanical properties and acousto-optic electromagnetic heat; additionally,
their high-temperature resistance, corrosion resistance, wear-resistant insulation, chemical,
and physical properties are stable [3,4]. In additive manufacturing, ceramic 3D printing
technology is now facing a huge challenge; printing accuracy is low, and process complexity
and other issues have been slowing its development [5-7]. Three-dimensional light-curing
molding, fused deposition molding, digital light processing, binder jetting, selective laser
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sintering/fusion, etc., are the primary technologies utilized in ceramic 3D printing [8-10].
One of the most economical molding techniques for 3D printing ceramics is extrusion mold-
ing. The application of numerous primary procedures can be broken down into categories
such as slurry preparation, printing and forming, drying and sintering, sanding or post-
processing, etc. [11,12]. The extrusion molding principle describes how the ceramic material
is made to have specific mobility by adding solvents or heating it physically after it has been
extruded externally to a specific caliber (often hundreds of microns to a few millimeters in
diameter). In contrast to the conventional preparation method, which saves raw materials,
has lower processing costs and a shortened processing cycle, and offers a larger development
space, extrusion nozzle extrusion of a material into a specific shape to manufacture ceramic
parts is like squeezing toothpaste layer by layer and molding it [13,14]. Real-time printing
process detection is important because variations in printing speed, temperature, and paste
preparation can result in under- or over-packing of the printed parts due to defects like pits,
bubbles, and bulging. As a result, the printed parts may not meet the necessary performance
indicators [2]. The advantages of machine vision technology in defect detection include long
operation time, high precision, high efficiency, and good non-contact detection. These make
it ideal for flaw identification in the ceramic 3D printing process [15,16].

Machine vision technology, which has been developed in recent decades, is a non-
destructive, non-contact method of automatic inspection. It is a useful tool for achieving
equipment automation, and intelligent and precision control. Its many benefits include a
high productivity, long working hours in challenging environments, safety and dependabil-
ity, and a wide range of spectral responses [17,18]. Furthermore, the use of machine vision
technology to carry out real-time online defect detection on 3D printing is also a novel
method that can ensure the high precision of processed parts and meet the requirements for
mechanical properties of parts in high-end manufacturing while reducing the processing
time and processing costs and improving the yield rate of parts [19-23]. At present, the
research to introduce visual inspection into the 3D printing process has gradually become a
new exploration direction [24-30]. Fang et al. [31] used machine vision to detect surface
paths in the printing process. Pitchaya Sitthi-Amorn [32] developed a system to detect
fluctuations in the Z-direction. Mingtao Wu [33] designed a system to detect the top view of
a printer. Weijun Sun et al. carried out the design of a multi-angle visual inspection system
for robot 3D printing, and proposed a virtual-real matching defect detection algorithm for
model self-features to reduce the false detection rate and improve the detection accuracy in
view of the misidentification of the model’s own features and real defects in the existing
visual inspection technology. Jeremy Straub [34] designed a multi-camera inspection sys-
tem for Cartesian structural printers, using a five-position camera with a fixed position to
inspect the outer surface of a print. Oliver et al. [35] designed a real-time detection system
for fused filament processing 3D printing, which detects printing defects in real time by
monitoring the parts during the printing process, using a 3D digital image camera to obtain
geometric shapes, and comparing the printed geometry with the computer model.

Compared to the above, 3D printing has a simple molding, short cycle, is easy to adjust,
etc., but because of the extrusion molding process, the material price is more expensive
and the printing process is prone to defects and cannot produce printed products that [36].
Therefore, to avoid wasting the materials and time to perform the follow-up process and to
solve the problem of printing defects that cannot be detected during the printing process,
a detection method that can detect a variety of defects was investigated for the extrusion
molding process in ceramic 3D printing, and a real-time online inspection system based
on machine vision was designed. The technical difficulty lies in the fact that most of the
conventional camera arrangement methods are placed perpendicular to the object to be
detected, and due to the conflict between the camera and the position of the extrusion
head of the printer, it can only be solved by other placement methods. Secondly, this
system is different from other inspection systems in that it needs to detect three defects
simultaneously and identify and locate them, and it contains a feedback system, which can



Machines 2024, 12, 166

30f15

realize automatic stopping and make the printed products more perfect, compared with
the conventional defect detection systems, which can only identify one kind of defect.

