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Abstract: In the intelligent transformation of spraying operations, the investigation into the robotic
spraying process holds significant importance. The spraying process, however, falls within the
realm of experience-driven technology, characterized by high complexity, diverse parameters, and
coupling effects. Moreover, the quality of manual spraying processes relies entirely on manual
experience. Thus, the crux of the intelligent transformation of spraying robots lies in establishing
a mapping model between the spraying process and the resultant spraying quality. To address the
challenge of intelligently transforming empirical spraying processes and achieving the mapping from
the spraying process to spraying quality, an algorithm employing an enhanced extreme learning
machine-based neural network is proposed for predicting spraying process parameters with respect
to the evaluation index of spraying quality. In this approach, an algorithmic model based on the
Extreme Learning Machine (ELM) neural network is initially constructed utilizing five spraying
process parameters: spraying speed, spraying height, spraying width pressure, atomization pressure,
and oil spraying pressure. Two spraying quality evaluation indexes, namely average film thickness
at the center point and surface roughness, are also incorporated. Subsequently, the prediction neural
network is optimized using the K-means improved predator optimization algorithm (KHPO) to
enhance the model’s prediction accuracy. This optimization step aims to improve the efficiency of
the model in predicting spraying quality based on the specified process parameters. Finally, data
collection and model validation for the spraying quality prediction algorithm are conducted using
a designed robotic automated waterborne paint spraying experimental system. The experimental
results demonstrate a significant reduction in the prediction error of the KHPO-ELM neural network
model for the average film thickness center point, showcasing a decrease of 61.95% in comparison to
the traditional ELM neural network and 50.81% in comparison to the BP neural network. Likewise,
the improved neural network model yields a 2.31% decrease in surface roughness prediction error
compared to the traditional ELM neural network and a substantial 54.0% reduction compared to the
BP neural network. Consequently, the KHPO-ELM neural network, incorporating the prediction
algorithm, effectively facilitates the prediction of multi-spraying process parameters for the center
point of average film thickness and surface roughness in automated robot spraying. Notably, the
prediction algorithm exhibits a commendable level of accuracy in these predictions.

Keywords: robotic spraying process; spraying process parameters; spraying quality evaluation index;
KHPO; ELM
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1. Introduction

Spraying is a method of dispersing paint into uniform and fine droplets and applying
it to the surface of an object by means of a spray gun, using air pressure, which serves
to cover and protect [1]. Spraying is a very important process in the processing of many
products. It can provide anti-corrosion protection, insulation protection, wear protection
and other auxiliary protection measures for mechanical parts in order to improve operating
efficiency and service life in various types of harsh working environments [2]. The spraying
process is an experience-driven technology [3]; the operation needs to rely on the operator’s
production experience to adjust the spraying process parameters. Therefore, a vast majority
of factories still use manual spraying methods, which not only leads to huge labor costs,
but also to low efficiency and unstable quality. In addition, harsh working environments
and toxic and harmful substances in paints pose an occupational health hazard to the
operators [4].

To address the challenges of inefficiency, unstable quality, and health hazards associ-
ated with manual spraying, technological upgrading of the spraying process is imperative.
The transformation involves elevating the manual spraying process to an automated spray-
ing production line with robotic operation [5]. This advanced production line seamlessly
integrates industrial robotics technology with emerging Internet technologies such as neu-
ral networks and fuzzy control. It facilitates the learning and reuse of empirical manual
processes, retaining the guiding role of manual experience while capitalizing on the un-
paralleled advantages of manual work in terms of iteration and generalization [6]. In
comparison to manual spraying, robotic spraying boasts superior advantages, including
heightened productivity, reduced production costs, enhanced spraying quality and quantity,
optimal utilization of paint, and minimized health risks.

