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Abstract: Using optimal assembly relationships, companies can enhance product quality without
significantly increasing production costs. However, predicting Assembly Geometric Errors presents a
challenging real-world problem in the manufacturing domain. To address this challenge, this paper
introduces a highly efficient Transformer-based neural network model known as Predicting Assembly
Geometric Errors based on Transformer (PAGEformer). This model accurately captures long-range
assembly relationships and predicts final assembly errors. The proposed model incorporates two
unique features: firstly, an enhanced self-attention mechanism to more effectively handle long-range
dependencies, and secondly, the generation of positional information regarding gaps and fillings to
better capture assembly relationships. This paper collected actual assembly data for folding rudder
blades for unmanned aerial vehicles and established a Mechanical Assembly Relationship Dataset
(MARD) for a comparative study. To further illustrate PAGEformer performance, we conducted
extensive testing on a large-scale dataset and performed ablation experiments. The experimental
results demonstrated a 15.3% improvement in PAGEformer accuracy compared to ARIMA on the
MARD. On the ETH, Weather, and ECL open datasets, PAGEformer accuracy increased by 15.17%,
17.17%, and 9.5%, respectively, compared to the mainstream neural network models.

Keywords: long sequence forecasting; geometric errors; assembly precision; artificial intelligence;
data processing

1. Introduction

Primary manufacturing processes encompass component assembly, product design,
and component machining. This stage is also the most challenging to standardize and
automate. The integration of intelligence with industrialization has become a focal point
of recent advancements with the development of information technology. A vast amount
of data has accumulated in the industrial sector with the adoption of intelligent devices.
Predicting the quality of assembly processes has become possible through the analysis of
historical industrial big data [1–4]. For example, the assembly process for folding rudder
blades for unmanned aerial vehicles entails selecting components from a pool of qualified
parts and assembling them to minimize the deviation of the rudder oscillation. All compo-
nents within a permissible tolerance range are considered normal and qualified products.

However, this assembly method exhibits drawbacks, including significant variations
in assembly accuracy and inconsistent inspection indicators. In practical scenarios, these
issues may arise from excessive adjustments in the assembly process, resulting in non-
compliance with inspection indicators. Consequently, this reduces assembly efficiency
and increases the time cost due to incorrect assembly. To mitigate these effects, data-
driven approaches can analyze and discover patterns within the vast amount of data
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generated during production and manufacturing processes. This enables the improvement
of product quality by precisely controlling assembly accuracy. Currently, this method is the
most feasible.

In order to improve assembly geometric errors, the majority of manufacturing plants
undergo digital transformation [5–7]. Utilizing traditional data-driven methods involves
processing and predicting collected data, thereby establishing a mapping between the
physical world and the digital world, known as a digital twin. Although these traditional
data-driven methods exhibit strong operability (such as utilizing genetic algorithms to ana-
lyze assembly or disassembly sequences, among others) and can effectively improve overall
assembly geometric errors, their accuracy and robustness are compromised when predict-
ing errors in the assembly process of increasingly complex products [8–11]. To overcome the
limitations of traditional data-driven methods, machine learning techniques have emerged
as the mainstay in this field. However, existing research employing machine learning
methods often develops algorithms only for specific combinations of components, resulting
in poor generality of datasets for other models. Moreover, these methods are sensitive to
environmental factors, rendering many Assembly Geometric Error accuracy predicting
algorithms ineffective if environmental changes occur during data collection [12–14].

Previous studies have shown that using Transformers as a basis has yielded good
results in prediction tasks such as sensor network monitoring [15], human behavior predic-
tion [16], energy and smart grid management [17], economics and finance [18], and disease
propagation analysis [19]. However, these methods are developed for time series forecast-
ing, emphasizing the impact of continuous changes in datasets. In contrast, predicting
assembly geometric errors requires capturing implicit information between assembly com-
ponents. Therefore, using neural networks based on time series data directly for predicting
assembly geometric errors may not yield satisfactory results.

To address the issue of predicting assembly geometric errors not related to time
series using Transformers, this paper analyzed the data generated during the production
manufacturing process and input paired data with assembly relationships into the neural
network structure, facilitating a more robust establishment of correlations between the data.
Consequently, the paper enhanced the long time series network structure and introduced
a self-attention network structure based on assembly data pairs to achieve more accurate
predictions of overall assembly geometric errors. To better evaluate the testing results, we
acquired actual assembly data for folding rudders in unmanned aerial vehicles to establish
a dataset of measurement data and errors for training and testing purposes.