2. Machine Vision Defect Detection System Design
2.1. Overall System Design

The model diagram of the system is shown in Figure 1. It contains a printer extrusion
module, a printer drive module, an image acquisition module, a camera clamping module,
and a printing platform, in which the camera in the image acquisition module is placed
at an oblique angle to avoid interfering with the extrusion head of the printer, and the
object being tested is in the printing platform. To ensure that the 3D printer can obtain
high-quality images during operation, the camera should remain stationary relative to the
printing platform. We designed a machine vision camera clamping device for 3D printers,
as shown in Figure 1d.

(¢) Image Acquisition Module

(a) Printer Extrusion Module

(d) Camera Clamping Device

Figure 1. Overall system design.

2.2. Image Capture Module

The image acquisition module comprises an industrial camera, an industrial lens, and
aring light source [37]. In this study, one camera was placed at an angle for defect detection,
and the camera remained stationary relative to the printing platform. As the print platform
size is 150 mm x 150 mm, the actual detection range is 160 mm x 150 mm. To ensure the
accuracy of the captured image, the working distance was chosen to be 150 mm~220 mm
in consideration of the installation space, and the camera sensor size was 1/1.7 inch, i.e.,
the sensor chip size was 7.2 mm x 5.4 mm, C, = 7.2 mm, and Cj, = 5.4 mm. The Field of
View (FOV) in this study was 160 mm x 150 mm, and the Working Distance (WD) was
150 mm~220 mm. The focal length according to f = (Wp x Cy)/FOV was 6.75~10.6, so
this study chose a focal length of an 8 mm lens; the parameters of the industrial camera,
industrial lens, and ring light source are shown in Table 1.

Table 1. Hardware system parameters.

Hardware Parameters

Model: MV-CE120-10UC; Interface: USB3.0; Resolution: 4000 x 3036;
Pixel size: 1.85 pm x 1.85 um; Target size: 1/1.7; Frame rate: 31.9 fps;
Camera interface: C-Mount; Sensor chip type: CMOS; Exposure time: 30
us~0.5 s; Spectrum: color
Model: MVL-HF0624M-10MP; Focal length: 8 mm; Target size: 1/1.8;
Closest shooting distance: 0.1 m; Interface: C; Aperture range: F 2.4~F 16
Model: MV-LRDS-120-70-W; Color temperature: 6000~7000 K; Power:
13.7 W; Outside diameter of luminous surface: 109.8 mm

Industrial cameras

Industrial lenses

Toroidal light sources
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Due to the cascading nature of 3D printing, the printing steps are stacked layer by
layer and the Z-axis only rises one layer after each layer is printed. It is only necessary to
set the acquisition image command to complete real-time online inspection when the Z-axis
rises, and it also ensures that each acquired image is a complete layer, avoiding the impact
of the acquired image [38] when the height of the measured object is less than 10 mm
within the depth of field of the image acquisition module, which ensures the quality of the
captured picture.

2.3. Image Processing and Defect Detection Module

The image processing and defect detection module is the core of the whole detection
system; its function is to carry out feature detection of the pre-processed image, according
to the different features to determine whether there are form, size, or surface defects, and
automatically distinguish the type of defects. This study categorized the defects into three
main types of defects: pits, bubbles, and bulges, as shown in Figure 2.

(a) pits (b) bubbles (¢) bulges
Figure 2. Types of defects.

3. Image Processing and Defect Recognition

When the industrial camera acquires images, it will inevitably be disturbed by some
signals and produce noise, so the acquired images need to be pre-processed to simplify
the data, remove irrelevant information, and obtain reliable images [39-41]. The detec-
tion process is shown in Figure 3. Figure 3 is the framework flow chart of the overall
visual inspection.

Image acquisition

exist
Y
v

‘ pits ‘ ’bubbles| ‘ bulges ‘
[ [ ]

Image pre-
processing

Blob analysis

T.he The size of
Sflflf the defect is
OLIe - yithin the

Threshold
segmentation

defect
is too
small

compensable
range

easure the size of the
defect

The size of the
defect is too large

Figure 3. Defect detection flowchart.

3.1. ROI Positioning

ROI (Region Of Interest) positioning is the first step in image processing and requires
the accurate positioning of the print platform to the part of the image that requires defect
detection. As the background of the print platform differs significantly from the grey scale
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value of the printed part, it is only necessary to segment the image into foreground and
background, not to segment the image into multiple segments. In this study, the maximum
between-class variance method (OSTU) was used for image segmentation because when
the measured object is printed to a certain layer height, this method can only separate the
upper surface to be inspected and will not include the side aspects.

