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Abstract: Using optimal assembly relationships, companies can enhance product quality without
significantly increasing production costs. However, predicting Assembly Geometric Errors presents a
challenging real-world problem in the manufacturing domain. To address this challenge, this paper
introduces a highly efficient Transformer-based neural network model known as Predicting Assembly
Geometric Errors based on Transformer (PAGEformer). This model accurately captures long-range
assembly relationships and predicts final assembly errors. The proposed model incorporates two
unique features: firstly, an enhanced self-attention mechanism to more effectively handle long-range
dependencies, and secondly, the generation of positional information regarding gaps and fillings to
better capture assembly relationships. This paper collected actual assembly data for folding rudder
blades for unmanned aerial vehicles and established a Mechanical Assembly Relationship Dataset
(MARD) for a comparative study. To further illustrate PAGEformer performance, we conducted
extensive testing on a large-scale dataset and performed ablation experiments. The experimental
results demonstrated a 15.3% improvement in PAGEformer accuracy compared to ARIMA on the
MARD. On the ETH, Weather, and ECL open datasets, PAGEformer accuracy increased by 15.17%,
17.17%, and 9.5%, respectively, compared to the mainstream neural network models.

Keywords: long sequence forecasting; geometric errors; assembly precision; artificial intelligence;
data processing

1. Introduction

Primary manufacturing processes encompass component assembly, product design,
and component machining. This stage is also the most challenging to standardize and
automate. The integration of intelligence with industrialization has become a focal point
of recent advancements with the development of information technology. A vast amount
of data has accumulated in the industrial sector with the adoption of intelligent devices.
Predicting the quality of assembly processes has become possible through the analysis of
historical industrial big data [1-4]. For example, the assembly process for folding rudder
blades for unmanned aerial vehicles entails selecting components from a pool of qualified
parts and assembling them to minimize the deviation of the rudder oscillation. All compo-
nents within a permissible tolerance range are considered normal and qualified products.

However, this assembly method exhibits drawbacks, including significant variations
in assembly accuracy and inconsistent inspection indicators. In practical scenarios, these
issues may arise from excessive adjustments in the assembly process, resulting in non-
compliance with inspection indicators. Consequently, this reduces assembly efficiency
and increases the time cost due to incorrect assembly. To mitigate these effects, data-
driven approaches can analyze and discover patterns within the vast amount of data
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generated during production and manufacturing processes. This enables the improvement
of product quality by precisely controlling assembly accuracy. Currently, this method is the
most feasible.

In order to improve assembly geometric errors, the majority of manufacturing plants
undergo digital transformation [5-7]. Utilizing traditional data-driven methods involves
processing and predicting collected data, thereby establishing a mapping between the
physical world and the digital world, known as a digital twin. Although these traditional
data-driven methods exhibit strong operability (such as utilizing genetic algorithms to ana-
lyze assembly or disassembly sequences, among others) and can effectively improve overall
assembly geometric errors, their accuracy and robustness are compromised when predict-
ing errors in the assembly process of increasingly complex products [8-11]. To overcome the
limitations of traditional data-driven methods, machine learning techniques have emerged
as the mainstay in this field. However, existing research employing machine learning
methods often develops algorithms only for specific combinations of components, resulting
in poor generality of datasets for other models. Moreover, these methods are sensitive to
environmental factors, rendering many Assembly Geometric Error accuracy predicting
algorithms ineffective if environmental changes occur during data collection [12-14].

Previous studies have shown that using Transformers as a basis has yielded good
results in prediction tasks such as sensor network monitoring [15], human behavior predic-
tion [16], energy and smart grid management [17], economics and finance [18], and disease
propagation analysis [19]. However, these methods are developed for time series forecast-
ing, emphasizing the impact of continuous changes in datasets. In contrast, predicting
assembly geometric errors requires capturing implicit information between assembly com-
ponents. Therefore, using neural networks based on time series data directly for predicting
assembly geometric errors may not yield satisfactory results.