In summary, this paper proposes a novel pair feature distance method to enhance
data correlation for predicting assembly geometric errors. Furthermore, based on this data
pair, a self-attention structure is introduced, focusing on global features and extracting
local features.

The subsequent sections of this article are organized as follows: Section 2 reviews
current research related to assembly data errors. Section 3 introduces the overall structure
of neural networks, detailing the processing of pair feature distances in assembly data and
the internal composition of encoders and decoders. Section 4 presents and analyzes the
experimentally obtained predicted results. Finally, Section 5 provides a comprehensive
summary of the entire article.

2. Background

The accuracy control prediction system in the assembly field is predominantly pro-
pelled by artificial-intelligence-based neural networks. Earlier research primarily concen-
trated on artificial neural network systems, grey prediction systems, fuzzy control theory,
and various other aspects. Examples encompass numerical algorithms analyzing the final
unfolding angles of adjusted joints in a linkage, neural networks predicting final errors
for achieving higher accuracy, and adaptive support vector machines (ASVMs) based on
the SVM framework predicting the assembly quality of automotive sunroofs. Alternative
approaches include using artificial intelligence techniques to narrow down the search space
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for assembly sequence planning, considering an analysis of the limitations of existing meth-
ods [20–22]. Leveraging the potent fitting capability of machine learning, these methods
can yield superior results compared to traditional algorithms. Another category of methods
addresses scenarios in which traditional algorithms are insufficient for analyzing complex
mechanical products. In such scenarios, artificial intelligence can be trained and fitted
based on data to predict the performance of assembling complex products, for example,
the Assembly Quality Adaptive Control System (A_QACS). This system is proposed for
assembly recognition of complex mechanical products under uncertainty. Additionally,
a proposed multi-objective discrete particle swarm optimization algorithm is designed to
enhance the efficiency of assembly planning [23,24].

In recent years, artificial-intelligence-based neural networks have rapidly advanced,
particularly with the introduction of the Transformer architecture based on the self-attention
mechanism. Consequently, methods developed based on the Transformer approach
have gradually replaced sequential or time-related data analysis and prediction tech-
niques [25–27]. Therefore, this paper aims to propose a new approach for predicting
assembly errors based on a neural network architecture using the Transformer framework.

3. Model Architecture

This article analyzes the data characteristics of Assembly Geometric Errors to establish
a structure named Assembly Geometric Error Embeddings (AGEE), which associates
assembly relationships as input. To better handle structures with assembly relationships
and the final errors caused by errors in other parts, this article introduces an efficient
neural network architecture named PAGEformer. PAGEformer perceptively considers both
long sequence relations and global consideration of local information. This architecture
comprises an Encoder structure and a Decoder structure. The Encoder transforms the
input sequence into hidden representations or feature vectors [28]. It consists of multiple
identical layers, each containing prob attention, conv1d, and layer norm. The prob attention
structure filters weights representing global information and local assembly relationship
information through KL divergence computation, enabling more accurate error prediction.
The purpose of the Decoder is to generate the target sequence, including prob attention,
conv1d, layer norm, and a regular multihead attention structure. The Decoder incorporates
the position of the data to be predicted into the AGEE structure, yielding the final prediction
results. An overview is presented in Figure 1.

3.1. Assembly Geometric Error Embeddings

In typical scenarios, input data undergo differentiation, incorporating weighted posi-
tional information to capture temporal sequences. Nevertheless, this method might not
comprehensively depict the assembly relationships among diverse components. In re-
sponse to this limitation, our paper introduces the Assembly Geometric Error Embeddings
method. This method establishes local assembly relationships among components and
long-term sequential connections in the data before entering the Encoder and Decoder.
This methodology aids the Encoder and Decoder in effectively capturing feature infor-
mation, thereby augmenting the accuracy of prediction errors.Consider the input data as
X = {x1,· · · ,xi|xi∈ dN}. Classify the data into two categories, namely “gap” and “fill”,
based on the assembly relationship. Next, vectorize the data and perform calculations
using the provided formula in Equation (1).