The target region can be obtained using the maximum interclass variance method,
which is then processed using the open operation in morphology to smooth the edges of the
image, eliminating burrs and narrow connections, but keeping the size of the ontological
region unchanged. Finally, the target area is intercepted using the reduce_domain operator.
As the industrial camera is placed at an angle in the inspection method designed in this
study, the camera will capture images of both the upper and side surfaces of the printed part
after printing a certain layer height, and the target area to be inspected can be effectively
obtained using the maximum inter-class variance method, as shown in Figure 4.

(a) Original image (b) Splitting images (¢) Open arithmetic (d) Intercepted images

Figure 4. Image positioning.

3.2. Image Pre-Processing

Image pre-processing starts with filtering, which reduces the image noise, which refers
to pixel points that do not correlate with the features of the image itself and behave similarly
to electronic noise. Image noise can bring interference and additional information to the
image, which can hinder the analysis of the image. Mean filtering has a good effect on the
noise inside the image and blurring the image, but it will blur out the edge information
and feature information in the image and a lot of features will be lost. Median filtering has
a good smoothing effect mainly on the individual noise, while Gaussian filtering can obtain
an image with a high signal-to-noise ratio, and it can eliminate the Gaussian noise [42,43].

Gaussian filtering is a linear smoothing filter for removing Gaussian noise. Gaussian
filtering is a process of weighted averaging of the whole image, where the value of each
pixel point is obtained by weighted averaging of its value and the values of other pixels
in its neighborhood. Because there was a lot of Gaussian noise in the images collected in
this study, the Gaussian filter was used to process the images; the images processed by the
Gaussian filter have a high signal-to-noise ratio, and the real signal is displayed.

Then, morphological processing is required; expansion, erosion, open operations,
and closed operations are the four basic operations of morphological processing [44].
Morphological processing is essentially a non-linear algebraic operation based on the shape
of an object, which acts on point sets and the connectivity between point sets and shapes.
Morphological processing is primarily designed to simplify image data by removing
extraneous structures and allowing their underlying shape to be effectively preserved.
The results of the morphological processing of the three defects are shown in Figure 5.

Before morphological After morphological Before morphological After morphological Before morphological After morphological
treatment treatment treatment treatment treatment treatment

(a) pits (b) bubbles (c) bulges

Figure 5. Morphological processing treatment.

It is obvious in the figure that after the morphological processing of the image, small
bits and pieces of interference have been removed, the contours of the print product
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itself have been preserved, the irrelevant structures are effectively removed, and the main
structure and the basic shape are preserved; the image is now ready for the subsequent
segmentation of the image.

3.3. Threshold Segmentation

Before the threshold segmentation, according to the different characteristics of the
defects, this study classified the defects into three types for segmentation: firstly, bulge and
bubble defects because the bulge and bubble will produce a circle of gradient transformation
in the grey value on the part surface. Hence, this study used the canny edge detection
algorithm to detect the defects. The canny edge detection algorithm has the advantage of
strong self-adaptation and can enhance the suppression of multi-response edges [45], as
shown in Figure 6.

(a) Original image (b) Canny algorithm (¢) After morphological treatment

Figure 6. Canny edge detection results.

For pit defects, this study used the Fast Fourier Transform to detect defects [46].
The usual calculations are carried out in the spatial domain. Still, sometimes the processed
effect in the spatial domain cannot achieve the desired effect, so the fast Fourier transform
can be used to convert the target into the frequency domain space. Then, the reverse
Fourier transform can be performed in this space for subsequent processing after the
processing is completed. The processing is completed, followed by mean filtering and
dynamic thresholding to segment out the defects and finally, morphological processing is
performed to obtain the desired image, as shown in Figure 7.

(a) Original image(b) Fast Fourier transform (¢) Fast Fourier transform(d) morphological treatment

Figure 7. Fast Fourier transform.

3.4. Defect Identification

The process of distinguishing between different types of defects based on their distinct
properties and the outcomes of image processing is known as defect recognition [47].
After identifying the defective area, it is also necessary to distinguish the three kinds of
defects again, and the flowchart of the identification of the three kinds of defects is shown
in Figure 8.