To address the issue of predicting assembly geometric errors not related to time
series using Transformers, this paper analyzed the data generated during the production
manufacturing process and input paired data with assembly relationships into the neural
network structure, facilitating a more robust establishment of correlations between the data.
Consequently, the paper enhanced the long time series network structure and introduced
a self-attention network structure based on assembly data pairs to achieve more accurate
predictions of overall assembly geometric errors. To better evaluate the testing results, we
acquired actual assembly data for folding rudders in unmanned aerial vehicles to establish
a dataset of measurement data and errors for training and testing purposes.

In summary, this paper proposes a novel pair feature distance method to enhance
data correlation for predicting assembly geometric errors. Furthermore, based on this data
pair, a self-attention structure is introduced, focusing on global features and extracting
local features.

The subsequent sections of this article are organized as follows: Section 2 reviews
current research related to assembly data errors. Section 3 introduces the overall structure
of neural networks, detailing the processing of pair feature distances in assembly data and
the internal composition of encoders and decoders. Section 4 presents and analyzes the
experimentally obtained predicted results. Finally, Section 5 provides a comprehensive
summary of the entire article.

2. Background

The accuracy control prediction system in the assembly field is predominantly pro-
pelled by artificial-intelligence-based neural networks. Earlier research primarily concen-
trated on artificial neural network systems, grey prediction systems, fuzzy control theory,
and various other aspects. Examples encompass numerical algorithms analyzing the final
unfolding angles of adjusted joints in a linkage, neural networks predicting final errors
for achieving higher accuracy, and adaptive support vector machines (ASVMs) based on
the SVM framework predicting the assembly quality of automotive sunroofs. Alternative
approaches include using artificial intelligence techniques to narrow down the search space
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for assembly sequence planning, considering an analysis of the limitations of existing meth-
ods [20-22]. Leveraging the potent fitting capability of machine learning, these methods
can yield superior results compared to traditional algorithms. Another category of methods
addresses scenarios in which traditional algorithms are insufficient for analyzing complex
mechanical products. In such scenarios, artificial intelligence can be trained and fitted
based on data to predict the performance of assembling complex products, for example,
the Assembly Quality Adaptive Control System (A_QACS). This system is proposed for
assembly recognition of complex mechanical products under uncertainty. Additionally,
a proposed multi-objective discrete particle swarm optimization algorithm is designed to
enhance the efficiency of assembly planning [23,24].

In recent years, artificial-intelligence-based neural networks have rapidly advanced,
particularly with the introduction of the Transformer architecture based on the self-attention
mechanism. Consequently, methods developed based on the Transformer approach
have gradually replaced sequential or time-related data analysis and prediction tech-
niques [25-27]. Therefore, this paper aims to propose a new approach for predicting
assembly errors based on a neural network architecture using the Transformer framework.

3. Model Architecture

This article analyzes the data characteristics of Assembly Geometric Errors to establish
a structure named Assembly Geometric Error Embeddings (AGEE), which associates
assembly relationships as input. To better handle structures with assembly relationships
and the final errors caused by errors in other parts, this article introduces an efficient
neural network architecture named PAGEformer. PAGEformer perceptively considers both
long sequence relations and global consideration of local information. This architecture
comprises an Encoder structure and a Decoder structure. The Encoder transforms the
input sequence into hidden representations or feature vectors [28]. It consists of multiple
identical layers, each containing prob attention, convld, and layer norm. The prob attention
structure filters weights representing global information and local assembly relationship
information through KL divergence computation, enabling more accurate error prediction.
The purpose of the Decoder is to generate the target sequence, including prob attention,
convld, layer norm, and a regular multihead attention structure. The Decoder incorporates
the position of the data to be predicted into the AGEE structure, yielding the final prediction
results. An overview is presented in Figure 1.

3.1. Assembly Geometric Error Embeddings

In typical scenarios, input data undergo differentiation, incorporating weighted posi-
tional information to capture temporal sequences. Nevertheless, this method might not
comprehensively depict the assembly relationships among diverse components. In re-
sponse to this limitation, our paper introduces the Assembly Geometric Error Embeddings
method. This method establishes local assembly relationships among components and
long-term sequential connections in the data before entering the Encoder and Decoder.
This methodology aids the Encoder and Decoder in effectively capturing feature infor-
mation, thereby augmenting the accuracy of prediction errors.Consider the input data as
X ={xy,- - - ,xj|x;€ dn}. Classify the data into two categories, namely “gap” and “fill”,
based on the assembly relationship. Next, vectorize the data and perform calculations
using the provided formula in Equation (1).