Despite these advantages, the design of the robotic spraying process is highly intricate
owing to the numerous spraying process parameters involved and their strong coupling
relationships [7]. For spraying robots, the core technical indicator is the quality of spraying.
Balancing improved productivity with the achievement of high-quality spraying opera-
tions is crucial in the realm of robot spraying. Key evaluation indices for spraying quality
primarily encompass the paint layer thickness and surface roughness of the sprayed com-
ponents [8]. The current focal point of research in the robotic spraying process direction
lies in establishing the role of the spraying parameter model and integrating spraying
process modeling with spraying trajectory planning. Wu, HJ et al. introduced a method
capable of predicting spraying thickness on complex part surfaces affected by shadowing
effects. The method involves establishing a three-dimensional geometric model of the
spraying contour based on Gaussian distribution, integrating robot trajectory and machin-
ing parameters. This approach not only creates a 3D geometric model of the spraying
profile but also simulates spraying deposition in robot offline programming software. It
concludes by visualizing the spraying morphology and predicted spraying thickness in
a graphical virtual environment [9]. Zhang, YJ et al. proposed a predictive analytical
model for the thickness of a spherical coated surface. Through numerical simulation and
experimental testing, they demonstrated the model’s effectiveness in predicting spraying
thickness and uniformity with acceptable tolerance, particularly for spherical surfaces [10].
Gleeson, D et al. presented a paint spraying optimization method to refine the generated
initial trajectory and minimize paint thickness deviation from the target thickness [11].
Gadow, R et al. introduced an advanced computer-aided robotic path planning method
for thermal spraying. This method integrates optimization of generated trajectories and
velocity profiles into coupled Computational Fluid Dynamics (CFD) and Finite Element
Method (FEM) models, analyzing their effects on heat and mass transfer during spraying
deposition [12]. Potkonjak, V et al. optimized the gun trajectory based on ergonomics and
developed a spraying model for arbitrary gun position and attitude. The optimization
resulted in reduced motor load, energy consumption, and need to control jitter [13]. Arikan,
MAS et al. developed a methodology and computer program for modeling the painting
process, simulating robotic painting, offline programming of industrial robots, and measur-
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ing film thickness for curved surface painting. This comprehensive approach enables the
simulation and analysis of spraying thickness [14].

While numerous relevant studies exist, several challenges persist. Firstly, the mathe-
matical modeling of film thickness calculation exhibits a substantial gap between theoretical
calculations and actual production and processing on-site, resulting in a lack of robustness
in the film thickness calculation model. Secondly, the majority of studies on spraying
distance, spray pressure, and other spraying parameters rely on qualitative research for
simulation models. Due to the strong coupling effect among these parameters, the qualita-
tive conclusions derived from such studies often diverge from actual processing, resulting
in low feasibility in real-world applications. Consequently, utilizing field process parameter
data and establishing a neural network-based prediction algorithm model incorporating
multiple spraying process parameters emerges as the optimal solution to address the com-
plexities of the field environment, offering high robustness, adaptability, and rapid iteration
capabilities. This approach using neural networks for predicting and analyzing the quality
of the spraying process presents advantages that the simulation model research method
lacks [15].

Firstly, neural networks can model complex relationships owing to their substantial
nonlinear fitting ability, allowing them to capture intricate relationships between input
and output parameters. This capability enables the establishment of mapping relation-
ships that explicit mathematical models cannot construct [16]. Secondly, neural networks
exhibit strong generalization ability, providing reliable prediction results even in the face
of unknown working conditions and parameter combinations by generalizing from train-
ing samples. Thirdly, neural networks allow flexible iteration, permitting the optimiza-
tion of the combination of spraying process parameters through the correction of model
training samples.

To address the aforementioned challenges, a prediction algorithm for spraying center
film thickness and surface roughness based on multiple spraying process parameters and
an improved Extreme Learning Machine neural network is proposed. This algorithm
leverages neural networks, starting from the actual spraying processing site, to predict and
evaluate the impact of spraying process parameters. The algorithm begins by studying the
relationship between various spraying parameters and commonly used spraying quality
evaluation indexes, selecting input and output parameters for the prediction model. Subse-
quently, the algorithm introduces the Extreme Learning Machine (ELM) neural network
prediction algorithm model based on multiple spraying process parameters to map the
spraying parameters to the spraying quality evaluation indexes. Finally, the prediction
model for spraying quality evaluation indexes is optimized using the hyperparameter
optimization (HPO) algorithm and the K-means clustering optimization algorithm. This
optimization aims to enhance the convergence speed and global optimization ability of
the prediction model. The proposed method enables the evaluation of spraying quality
before robotic spraying operations, streamlining the optimization of the spraying process,
reducing iterative costs associated with spraying operations, and ultimately enhancing the
efficiency of process optimization.