Figure 8 shows the method of distinguishing three types of defects, mainly the dou-
ble threshold distinction of area and geometric features. The area and aspect ratio dual
threshold was used to distinguish between the categories of defects. First of all, the most
obvious difference between the pit defects and bubbles and bulging defects is that the
area is often much larger, because the cause of its generation is mostly missing filaments,
broken filaments, and so on, and bubble defects generated by the slurry in the extrusion
chamber and air mixing occur after bulging is generated by the printing process due to the
extrusion of the head of the slurry occurring in a natural downward spiral. The reason for
this is that during the printing process, the paste in the extruder head falls naturally, which
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leads to the stacking of the printing place that should be stopped. So, the first step is to
distinguish between pit defects and the other two defects; the second step is the continued
use of the area threshold to distinguish between the bubble and the drum package defects
since bubble defects tend to be smaller than the area of the drum package defects and their
shapes are more similar.

Defective area
extraction
Calculate the area of
the region and the

length of the smallest
external rectangle.

Set the area threshold K1,
greater than K1 for craters,
less than K1 for bubbles or
bulges

Set the aspect ratio threshold
K2, greater than K2 for pits,
less than K2 for bubbles or
bulges

¥
bubbles or
bulges

Set the area threshold K3,
greater than K3 for the bulge,
less than K3 for the bubble

T

Figure 8. Defect identification flowchart.

3.5. Distortion Correction

After the camera calibration, the conversion relationship between the pixel size and
the actual size is obtained, but it is not yet possible to directly convert the size, and it is also
necessary to carry out aberration correction. In the actual image acquisition process, the
camera lens does not fully comply with the ideal model; according to the imaging principle
of the camera, it is impossible to meet the lens and the imaging surface in a parallel state
so it will lead to the generation of aberrations. The mathematical expression for radial
distortion is shown in the following equation:

R

kq and k; are the camera distortion coefficients and 2 = x2 4 y2 is the distance between
the point in the image and the center of the imaging plane. From the above equation, it can
be seen that with the increase in the off-center distance 72, the resulting distortion effect is

more pronounced, and (;, ?) is the true coordinate value of (x, y) that has been corrected
for distortion. This leads to the coordinate representation in the case of distortion, as shown
in the following equation:

[E{| _ (1 +k11’2 +k27’4> |:1/l — l/l():l + l:MO:| (2)
v U —79 (40}

In the defect detection system designed in this study, the camera is placed at an angle,
which leads to near large and far small dimensional errors in the two-dimensional plane,
and the conventional distortion correction method is not sufficient to solve this problem,
and thus a new method is also needed. A plane plate with 20 x 20 dots is generated
and printed out, and the plate is placed on the printing platform, with the bottom of the
plate parallel to the camera; the camera then captures an image, as shown in Figures 5-9a.
After the aberration correction, the image is preprocessed first, and the region of dots is
segmented, and then two columns of dots are selected as identification points, and the
pixel distance between them and one column of 18 and the actual distance are calculated,
respectively. It is known that the theoretical distance should be 70 mm, and the converted
actual distance and the theoretical distance are compared to this, as shown in Figure 9c,
and the two groups of identification points are selected.
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(a)

(b)

(c)

Figure 9. Marker point selection. (a) indicates the identification point to be extracted, (b) indicates all

identification points to be extracted, and (c) indicates the identification point to be extracted.

The calculated marking point measurements are shown in Table 2 below.

Table 2. The point measurements.

Identification . Measured Actual Distance Theoretical .
Points (Group) Row (Pixel) Distance (Pixel) (mm) Distance (mm) Ratio (0.001)
1 0.849767 1392.24 52.7419 70 0.753
2 47113 1427.5 54.0778 70 0.772
3 8.75867 1464.26 55.4702 70 0.792
4 13.0473 1503.77 56.9672 70 0.813
5 17.6133 1544.87 58.524 70 0.836
6 22.3576 1589.56 60.217 70 0.860
7 27.3087 1636.19 61.9834 70 0.885
8 32.5668 1687.21 63.9163 70 0.913
9 38.0753 1740.29 65.9271 70 0.941
10 44.054 1797.62 68.0988 70 0.972
11 50.4299 1857.17 70.355 70 1.005
12 57.3119 1921.91 72.8074 70 1.040
13 64.6159 1990.47 75.4048 70 1.077
14 72.5358 2066.41 78.2814 70 1.118
15 80.9807 2146.83 81.328 70 1.161
16 90.1994 2234.95 84.6664 70 1.209
17 100.095 2328.84 88.2232 70 1.260
18 110.861 2430.37 92.0694 70 1.315

In Table 2, the first column refers to the rental number of the marker, the second

column refers to the ROW pixel coordinates, the third column refers to the measured
distance in the image coordinate system, the fourth column refers to the measured distance
converted to the world coordinate system, the fifth column refers to the theoretical distance,
and the sixth column refers to the ratio of the measured distance to the theoretical distance.