N-1

Y(j) =} X(j+i)W(i)+b 1)
i=0

where X(j + i) represents the (j + i)-th element of the input sequence, W(i) denotes the
i-th weight of the convolutional kernel, b is the bias term, and N represents the input
length. By varying the number of convolutional kernels, we can derive distinct output
dimensions denoted as Q € Rfe*d, K € RMx*d and V € Rv*d, Specifically, LQ represents
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Figure 1. Illustration of the structure of PAGEformer, elucidating how input data are overlaid with
assembly relationship information through AGEE. The Encoder comprises prob attention, convld,
and layer norm. The Decoder, in addition to receiving the output from the Encoder through multihead
attention, shares a similar structure with the Encoder. Finally, the fully connected layer is utilized
to generate the ultimate prediction result. Here, conv1d is used to increase the dimensionality of
the data and is combined with prob attention. Prob attention aims to better capture the correlations
between Assembly Geometric Errors. Conventional self-attention is primarily used to establish
features between long time-series data. Therefore, we processes the data pairs in AGEE to facilitate
prob attention in extracting the relationships between assembly data. Additionally, prob attention
filters out Q values that better reflect assembly relationships through KL divergence. For detailed
calculation methods, please refer to Section 3.2. Layer norm is a common standardization method that
helps the model converge better during training. Multi Atten is a common self-attention mechanism
used to enhance the correlations between data. FC is used to project high-dimensional information
onto the prediction dimension.

In this paper, the fitting relationships for shaft and slider are classified as “gap”, while
those for holes and slots are categorized as “fill”. The positions corresponding to “gap”
and “fill” are determined using Equations (2) and (3).

PE (yps.2i) = Sin(pos/(10000)%/ et ) o

PE (pos pi-1) = c0s(pos/ (10000)%/ ot 3)
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where d,,,4.; denotes the model’s dimension, and i €{1, - -, d;;04.1/2}. The embedding
position is represented by PE, with dimensions identical to those of the data for filling
and gaps, pos signifies the position of filling or gaps, d represents the dimension of PE, 2i
represents even dimensions, and 2i + 1 signifies odd dimensions.

Let us assume the filling data input for a set of ¢ components is represented by
F'={fi,--, fLIfl € diy}, and the gap data input is denoted as G'=(g},- -, g} |8} € ary}.

By evaluating Equation (1), F, and G’ as follows: F! = {flt, oo fE ] f e dmode } and

gap data G' = { gl gt | gt dreXdmoda } Combining Equation (2) and Equation (3),
the new vector containing “fill” and “gap” information can be computed according to
Equations (4) and (5).

fit = fit + PE(pos,Lxx(t—l)-i-i) 4

gf = gf + PE(pos,Lxx(t—l)—l—i) (&)

wherei €1, -, Ly. The two input vectors are concatenated, which can be expressed by
Equation (6). o

INPUTE = Concat(Ft + Gt) € (Lx + 1x) X dyoger (6)

where Ff €lv*dmodet and G €Lx*dmodel, The obtained final vectors serve as the input vectors
for the neural network. AGEE as depicted in Figure 2.

Conv Input It It

Kernal Embedding ﬁ E _ cos(Ft/lO 0004)2:?
) ! } i

Input

Ft

X3 >
D Embedding i PE
Xoug @

Concat

Xz
,
PN ‘_T
Gt ,
< PE 7
-
,

Embedding

Gt Gt Gt Ft Concat

= G,:sin((it/lO,OOO)Z"?
| i E | — - i f

Eq.(2) Eq.(5)

Figure 2. Segregation of the input into “gap” and “fill” components. Each component is subsequently
subjected to conv1D transformation, resulting in the Lxxdmodel dimension. Following this, each
component is individually combined with PE, and ultimately, the outcomes of both are concatenated
to form INPUTE.