Y(j) =
N−1

∑
i=0

X(j + i)W(i) + b (1)

where X(j + i) represents the (j + i)-th element of the input sequence, W(i) denotes the
i-th weight of the convolutional kernel, b is the bias term, and N represents the input
length. By varying the number of convolutional kernels, we can derive distinct output
dimensions denoted as Q ∈ RLQ×d, K ∈ RLK×d, and V ∈ RLV×d. Specifically, LQ represents
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the dimension formed by stacking the outcomes of Q Conv1D convolutions, LK is the
dimension formed by stacking the outcomes of Conv1D convolutions, and LV is the
dimension formed by stacking the outcomes of V Conv1D convolutions.

Figure 1. Illustration of the structure of PAGEformer, elucidating how input data are overlaid with
assembly relationship information through AGEE. The Encoder comprises prob attention, conv1d,
and layer norm. The Decoder, in addition to receiving the output from the Encoder through multihead
attention, shares a similar structure with the Encoder. Finally, the fully connected layer is utilized
to generate the ultimate prediction result. Here, conv1d is used to increase the dimensionality of
the data and is combined with prob attention. Prob attention aims to better capture the correlations
between Assembly Geometric Errors. Conventional self-attention is primarily used to establish
features between long time-series data. Therefore, we processes the data pairs in AGEE to facilitate
prob attention in extracting the relationships between assembly data. Additionally, prob attention
filters out Q values that better reflect assembly relationships through KL divergence. For detailed
calculation methods, please refer to Section 3.2. Layer norm is a common standardization method that
helps the model converge better during training. Multi Atten is a common self-attention mechanism
used to enhance the correlations between data. FC is used to project high-dimensional information
onto the prediction dimension.

In this paper, the fitting relationships for shaft and slider are classified as “gap”, while
those for holes and slots are categorized as “fill”. The positions corresponding to “gap”
and “fill” are determined using Equations (2) and (3).

PE(pos,2i) = sin(pos/(10000)2i/dmodel ) (2)

PE(pos,2i+1) = cos(pos/(10000)2i/dmodel ) (3)
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where dmodel denotes the model’s dimension, and i ∈{1,· · · , dmodel/2}. The embedding
position is represented by PE, with dimensions identical to those of the data for filling
and gaps, pos signifies the position of filling or gaps, d represents the dimension of PE, 2i
represents even dimensions, and 2i + 1 signifies odd dimensions.

Let us assume the filling data input for a set of t components is represented by
Ft={ f t

1,· · · , f t
Lx| f t

i ∈ dLx}, and the gap data input is denoted as Gt={gt
1,· · · , gt

Lx|gt
i ∈ aLx}.

By evaluating Equation (1), Ft, and Gt as follows: Ft =
{

f t
1, · · · , f t

Lx | f t
i ∈dLx×dmodel

}
and

gap data Gt =
{

gt
1, · · · , gt

Lx | gt
i ∈dLx×dmodel

}
. Combining Equation (2) and Equation (3),

the new vector containing “fill” and “gap” information can be computed according to
Equations (4) and (5).

f t
i = f t

i + PE(pos,Lx×(t−1)+i) (4)

gt
i = gt

i + PE(pos,Lx×(t−1)+i) (5)

where i ∈ 1, · · · , Lx. The two input vectors are concatenated, which can be expressed by
Equation (6).

INPUTE = Concat(Ft + Gt) ∈ (Lx + lx)× dmodel (6)

where Ft ∈Lx×dmodel and Gt ∈Lx×dmodel . The obtained final vectors serve as the input vectors
for the neural network. AGEE as depicted in Figure 2.

Figure 2. Segregation of the input into “gap” and “fill” components. Each component is subsequently
subjected to conv1D transformation, resulting in the Lx×dmodel dimension. Following this, each
component is individually combined with PE, and ultimately, the outcomes of both are concatenated
to form INPUTE.

3.2. Encoder

The Encoder consists of prob attention, conv1d, and layer normalization components.
In the attention mechanism, there might be partially activated Queries, permitting spe-
cific Query key dot product calculations with minimal contribution to the prediction to
overpower the probability distribution after the softmax function. This suggests that cer-
tain Queries result in inefficient utilization of computational resources. To mitigate this
limitation and improve prediction accuracy, it is imperative to filter out fully activated
Queries. Non-activated Queries display characteristics akin to a uniform distribution;
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therefore, representative Queries can be identified by computing the Kullback–Leibler
(KL) divergence between the distribution of distinct Queries and a uniform distribution.
Attention can be expressed by Equation (7).