The obtained ratio is used as the output function, and the row coordinates of the center
of each group of corresponding identification points are used as the input function, and
then the Origin software is used for nonlinear fitting; the selected fitting function model is
the ExpDecl type, and the fitting result is shown in the following formula:

y=B+4+Ae i 3)

where A is 0.85111, B is 0.48265, and t is 99.44617. The measurement results are used to
convert the function and calculate the error using the theoretical distance, as shown in
Table 3 below.

In Table 3, the first column refers to the rental number of the marking point, the
second column refers to the corrected measurement distance, the third column refers to
the theoretical distance, and the fourth column refers to the error between the measured
distance and the theoretical distance. As can be seen from the above table, this method has
a good distortion correction effect for cameras placed obliquely.
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Table 3. Identification point error.
Identification Actual Theoretical Identification Actual Theoretical
Points Distance Distance Error (mm) Points Distance Distance Error (mm)
(Group) (mm) (mm) (Group) (mm) (mm)
1 69.9631 70 0.0369 10 70.0844 70 0.0844
2 69.9971 70 0.0029 11 70.0186 70 0.0186
3 70.0037 70 0.0037 12 69.964 70 0.036
4 70.019 70 0.019 13 69.906 70 0.094
5 69.972 70 0.028 14 69.9096 70 0.0904
6 69.996 70 0.004 15 69.913 70 0.087
7 70.003 70 0.003 16 69.9569 70 0.0431
8 70.0571 70 0.0571 17 70.0244 70 0.0244
9 70.0819 70 0.0819 18 70.1387 70 0.1387

3.6. Defect Matching Method Based on Geometric Features

In the process of defect identification, the possible features of the printed body itself
will be misidentified as defects, so it is necessary to distinguish such features. In defect
detection, the location, shape, and size of the defects are the three most critical pieces
of information. Based on such parameters, the similarity of defects was evaluated by
establishing a weighting function of the direct similarity of each parameter, which is shown
in the following formula:

2 2 rm—rn Am—An

- \/(xm = xn)" + (Ym — Yn) [ Rr— Ay TAm—An]
+apt +agn
1 n An

SOCP = B, | 11 4)
where SOCP (Similarity Evaluation of Contour Parameters) indicates the similarity of the
defect parameters; x and y are the central coordinates representing the location of the defect;
r is the aspect ratio that represents the shape of the defect; A is the area representing the
defect; m is the defect number detected from the image; 7 is the feature number represented
by the theoretical model; [ is the error threshold of defect location, in pixels; « is the weight
coefficient of each parameter of the defect; and S is the weight coefficient of the features in
the theoretical model.

According to different environments and detection requirements, we can choose
different thresholds and weighting coefficients. The error threshold 1 of defect localization
is mainly used to match the error due to the precision of the hardware platform and
extraction algorithms, etc. When the printing precision of the experimental platform is
high, then a smaller positioning error threshold can be set; when the precision error is
large, to avoid missing matches due to the harsh evaluation, it is necessary to adjust the
positioning error threshold. The weight coefficient « of each parameter of the contour is
mainly used to reconcile different environmental requirements, and the weight coefficients
of each parameter can be set according to the requirements for positioning, shape, and area.
The weight coefficient 3 of the theoretical model features is used to reconcile the errors of
the theoretical model features, due to the existence of the camera calibration error in the
experiment, which leads to the deviation of the received point coordinates and the camera
direction in the feature extraction, so it is necessary to set different weight coefficients for
each theoretical model feature.