3.2. Encoder

The Encoder consists of prob attention, convld, and layer normalization components.
In the attention mechanism, there might be partially activated Queries, permitting spe-
cific Query key dot product calculations with minimal contribution to the prediction to
overpower the probability distribution after the softmax function. This suggests that cer-
tain Queries result in inefficient utilization of computational resources. To mitigate this
limitation and improve prediction accuracy, it is imperative to filter out fully activated
Queries. Non-activated Queries display characteristics akin to a uniform distribution;
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therefore, representative Queries can be identified by computing the Kullback-Leibler
(KL) divergence between the distribution of distinct Queries and a uniform distribution.
Attention can be expressed by Equation (7).

QK™
Vid

where Q € RMQ*dmodel, K ¢ Rx*dmodel , and V € RLv*dmodel . Q, K, and V represent
three distinct results derived from applymg INPUTE to various conv1D operations, “i”
represents the i-th row in Q, K, V, and j represents the j-th column in Q, K, V. Let g;, k;, v;
stand for the i-th row in Q, K, and V, respectively. A(Q, K, V') represents the attention score
of the i-th g in the sequence, p is the probability score of the i-th g4 and j-th k calculated from

A(Q,K,V) = softmax(

W 7)

T
f(qi, kj) exp < 7a ) The prob_attention is expressed by Equations (8) and (9).

Al K V) ZZlf (g, k ) ' ®)
oy = Sk
p(k] | ‘71) sz(%/ ) )

The probability of the uniform distribution is as p(k;|q;) = 1/ L. So, the Kullback-Leibler
(KL) divergence for measuring the probability distribution between can be expressed as
Equation (10).

L 1 Lk
KL(qlp) zaneq”kf/\/H—iZQi,k]T/\/E—lnLK (10)
i=1 *i=1
Removing the constant term [29], we define the i-th query’s sparsity measurement as
expressed by Equation (11).

Ly Ly
Mg K) =ty e LY g KTV an

i=1 i=1

The dimension of Q is consistent with Q. We sort the values computed based on M
and select the top 10% to fill in Q. The remaining values are filled with the overall mean
10%, which was obtained through testing, and the specific results are shown in Section 4.2.
So, the prob_attention can be expressed as Equation (12).

QK'
Vd

Convld is a one-dimensional convolutional module with a kernel size of 3 and a stride
of 2. Its main role is to reduce the size of the feature map and lower the computational
complexity. Finally, the data is normalized through layer norm as in Equation (13).

A(Q,K, V) = softmax(

1\ (12)

LayerNorm(x) = 7y - o 1_7 Ey B (13)

where y = L% Zfle X, 0 = \/ Ix Zl o (x — ) , v and B are learnable scaling and bias
parameters. So output can be expressed as Equation (14).

Output® = LayerNorm (A (E LU (Convld (A (INPUTE) +INPUTE ) ) ) +
(14)
ELU (Conv1d (A (INPUTF) + INPUTF ) ))
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where INPUTE is the input after undergoing Encoder embedding, and OUTPUTF is the
output of the Encoder.

Self-attention computation requires memory of O(LgLk) and comes at the cost of
quadratic dot product calculations. In this paper, because M values are used for calculation,
the overhead of M is O(LgLk), and the computational cost of attention calculation after M
screening is O(LgLk/10). Therefore, the overall cost is higher with O(LyLk/10) compared
to regular self-attention.

We have implemented the prob attention in Python 3.6 with Pytorch 1.8.0. The pseudo-
code is given in Algorithm 1.

Algorithm 1: Prob attention

1 set hyperparameter u, u = 10%

2 set the sample score S = QTK; by row

3 compute the measurement M = In(S) — mean(S)

4 set Top u queries under M as Q

5 setSy = softmax(QKT/+/d)V

6 setSy = mean(V)

7 setS={S1,Sp} by their original rows accordingly
Result: feature map S

3.3. Decoder

The Decoder block is similar to the Encoder block, but with an additional Multi-head
Attention layer. The Decoder input vector contains additional Z! €«*@mod placeholders
for prediction, where k is the number of errors to be predicted. The values at these positions
are filled with zeros and can be expressed as in Equation (15).