A(Q, K, V) = so f tmax(
QKT
√

d
)V (7)

where Q ∈ RLQ×dmodel , K ∈ RLK×dmodel , and V ∈ RLV×dmodel . Q, K, and V represent
three distinct results derived from applying INPUTE to various conv1D operations, “i”
represents the i-th row in Q, K, V, and j represents the j-th column in Q, K, V. Let qi, ki, vi
stand for the i-th row in Q, K, and V, respectively. A(Q, K, V) represents the attention score
of the i-th q in the sequence, p is the probability score of the i-th q and j-th k calculated from

f
(
qi, k j

)
= exp

(
qikT

j√
d

)
. The prob_attention is expressed by Equations (8) and (9).

A(qi, K, V) = ∑
j

f (qi, ki)

∑l f (qi, ki)
vi (8)

p
(
k j | qi

)
=

f
(
qi, k j

)
∑i f

(
qi, k j

) (9)

The probability of the uniform distribution is as p(ki|qi) = 1/Lk. So, the Kullback–Leibler
(KL) divergence for measuring the probability distribution between can be expressed as
Equation (10).

KL(q∥p) = ln
LK

∑
i=1

eqi ,kT
j /

√
d − 1

Lx

LK

∑
i=1

qi, kT
j /

√
d − ln LK (10)

Removing the constant term [29], we define the i-th query’s sparsity measurement as
expressed by Equation (11).

M(qi, K) = ln
LK

∑
i=1

eqi ,kT
j /

√
d − 1

L

LK

∑
i=1

qi, kT
j /

√
d (11)

The dimension of Q is consistent with Q. We sort the values computed based on M
and select the top 10% to fill in Q. The remaining values are filled with the overall mean
10%, which was obtained through testing, and the specific results are shown in Section 4.2.
So, the prob_attention can be expressed as Equation (12).

A(Q, K, V) = so f tmax(
QKT
√

d
)V (12)

Conv1d is a one-dimensional convolutional module with a kernel size of 3 and a stride
of 2. Its main role is to reduce the size of the feature map and lower the computational
complexity. Finally, the data is normalized through layer norm as in Equation (13).

LayerNorm(x) = γ · x − µ

σ
+ β (13)

where µ = 1
Lx

∑Lx
i=1 xi, σ =

√
1

Lx ∑Lx
i=1(xi − µ)2, γ and β are learnable scaling and bias

parameters. So output can be expressed as Equation (14).

OutputE = LayerNorm
(

A
(

ELU
(

Conv1d
(

A
(

INPUTE
)
+ INPUTE

)))
+

ELU
(

Conv1d
(

A
(

INPUTE
)
+ INPUTE

))) (14)
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where INPUTE is the input after undergoing Encoder embedding, and OUTPUTE is the
output of the Encoder.

Self-attention computation requires memory of O(LQLK) and comes at the cost of
quadratic dot product calculations. In this paper, because M values are used for calculation,
the overhead of M is O(LQLK), and the computational cost of attention calculation after M
screening is O(LQLK/10). Therefore, the overall cost is higher with O(LQLK/10) compared
to regular self-attention.

We have implemented the prob attention in Python 3.6 with Pytorch 1.8.0. The pseudo-
code is given in Algorithm 1.

Algorithm 1: Prob attention

1 set hyperparameter u, u = 10%

2 set the sample score S = QKT
√

d
by row

3 compute the measurement M = ln(S)− mean(S)
4 set Top u queries under M as Q
5 set S1 = so f tmax(QKT/

√
d)V

6 set S0 = mean(V)
7 set S = {S1, S0} by their original rows accordingly

Result: feature map S

3.3. Decoder

The Decoder block is similar to the Encoder block, but with an additional Multi-head
Attention layer. The Decoder input vector contains additional Zt ∈Lk×dmodel placeholders
for prediction, where k is the number of errors to be predicted. The values at these positions
are filled with zeros and can be expressed as in Equation (15).