2. Spraying Process
2.1. Spraying Process Parameters

This paper exemplifies the automated spraying of waterborne paints on flat parts
to investigate the impact of spraying process parameters on spraying quality. Spraying
quality is primarily influenced by spraying powder, the spraying process, and spraying
equipment. Among these factors, the role of the spraying process is the most intricate and
crucial [17]. In conjunction with the trajectory planning requirements of the spraying robot
and the influence of process parameters, this paper consolidates the experimental scenarios
established, focusing on the more pronounced effects of certain process parameters on
spraying quality. These parameters include spraying speed, spraying height, spraying
width pressure, atomization pressure, and oil spraying pressure.
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Spraying speed refers to the velocity of paint particles ejected from the gun relative
to the surface of the workpiece being processed. This parameter directly influences the
thickness and uniformity of the paint layer. Excessive spraying speed leads to a too-thin
layer of paint, which fails to adhere to the workpiece surface, while insufficient speed
results in an overly thick layer, possibly leading to solidification or undesired flow.

Spraying height denotes the relative distance between the tip of the spray gun and
the workpiece surface. Excessive or insufficient spraying height can cause an uneven paint
layer. Spray width pressure refers to the gas pressure needed to create a fan-shaped pattern
at the tip of the gun. This pressure significantly influences the distribution of spray particles
and the stability of the spray pattern. Proper spray width pressure ensures uniformity in
spraying. Atomizing pressure refers to the gas pressure at the tip of the gun responsible for
atomizing paint into fine particles. This pressure greatly impacts the size and uniformity
of sprayed particles. Adjusting atomizing pressure allows for further refinement of paint
particles, contributing to a uniform coating. Oil spraying pressure represents the force
propelling the liquid paint. The adjustment of oil spraying pressure affects the flow of paint
and the size of the sprayed particles.

A robust observation reveals a pronounced coupling among the effects of spraying
process parameters. The influence of a solitary parameter extends beyond its impact on
coating quality, extending to the “gain” or “offset” of other parameters.

For instance, heightened spraying speeds may yield excessively thin coatings, whereas
slower speeds may result in coatings of excessive thickness. Simultaneously, the spray
height significantly influences coating thickness. Consequently, by concurrently adjusting
spray speed and spray distance to strike a balance between speed and height, it becomes
feasible to elevate the spray speed while concurrently achieving a coating thickness and
uniformity aligning with process requirements. Furthermore, a coupling exists between
spraying speed and spray width pressure. Elevated spraying speeds might necessitate
higher spray width pressure, yet an excessively high pressure could yield particles of
diminished size, adversely affecting coating uniformity. Hence, a careful equilibrium
between spray speed and pressure is imperative to ensure that accelerated spray speeds
do not compromise particle size, preserving coating uniformity. Additionally, a coupling
relationship extends to spraying pressure parameters. Higher atomizing pressure may
produce excessively small particles, while lower spraying pressure may result in uneven
spray distribution. Consequently, consideration of spray pressure becomes integral when
adjusting atomization pressure. Strategic adjustments guarantee a sufficiently high atom-
izing pressure, while maintaining the spray pressure within an optimal range to achieve
uniform coating.

The intricate coupling among spraying parameters profoundly influences spraying
quality. Consequently, in the analysis of spraying quality, it is imperative not only to
scrutinize the impact of individual parameters but also to factor in the intricate interplay
among multiple spraying process parameters.

2.2. Spraying Quality Evaluation Indexes

The quality evaluation of the paint film completed by the spraying robot involves
the analysis and judgment of various characteristics, such as performance testing and
characterization, to ensure compliance with processing requirements [18]. The inspection of
coating quality primarily includes the detection of indicators like film thickness, adhesion,
surface roughness, appearance, hardness, and corrosion resistance.

With consideration given to the designated experimental scenarios and the significance
of quality indicators, the selection of evaluation indices in this paper focuses on the average
film thickness and surface roughness at the center point. Due to the normal distribution of
coating thickness in the robotic spraying process, the average film thickness at the center
point is commonly utilized for evaluating the film thickness index. The center point’s
uniform film thickness, defined as the average of film thickness values measured at various
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locations on the sprayed surface [19], directly signifies the uniformity of the paint film’s
surface area, a crucial aspect for coating quality.

Surface roughness, typically described in terms of surface parameters, characterizes
the degree of microscopic unevenness on the surface of the object after spraying completion.
The impact of surface roughness is direct on the adhesion, durability, and other properties
of the paint layer.