INPUT? = Concat (ﬁ LG+ zf) € R(Ex+LatLi) Xdmoger (15)

where Ff € REx*@model, GF € REx*dmodel, The Decoder input vectors serve as the input vectors
for the neural network. AGEE as depicted in Figure 3.

A standalone attention module is incapable of providing a comprehensive global
representation of temporal relationships in sequence data. Hence, by partitioning d,,,4.1
into multiple segments and independently computing them using attention modules,
the outcomes are concatenated along the relevant dimension. This methodology is termed
as Multi-head Attention. The computation for the i-th attention module can be articulated
through Equation (16).

T
A(Qi, K, V) = softmax(Q\l/I; > 1% (16)

Therefore, Multi-head Attention can be represented as Equation (17).
Multihead(X) = (Concat(A(Ql, Klr Vl)/ ey A(Qhr Kh/ Vh)))W" (17)

where attention represents the calculation of the attention mechanism, Concat denotes the
concatenation of outputs from multiple attention heads along the last imension, and W° is
the weight matrix for the linear transformation of the concatenated output.
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Figure 3. The input to the Decoder, after undergoing the AGEE, includes an additional placeholder,
7t at the output position, filled with zeros.

4. Experimentation
4.1. Data Collection

To validate the effectiveness of PAGEformer, we collaborated with North Navigation
Control Technology Co., Ltd. and collected measurement data during the manufacturing
process of folding rudder blades for unmanned aerial vehicles produced by the company.
The Mechanical Assembly Relationship Dataset (MARD) comprises 2262 sets of data,
with each set consisting of 13 measurement data items and 1 assembly error data item
(Table 1).

To further evaluate the performance of PAGEformer, additional tests were conducted
using the following three publicly available datasets:

(1) ETT (Electricity Transformer Temperature): This dataset includes two categories of
data collected at 1 h frequency (ETTh) and 15 min frequency (ETTm), each containing
7 items of feature data.

(2) ECL (Electricity Consumption Load): This dataset contains electricity consumption
data of 321 customers, with each record containing 320 items of feature data.

(3) Weather: This dataset contains climate data for nearly 1600 regions in the United
States, with data collected at an hourly frequency. Each record includes 12 items of
feature data.

Table 1. Mechanical assembly relationship dataset (partial).

448 6 4.52 4.55 5.975 451 5.96 9.17 451 4.51 5.995 4.54 9.595 0.7
451 5.975 4.52 4.56 5.98 454 6.015 9.215 4.5 4.52 5.96 4.54 9.52 0.8
452 5.98 4.52 4.55 6.005 449 5.99 9.29 445 4.48 5.955 448 9.495 14
4.53 6.055 4.52 4.56 5.99 4.54 6.095 9.255 4.5 4.51 5.96 4.53 9.5 0.8

We employed single 4090 GPU for training, and the training of MARD took approxi-
mately 10 h. PAGEformer can adapt input data based on the required measurement data
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for components, such as data for 20 measurements and two predicted errors. Thus, it can
predict various fitting errors of components in industrial production. However, due to the
large amount of measurement data for components, it is necessary to select relevant data
that play a decisive role in dimensional fitting, which typically requires collaboration with
mechanical engineers. Regarding the scalability to other domains, this paper demonstrates
PAGEformer’s predictive performance on long time-series data, as shown in Section 4.2,
which proves its effectiveness in predicting data with long time-series correlations for the
majority of cases.

To facilitate the introduction of hyperparameters, the following parameters are based
on the data in MARD. The training data has a batch size of 32. The Encoder sequence length
is 13, which is the dimensionality parameter used in MARD for predicting the final error.
The Decoder sequence length is 14, comprising 13 dimensionality datums and 1 placeholder
datum filled with 0. Conv1D has a kernel size of 3, a stride of 1, padding of 1, and outputs a
dimensionality of 512 for embedding purposes. In prob attention, the threshold for filtering
Qs set to 0.1. LayerNorm is used to prevent division by zero, thus adding 0.00001 to the
denominator. The Elu activation function is chosen with an alpha value of 1. Dropout is
set to 0.5. In the Decoder, the number of heads in multihead attention is eight. The Adam
optimizer is chosen with a learning rate of 0.0005. MSE is selected as the loss function.
The FC output dimensionality is 14, with the first 13 representing the input data and the
last one representing the predicted data output by the model.