INPUT D = Concat
(

Ft + Gt + Zt
)
∈ R(Lx+Lx+Lk)×dmodel (15)

where Ft ∈ RLx×dmodel , Gt ∈ RLx×dmodel . The Decoder input vectors serve as the input vectors
for the neural network. AGEE as depicted in Figure 3.

A standalone attention module is incapable of providing a comprehensive global
representation of temporal relationships in sequence data. Hence, by partitioning dmodel
into multiple segments and independently computing them using attention modules,
the outcomes are concatenated along the relevant dimension. This methodology is termed
as Multi-head Attention. The computation for the i-th attention module can be articulated
through Equation (16).

A(Qi, Ki, Vi) = soft max

(
QiKT

i√
d

)
Vi (16)

Therefore, Multi-head Attention can be represented as Equation (17).

Multihead(X) = (Concat(A(Q1, K1, V1), . . . , A(Qh, Kh, Vh)))Wo (17)

where attention represents the calculation of the attention mechanism, Concat denotes the
concatenation of outputs from multiple attention heads along the last imension, and Wo is
the weight matrix for the linear transformation of the concatenated output.
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Figure 3. The input to the Decoder, after undergoing the AGEE, includes an additional placeholder,
Zt, at the output position, filled with zeros.

4. Experimentation
4.1. Data Collection

To validate the effectiveness of PAGEformer, we collaborated with North Navigation
Control Technology Co., Ltd. and collected measurement data during the manufacturing
process of folding rudder blades for unmanned aerial vehicles produced by the company.
The Mechanical Assembly Relationship Dataset (MARD) comprises 2262 sets of data,
with each set consisting of 13 measurement data items and 1 assembly error data item
(Table 1).

To further evaluate the performance of PAGEformer, additional tests were conducted
using the following three publicly available datasets:

(1) ETT (Electricity Transformer Temperature): This dataset includes two categories of
data collected at 1 h frequency (ETTh) and 15 min frequency (ETTm), each containing
7 items of feature data.

(2) ECL (Electricity Consumption Load): This dataset contains electricity consumption
data of 321 customers, with each record containing 320 items of feature data.

(3) Weather: This dataset contains climate data for nearly 1600 regions in the United
States, with data collected at an hourly frequency. Each record includes 12 items of
feature data.

Table 1. Mechanical assembly relationship dataset (partial).

Left Shaft
Hole

Groove
Surface

Locking Block
Groove

Right Shaft
Hole Left Front Flat Height of the

Hole Center
Lock Block

Left
Lock Block

Right Right Behind Hole Position
Height

Shaking
Amount

4.48 6 4.52 4.55 5.975 4.51 5.96 9.17 4.51 4.51 5.995 4.54 9.595 0.7

4.51 5.975 4.52 4.56 5.98 4.54 6.015 9.215 4.5 4.52 5.96 4.54 9.52 0.8

4.52 5.98 4.52 4.55 6.005 4.49 5.99 9.29 4.45 4.48 5.955 4.48 9.495 1.4

4.53 6.055 4.52 4.56 5.99 4.54 6.095 9.255 4.5 4.51 5.96 4.53 9.5 0.8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We employed single 4090 GPU for training, and the training of MARD took approxi-
mately 10 h. PAGEformer can adapt input data based on the required measurement data
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for components, such as data for 20 measurements and two predicted errors. Thus, it can
predict various fitting errors of components in industrial production. However, due to the
large amount of measurement data for components, it is necessary to select relevant data
that play a decisive role in dimensional fitting, which typically requires collaboration with
mechanical engineers. Regarding the scalability to other domains, this paper demonstrates
PAGEformer’s predictive performance on long time-series data, as shown in Section 4.2,
which proves its effectiveness in predicting data with long time-series correlations for the
majority of cases.

To facilitate the introduction of hyperparameters, the following parameters are based
on the data in MARD. The training data has a batch size of 32. The Encoder sequence length
is 13, which is the dimensionality parameter used in MARD for predicting the final error.
The Decoder sequence length is 14, comprising 13 dimensionality datums and 1 placeholder
datum filled with 0. Conv1D has a kernel size of 3, a stride of 1, padding of 1, and outputs a
dimensionality of 512 for embedding purposes. In prob attention, the threshold for filtering
Q is set to 0.1. LayerNorm is used to prevent division by zero, thus adding 0.00001 to the
denominator. The Elu activation function is chosen with an alpha value of 1. Dropout is
set to 0.5. In the Decoder, the number of heads in multihead attention is eight. The Adam
optimizer is chosen with a learning rate of 0.0005. MSE is selected as the loss function.
The FC output dimensionality is 14, with the first 13 representing the input data and the
last one representing the predicted data output by the model.