Ensuring precision in high-precision mechanical products necessitates the meticulous
control of the average film thickness and surface roughness at the coating center. This
imperative is notably pertinent in the case of aero-engine blades and spacecraft housings,
where the coating’s height and surface roughness wield a considerable influence over
aerodynamic performance, fuel efficiency, and structural durability during flight. By
regulating the coating height and roughness, the hydrodynamic properties of the surface
can be manipulated, thereby mitigating wind resistance and enhancing flight stability.
Moreover, maintaining the coating within the ideal operational parameters effectively
diminishes flight drag and surface friction, consequently augmenting fuel efficiency. In
addition, adept control over coating height and roughness enables effective management
of surface temperature and corrosion resistance. This adjustment, in turn, facilitates an
extended service life and heightened reliability of the aircraft under challenging conditions,
including high temperatures.

3. KHPO-ELM
3.1. ELM

The Extreme Learning Machine (ELM), introduced in 2006, is a type of single hidden
layer feedforward neural network. It requires the initiation of hidden layer weights only
once during training [20]. The ELM eliminates the need for backpropagation. Its accuracy
depends on the number of models learned in training, resulting in quicker training speeds,
simpler parameter adjustment, weight updates, and improved generalization ability.

The structure of the ELM network is depicted in Figure 1. In the training process of
the ELM model, input layer weights and biases are randomly set, and output layer weights
are calculated using generalized inverse matrix theory. Subsequently, data prediction is
carried out by outputting information based on the obtained weights. The construction of
the ELM neural network comprises four distinct stages.

1. According to the prediction objective, training sets Xi and ti are set up with n samples.

Xi = [xi1, xi2, xi3, . . . , xin]
T ∈ Rn, (1)

ti = [ti1, ti2, ti3, . . . , tim]
T ∈ Rm, (2)

where xi denotes the ith data of the input matrix, and ti denotes the labeling corre-
sponding to the ith data.

2. The hidden layer output oj with L hidden layer nodes is computed.

oj =
L

∑
i

βig
(
Wi·Xj + bi

)
, j = 1, 2, . . . , N, (3)

Wi = [wi,1, wi,2, wi,3, . . . , wi,n]
T , (4)

where g(x) is the activation function, Wi is the input weight, βi is the output weight,
bi is the bias of the ith hidden layer unit, and Wi·Xj is the inner product of Wi with Xj.

3. The output error is minimized by the existence of Wi, βi, bi, leading to the following
Equation (5) holding true.

N

∑
j=1

∥∥oj − tj
∥∥ = 0, (5)
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tj =
L

∑
j=1

βig
(
Wi·Xj + bi

)
, j = 1, 2, . . . , N, (6)
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Leading to the matrix expression as:

Hβ = T, (7)

H(W1, W2, . . . , WL, b1, b2, . . . , bL, X1, X2, . . . , XL) =

 g(W1·X1 + b1) g(WL·X1 + bL)

g(W1·XN + b1) g(WL·XN + bL)


N×L

(8)

β =

βT
1
...

βT
L


L×m

T =

TT
1
...

TT
N


N×m

, (9)

where H is the implicit layer node output, β is the output weight and T is the desired output.
The minimization loss function is E:

E =
N

∑
j=1

(
L

∑
j=1

βig
(
Wi·Xj + bi

)
− tj

)2

, (10)

Through training, the optimal combination of
∧

Wi,
∧
βi and

∧
bi parameters is obtained to

maximize the model prediction accuracy.

3.2. KHPO

Due to the random generation of initialization weights and bias selection in the ELM
neural network model, the accuracy is significantly impacted by different initial parameter
settings. Additionally, the manual setting of hidden layer nodes in the model, along with
the use of different node types, also plays a crucial role in performance. Consequently,
employing optimization algorithms for global optimization and the automatic configuration
of initial values and the number of hidden layer nodes in the ELM model holds significant
importance in enhancing accuracy and convergence speed.
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In this study, the ELM neural network model is optimized using a predator optimiza-
tion algorithm. Proposed in 2022, the predator optimization algorithm achieves global
optimization and rapid convergence by simulating the hunting process of animals [21].
The algorithm mimics the hunting process by continuously iterating the population search
agent positions through the position update of the hunter and prey. It calculates the aver-
age position of the population, determines the distance between the search agent and the
average agent using Euclidean distance, eliminates the maximum distance, and ultimately
identifies the optimal position for optimization search.

The HPO algorithm flow is described below.

1. Initialization.

A random initialization community xi is generated within the search range.

xi = rand(1, d) ∗ (ub − lb) + lb, (11)

lb = [lb1, lb2, · · · , lbd], (12)

ub = [ub1, ub2, · · · , ubd], (13)

where xi is the location of the search agent, lb is the lower bound of the variable, ub is the
upper bound of the variable.