4.2. Experimental Results and Discussion

The performance of the PAGEformer method can be assessed through MARD. The eval-
uation used two metrics: Mean Absolute Error (MAE) and Mean Squared Error (MSE).
The test results of different values of Q in MARD are displayed in Table 2 and the line
graph is shown in Figure 4.

Table 2. The test results of MARD with different Q values.

Top X% to Fill MSE MAE
10% 0.0375 0.1565
20% 0.0783 0.2293
30% 0.0723 0.2086
40% 0.0700 0.2047
50% 0.1149 0.2969
60% 0.0799 0.2233
70% 0.0490 0.1649
80% 0.0974 0.2516
100% 0.0850 0.2264

0.35

03
0.25 P . /\ /\c
02 e

C

0.15 C

0.1 )

. > ~——
o /7—->—-_3/ :‘\/ 0

10% 20% 30% 40% 50% 60% 70% 80% 100%

=O= MSE == MAE

Figure 4. A line graph of the MSE for different values of Q.



Machines

2024, 12, 161

10 of 13

Table 3 provides a comparison of the MSE and MAE metric values for PAGEformer, Re-
former, and ARIMA on the MARD. The data demonstrates that the accuracy of PAGEformer
on MARD has increased by 15.3% compared to the best-performing ARIMA.

Table 3. Comparative test results of various methods for MARD.

Method Maetric Value
MSE 0.0375

PAGEformer MAE 0.1565
Reformer MSE 0.0492
MAE 0.1701

MSE 0.0456

ARIMA MAE 0.1833

In order to further evaluate the performance of PAGEformer, we conducted compara-
tive tests with seven different methods using three publicly available datasets. The seven
existing methods employed in the comparison are as follows:

(1) Informer, (2) LogTrans, (3) Reformer, (4) LSTMa, (5) DeepAR, (6) ARIMA, (7) Prophet.

In this case as well, the individual methods were evaluated using the MSE and MAE
metrics. All models were trained and tested on a single Nvidia 4090 GPU. The experimental
results obtained are presented in Table 4. In order to show the comparison results more
intuitively, Figure 5 is drawn according to the data in Table 4.

Table 4. A comparison of PAGEformer with mainstream methods.