4.2. Experimental Results and Discussion

The performance of the PAGEformer method can be assessed through MARD. The eval-
uation used two metrics: Mean Absolute Error (MAE) and Mean Squared Error (MSE).
The test results of different values of Q in MARD are displayed in Table 2 and the line
graph is shown in Figure 4.

Table 2. The test results of MARD with different Q values.

Top X% to Fill MSE MAE

10% 0.0375 0.1565
20% 0.0783 0.2293
30% 0.0723 0.2086
40% 0.0700 0.2047
50% 0.1149 0.2969
60% 0.0799 0.2233
70% 0.0490 0.1649
80% 0.0974 0.2516

100% 0.0850 0.2264

Figure 4. A line graph of the MSE for different values of Q.
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Table 3 provides a comparison of the MSE and MAE metric values for PAGEformer, Re-
former, and ARIMA on the MARD. The data demonstrates that the accuracy of PAGEformer
on MARD has increased by 15.3% compared to the best-performing ARIMA.

Table 3. Comparative test results of various methods for MARD.

Method Metric Value

PAGEformer MSE 0.0375
MAE 0.1565

Reformer MSE 0.0492
MAE 0.1701

ARIMA MSE 0.0456
MAE 0.1833

In order to further evaluate the performance of PAGEformer, we conducted compara-
tive tests with seven different methods using three publicly available datasets. The seven
existing methods employed in the comparison are as follows:

(1) Informer, (2) LogTrans, (3) Reformer, (4) LSTMa, (5) DeepAR, (6) ARIMA, (7) Prophet.
In this case as well, the individual methods were evaluated using the MSE and MAE

metrics. All models were trained and tested on a single Nvidia 4090 GPU. The experimental
results obtained are presented in Table 4. In order to show the comparison results more
intuitively, Figure 5 is drawn according to the data in Table 4.

Table 4. A comparison of PAGEformer with mainstream methods.

Method PAGEformer Informer LogTrans Reformer LSTMa DeepAR ARIMA Prophet

Metric Input Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.082 0.225 0.092 0.246 0.103 0.259 0.222 0.389 0.114 0.272 0.107 0.280 0.108 0.284 0.115 0.275
48 0.119 0.274 0.161 0.322 0.167 0.328 0.284 0.445 0.193 0.358 0.162 0.327 0.175 0.424 0.168 0.330
168 0.186 0.358 0.187 0.355 0.207 0.375 1.522 1.191 0.236 0.392 0.239 0.422 0.396 0.504 1.224 0.763
336 0.182 0.350 0.215 0.369 0.230 0.398 1.860 1.124 0.590 0.698 0.445 0.552 0.468 0.593 1.549 1.820
720 0.218 0.325 0.257 0.421 0.273 0.463 2.112 1.436 0.683 0.768 0.658 0.707 0.659 0.766 2.735 3.253

ETTh2

24 0.090 0.229 0.099 0.241 0.102 0.255 0.263 0.437 0.155 0.307 0.098 0.263 3.554 0.445 0.199 0.381
48 0.147 0.301 0.159 0.317 0.169 0.348 0.458 0.545 0.190 0.348 0.163 0.341 3.190 0.474 0.304 0.462
168 0.263 0.415 0.235 0.390 0.246 0.422 1.029 0.879 0.385 0.514 0.255 0.414 2.800 0.595 2.145 1.068
336 0.293 0.439 0.258 0.423 0.267 0.437 1.668 1.228 0.558 0.606 0.604 0.607 2.753 0.738 2.096 2.543
720 0.295 0.439 0.285 0.442 0.303 0.493 2.030 1.721 0.640 0.681 0.429 0.580 2.878 1.044 3.355 4.664