In the study of the text, the parameters 8, ®1, a3, a3, and [ in the evaluation function
were set to 1, 0.4, 0.3, 0.3, and 80, respectively. Thus, the closer the value of SOCP is to 1, the
higher the similarity is, and the similarity reaches its maximum value when SOCP = 1 and
is considered to be completely consistent. The SOCP value in this study was set to 0.6, i.e.,
a value greater than 0.6 is considered to be the original model’s characteristic. By setting
the SOCP threshold, the flexibility of matching can be increased, effectively reducing the
bias error caused by the subtle rotation and scaling of the image due to the platform’s
micro-movements during printing, etc.
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The theoretical model features and printed detected defects are shown in Figure 10
when this model is printed. Among them, the red-filled part of Figure 10b indicates the
detected defects. In this study, the defects are mainly characterized by parameters such as
center coordinates, aspect ratio, and area.

(a) (b)

Figure 10. Theoretical model characteristics and print detection defects. (a) is its own characteristics,
(b) is the characteristics and defects.

The characteristic information of Figure a in Figure 10 is shown in Table 4 below.

Table 4. Theoretical model feature information.

Theoretical Model

Area (Pixel) Row (Pixel) Column (Pixel) Length 1 (Pixel) Length 2 (Pixel)

1

82,492 1037 2245 362 256

According to the similarity evaluation function in Equation (4), the calculation shows
that there was only one pair of SOCP values greater than 0.6, which means that they have
a high degree of similarity and belong to the printing model’s features, while the rest
are printing defects. Therefore, the feature-based defect matching detection method can
distinguish the model’s features from the real defects, and the similarity of the contours can
be effectively evaluated by the weighting function of the similarity between each parameter
to reduce the misdetection rate and improve the online detection accuracy.

4. Experimentation and Analysis

To verify the robustness of the above defect detection system, experiments were con-
ducted to verify the analysis for surface defects. The defect detection system composition is
shown in Figure 11. It mainly includes an 3D extrusion ceramic printer, a PC, an industrial
camera, an industrial lens, a ring light source, a camera bracket, and the Halcon image
processing software system. First of all, the external dimension defect experiment was
conducted because the printer extrusion head exit diameter of 1.0 mm, shown results in a
detection accuracy of 0.1 mm, can be accurately derived from the measurement results.

3D printers lens  camera PC

Ring light source

Extrusion head -

Print platform

Drivetrain ~ Control system Camera clamping device

Figure 11. Defect detection system composition.
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As the selected sensor chip size was 7.2 mm x 5.4 mm, the pixel size was 1.85 um x 1. 85 um,
the longest field of view distance at the far end was selected according to the camera’s tilt
placement; the longest field of view distance was 201.5 mm, the lens magnification was
calculated to be 0.0357, and the pixel size is divided by the magnification to obtain the
minimum detection accuracy of 0.051 mm, which meets the detection accuracy requirements
of this study.

In this study, we designed one of the most commonly used zigzag path planning
methods and left a rectangular bore in the center of the printed sample to test whether the
inspection system will detect it as a defect. The experiments on surface defects were carried
out by printing six layers, capturing images of each layer for detection. A total of 30 sets
of experiments were carried out, with a total of 180 images captured, and the results are
shown in Table 5. This paper presents the experimental results in terms of a confusion
matrix to determine the robustness of the defect detection model in terms of recall, which
is also known as the true positive rate (TPR) for defective samples, and precision (PPV),
which is also known as the positive predictive value (PPV) for samples that are predicted
to be defective and reflects how many of the samples that are predicted to be defective are
correct. Both recall and accuracy are important metrics for determining the robustness of
a defect detection model and can prove that the defect detection model is correct [48-51].
The formulas for bubble recall and precision are shown below:

T\ Py

TPR =
ThWPy+FP,+ FPs+FPy

(5)

_ Ty Py ©)
- TyP + BP + BP + EPy

where T; P; indicates the result of a bubble defect detected as a bubble defect, F; P, indicates
the result of a bubble defect detected as a pit defect, F; P53 indicates the result of a bubble
defect detected as a bulge, F; P4 indicates the result of a bubble defect detected as a normal
sample, F, P; indicates the result of a pit defect detected as a bubble defect, F3P; indicates
the result of a bulge defect detected as a bubble defect, and F4P; indicates the result of a
normal sample detected as a bubble defect.

PPV

Table 5. Feature parameters.