Method PAGEformer Informer LogTrans Reformer LSTMa DeepAR ARIMA Prophet
Metric Input Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
24 0.082 0225 0.092 0246 0103 0259 0222 0389 0114 0272 0107 0280 0108 0284 0.115 0.275
48 0119 0274 0161 0322 0167 0328 0284 0445 0193 0358 0.162 0327 0175 0424 0.168 0.330
ETThl 168 0.186 0358 0.187 0355 0207 0375 1522 1191 0236 0392 0239 0422 039 0504 1224 0.763
336 0182 0350 0215 0369 0230 0398 1860 1.124 0590 0.698 0445 0552 0468 0593 1549 1.820
720 0218 0325 0257 0421 0273 0463 2112 1436 0.683 0768 0.658 0707 0.659 0766 2735 3.253
24 0.090 0229 0.099 0241 0102 0255 0263 0437 0.155 0307 0.098 0263 3554 0445 0.199 0.381
48 0.147 0301 0159 0317 0169 0348 0458 0545 0190 0.348 0163 0.341 3190 0474 0304 0462
ETTh2 168 0263 0415 0235 039 0246 0422 1.029 0879 038 0514 0255 0414 2800 059 2145 1.068
336 0293 0439 0258 0423 0267 0437 1668 1.228 0558 0.606 0.604 0.607 2753 0738 2096 2.543
720 0295 0439 0285 0442 0303 0493 2030 1.721 0.640 0681 0429 0580 2878 1.044 3355 4.664
24 0.034 0147 0034 0160 0.065 0202 0095 0228 0121 0233 0.091 0243 0.09 0206 0.120 0.290
48 0.063 0195 0066 0194 0.078 0220 0249 039 0305 0411 0219 0362 0179 0306 0.133 0.305
ETTm1 96 0193 0365 0187 0384 0199 038 0920 0767 0287 0420 0364 049 0272 0399 0194 0.396
288 0398 0546 0409 0548 0411 0572 1108 1.245 0524 0584 0948 0795 0462 0558 0452 0.574
672 0529 0643 0519 0.665 0598 0702 1793 1.528 1.064 0873 2437 1352 0.639 0697 2747 1174
24 0109 023 0119 0256 0136 0279 0231 0401 0.131 0254 0128 0274 0219 0355 0302 0433
48 0.181 0313 0.185 0316 0206 0356 0328 0423 0190 0334 0203 0353 0273 0409 0445 0.536
weather 168 0259 0377 0269 0404 0309 0439 0654 0.634 0341 0448 0293 0451 0503 0599 2441 1.142
336 0292 0397 0310 0422 0359 0484 1792 1.093 0456 0554 0585 0.644 0728 0730 1987 2468
720 0299 0425 0361 0471 0388 0499 2087 1.534 0866 0809 0499 059% 1.062 0943 3.859 1.144
48 0261 0363 0238 0368 0280 0429 0971 0.884 0493 0539 0204 0357 0879 0764 0524 0.595
168 0360 0426 0442 0514 0454 0529 1671 1587 0723 0655 0315 0436 1.032 0833 2725 1273
ECL 336 0432 0464 0501 0552 0514 0563 3528 219 1212 0898 0414 0519 1136 0876 2246 3.077
720 0423 0474 0543 0578 0558 0.609 4.891 4.047 1511 0966 0563 0595 1251 0933 4243 1415
960 0537 0540 0594 0.638 0.624 0645 7.019 5105 1545 1006 0.657 0.683 1370 0982 6901 4.264

Table 4 illustrates that PAGEformer significantly enhances the inference ability across
all datasets. Compared to the best model, PAGEformer accuracy has improved by 15.17%,
17.17%, and 9.5% on the publicly available ETH, Weather, and ECL datasets, respectively.
The aforementioned data substantiate that the proposed method can effectively measure
hidden correlations in data, thus predicting the overall errors of the assembly process.
Additionally, in Table 4, PAGEformer demonstrated accuracy in predicting sequence data,
indicating its capability to learn the correlation of different errors and perform well in
predicting time series. This suggests that the prediction ability of PAGEformer has good
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scalability. To further validate the improvements in PAGEformer, we conducted abla-
tion experiments with two modifications: gap and filling encoding and prob attention.
The experimental results are presented in Table 5.
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Figure 5. Comparison of PAGEformer with other methods on mainstream datasets.

Table 5. A comparison of ablation experiments for PAGEformer with MARD.

Method Metric Value
MSE 0.0375

Prob and AGEE MAE 0.1565
removes Prob MOE 016m
MAE 0.1642

MSE 0.0385

removes AGEE MAE 0.1599
MSE 0.1847

removes Prob and AGEE MAE 0.3688

5. Conclusions

This study explores the prediction of Assembly Geometric Errors and introduces
PAGEformer, a neural network capable of determining the feature distance of assembly
relationships using collected component data. By integrating an enhanced and efficient
long temporal attention structure, it improves the prediction of errors post-assembly. To val-
idate these improvements, the study collects a substantial amount of component data and
post-assembly errors from an actual manufacturing environment, creating the Mechanical
Assembly Relationship Dataset (MARD). Experimental results show that PAGEformer
achieves an accuracy on MARD 15.3% higher than that of ARIMA. To further evalu-
ate PAGEformer performance on extended temporal data, the study conducts tests on
public datasets and performs ablation experiments to scrutinize the effectiveness of the
enhancements. The outcomes on public datasets showcase PAGEformer’s commendable
performance in standard long temporal tests, and the ablation experiments affirm the
effectiveness of the two proposed enhancements.
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