ETTm1

24 0.034 0.147 0.034 0.160 0.065 0.202 0.095 0.228 0.121 0.233 0.091 0.243 0.090 0.206 0.120 0.290
48 0.063 0.195 0.066 0.194 0.078 0.220 0.249 0.390 0.305 0.411 0.219 0.362 0.179 0.306 0.133 0.305
96 0.193 0.365 0.187 0.384 0.199 0.386 0.920 0.767 0.287 0.420 0.364 0.496 0.272 0.399 0.194 0.396
288 0.398 0.546 0.409 0.548 0.411 0.572 1.108 1.245 0.524 0.584 0.948 0.795 0.462 0.558 0.452 0.574
672 0.529 0.643 0.519 0.665 0.598 0.702 1.793 1.528 1.064 0.873 2.437 1.352 0.639 0.697 2.747 1.174

weather

24 0.109 0.236 0.119 0.256 0.136 0.279 0.231 0.401 0.131 0.254 0.128 0.274 0.219 0.355 0.302 0.433
48 0.181 0.313 0.185 0.316 0.206 0.356 0.328 0.423 0.190 0.334 0.203 0.353 0.273 0.409 0.445 0.536
168 0.259 0.377 0.269 0.404 0.309 0.439 0.654 0.634 0.341 0.448 0.293 0.451 0.503 0.599 2.441 1.142
336 0.292 0.397 0.310 0.422 0.359 0.484 1.792 1.093 0.456 0.554 0.585 0.644 0.728 0.730 1.987 2.468
720 0.299 0.425 0.361 0.471 0.388 0.499 2.087 1.534 0.866 0.809 0.499 0.596 1.062 0.943 3.859 1.144

ECL

48 0.261 0.363 0.238 0.368 0.280 0.429 0.971 0.884 0.493 0.539 0.204 0.357 0.879 0.764 0.524 0.595
168 0.360 0.426 0.442 0.514 0.454 0.529 1.671 1.587 0.723 0.655 0.315 0.436 1.032 0.833 2.725 1.273
336 0.432 0.464 0.501 0.552 0.514 0.563 3.528 2.196 1.212 0.898 0.414 0.519 1.136 0.876 2.246 3.077
720 0.423 0.474 0.543 0.578 0.558 0.609 4.891 4.047 1.511 0.966 0.563 0.595 1.251 0.933 4.243 1.415
960 0.537 0.540 0.594 0.638 0.624 0.645 7.019 5.105 1.545 1.006 0.657 0.683 1.370 0.982 6.901 4.264

Table 4 illustrates that PAGEformer significantly enhances the inference ability across
all datasets. Compared to the best model, PAGEformer accuracy has improved by 15.17%,
17.17%, and 9.5% on the publicly available ETH, Weather, and ECL datasets, respectively.
The aforementioned data substantiate that the proposed method can effectively measure
hidden correlations in data, thus predicting the overall errors of the assembly process.
Additionally, in Table 4, PAGEformer demonstrated accuracy in predicting sequence data,
indicating its capability to learn the correlation of different errors and perform well in
predicting time series. This suggests that the prediction ability of PAGEformer has good
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scalability. To further validate the improvements in PAGEformer, we conducted abla-
tion experiments with two modifications: gap and filling encoding and prob attention.
The experimental results are presented in Table 5.

Figure 5. Comparison of PAGEformer with other methods on mainstream datasets.

Table 5. A comparison of ablation experiments for PAGEformer with MARD.

Method Metric Value

Prob and AGEE MSE 0.0375
MAE 0.1565

removes Prob MSE 0.0453
MAE 0.1642

removes AGEE MSE 0.0385
MAE 0.1599

removes Prob and AGEE MSE 0.1847
MAE 0.3688

5. Conclusions

This study explores the prediction of Assembly Geometric Errors and introduces
PAGEformer, a neural network capable of determining the feature distance of assembly
relationships using collected component data. By integrating an enhanced and efficient
long temporal attention structure, it improves the prediction of errors post-assembly. To val-
idate these improvements, the study collects a substantial amount of component data and
post-assembly errors from an actual manufacturing environment, creating the Mechanical
Assembly Relationship Dataset (MARD). Experimental results show that PAGEformer
achieves an accuracy on MARD 15.3% higher than that of ARIMA. To further evalu-
ate PAGEformer performance on extended temporal data, the study conducts tests on
public datasets and performs ablation experiments to scrutinize the effectiveness of the
enhancements. The outcomes on public datasets showcase PAGEformer’s commendable
performance in standard long temporal tests, and the ablation experiments affirm the
effectiveness of the two proposed enhancements.
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