Actual Test Results
- TPR PPV
Category Bubble Pit Bulge Normal
Bubble 25 0 0 1 96% 100%
Pit 0 49 0 2 100% 96%
Bulge 1 1 13 0 86% 93%
Normal 0 0 0 88 100% 100%

There may be multiple images in one image, and only the images with a single defect
are analyzed in Table 5 for the purpose of controlling the variables and judging whether
the recognition error of the inspection system has a large impact.

As shown in the table above, bubble defects were partially detected as normal samples,
which may be due to the bubble being too small; bulging defects were partially detected as
bubble defects, which may be due to the bulge being too small. Out of a total of 180 samples,
175 groups were correctly identified, and 5 groups were incorrectly identified; the overall
correct detection result was 97.2%, which is in line with the detection requirements. A part
of the sample detection results is shown in Figure 12.

Since there were fewer bulging defects, 100 detected pit defects were randomly selected
to detect the size of the width of the pit in pixels, and 100 bubble defects were randomly
selected to detect the size of the area of the bubble in pixels; the experimental results are
shown in Figure 13a,b.
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Figure 13. Experimental results.

According to the hardware parameters and calibration results, the width of a pit was
estimated to be 10~30 pixels; a width less than 10 pixels was not regarded as a defect and
can be filled through the material’s properties; and a width greater than 30 pixels was
regarded as too large and the printing should be stopped. The size of a bubble area should
be 30~200 pixels; an area less than 30 pixels was not considered a defect, and through the
material's properties, it can be filled; and an area greater than 200 pixels was considered to
be pit defects that were mistakenly detected as bubble defects and was subsumed in the pit
defect processing. The detection time of 50 groups of pit defects and 50 groups of bubble
defects can be analyzed. As shown in Figure 13c, it can be seen that it took less than 1S to
complete the detection of individual defects using the configuration of an Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60GHz. It can be inferred that the single detection time of the whole
system is around 4S, which is in line with the design and application requirements.

5. Discussion

In this study, we completed the research on a defect detection system for ceramic
3D printing based on machine vision and developed a defect detection device based on a
3D extrusion ceramic printer, and we found that the molding quality of the 3D printing
was significantly improved. In the introduction, the research performed by others has
been aimed at the spatial layout and the detection method, with the main purpose being
improving the detection efficiency and improving the printing quality. The detection system
studied in this paper not only improves the spatial layout, but also does not misidentify
its own features as defects when detecting defects and has stronger robustness. The test
results obtained after the experiment also prove that the system significantly improves the
detection efficiency of 3D printing.

Compared with the existing optimization methods, the camera layout designed in this
study avoids the conflict between the positions of the camera and printer’s extrusion head
in space, and secondly, the existing method does not mistakenly identify the features of the
printing body itself as defects, which is very important.
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6. Conclusions

To solve the problem that defects cannot be detected in the process of extrusion mold-
ing ceramic 3D printing, a real-time online inspection system was designed for extrusion
molding ceramic 3D printers, and its inspection method can automatically identify, ana-
lyze, and locate defects that occur during the printing process. The main conclusions are
as follows:

1.  Inorder to ensure that the system captures high-quality images during operation, a
machine vision-based defect detection system for ceramic 3D printing and a machine
vision clamping device for 3D printers were designed. The system was applied to
extrusion molding ceramic 3D printers and can realize real-time detection; in addition,
the system can automatically identify the type of defects and feedback to the control
system to make different adjustments according to the size of the defects. These are
two major differences between this system and other vision inspection equipment
used in the industry.

2. Inthis study, the camera in the image acquisition device was placed in a tilted position,
which is different from the conventional vertical placement, so when performing the
aberration correction, firstly, a diagram full of marking points is placed, and then the
distance of the corresponding marking points is measured, and then an analysis is
performed with the actual distance. The data fitting method is subsequently carried
out to perform the aberration correction, and the results show that this method has
a particularly good effect of image correction to account for the tilted placement of
the camera.

3. The experimental verification showed that the system designed in this study had
a detection accuracy of 97.2% and could also define the size of defects, and feed
back different results based on the size of the defect. At the same time, based on
the characteristics of the defects, the evaluation method of the weighting function is
introduced to distinguish between the characteristics of the printing blank itself and
the printing defects. From the results, it can be seen that this system for 3D printers
greatly improves the print quality while reducing the consumption cost. However,
due to the limitations of the experiment and the fact that ceramic 3D printing requires
numerous steps such as post-processing in addition to printing blanks, the system
has not yet been used for industrial production, leaving a large amount of unexplored
research space.
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