2. Hunter Location Updates;

xi,j(t + 1) = xi.j(t) + 0.5
[(

2CZPpos(j) − xi.j(t)
)
+
(
2(1 − C)Zµ(j)− xi.j(t)

)]
(14)

P =
→
R1 < C, (15)

IDX = (P == 0), (16)

Z = R2 ⊗ IDX +
→
R3 ⊗ (∼ IDX), (17)

C = 1 − it
(

0.98
MaxIt

)
, (18)

where xi.j(t) is the current position of the hunter, xi,j(t + 1) is the position of the hunter in
the next cycle, C is the balance parameter, Ppos(j) is the position of the prey, µ is the average

value of the position, i denotes the number of cycles, j denotes the number of iterations,
→
R1

and
→
R3 are the random vectors in [0, 1], P is the index value of

→
R1 < C, R2 is the random

value in [0, 1], IDX is the index value when the constant P is equal to 0, it is the number of
current iterations, and MaxIt is the maximum number of iterations.

3. Prey location update;

Prey position ppos is calculated:

→
ppos =

→
xi ∈ sortedDeuc(kbest)ppos, (19)

µ =
1
n

n

∑
i=1

→
xi, (20)

Deuc(i) =

(
d

∑
j=1

(
xi.j − µj

)2
) 1

2

, (21)

kbest = round(C × N), (22)

where
→

ppos denotes the search agent with the largest distance from the mean. N is the
number of search agents. After the location of the prey is determined, it is captured by the
hunter through the decreasing mechanism kbest.
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The prey location update formula is:

xi.j(t + 1) = Tpos(j) + CZ cos(2πR4)×
(

Tpos(j) − xi,j(t)
)

(23)

where xi,j(t) is the current position of the prey, xi.j(t + 1) is the position of the next iteration
of the prey, Tpos(j) is the global optimal position, and R4 is a random number within [−1, 1].

In the HPO optimization algorithm, when the initial search range is extensive, there is a
noticeable reduction in both convergence speed and optimization finding ability. Therefore,
this paper adopts the K-means algorithm for a secondary optimization of the initialization
process in the HPO algorithm. The K-means algorithm is employed to partition the search
space into different clusters, enhancing search efficiency and diminishing the time required
for convergence [22].

Using the K-means algorithm, the samples within the initial interval of values for
LEM parameters (HPO search space) are organized into k classes. The N data within the
specified interval are distributed into k classes, ensuring that each sample has the minimum
distance from the center of its respective class. This process can be considered as a potential
grouping of hunters or prey during the initialization of the HPO, with each cluster having
its own initial solution.

4. Method of Prediction

The evaluation index of spraying quality, the average film thickness, and surface
roughness at the center point are subject to the combined effect of spraying speed, spraying
distance, spraying width pressure, atomization pressure, and oil spraying pressure, which
are expressed by the Equation (24):(

Havg, Ra
)
∈ D =

{
D
∣∣D(x) = f

(
V, D, Pspray, Patomization, Poil

)}
(24)

where Havg represents the average film thickness at the center point; Ra represents the
surface roughness; S is the distribution model obeyed by the quality parameters with
regard to spraying; S has a close relationship with the spraying process parameters; V
represents the spraying speed; S is the spraying distance; Pspray is the spraying width
pressure; Patomization is the atomization pressure; Poil is the oil spraying pressure. A detailed
description of the symbols for each coating process parameter is provided in Appendix A.

Due to the existence of coupling between the spraying process parameters and the
complexity of solving the explicit mathematical formulas, the mapping model of the
spraying process parameters V, S, Pspray, Patomization, Poil to Havg and Ra can be established
by pre-experimental data samples of the multi-parameter role of the relationship between
the data fitting and prediction of the results.

Founded on the advanced KHPO-ELM neural network framework, this paper intro-
duces a predictive model employing a “5-input-2-output” neural network architecture
tailored for forecasting multiple quality assessment metrics associated with diverse spray-
ing parameters, as delineated in Figure 2. The model facilitates the prognosis of the average
film thickness and surface roughness at the central point, predicated upon variables such
as spraying speed, spraying distance, spraying width pressure, atomizing pressure, and
spraying pressure.

Furthermore, with regard to the model, this study employs the HPO optimization
algorithm to enhance the ELM neural network. Within this context, the global optimization
capability and convergence speed of the ELM neural network are heightened through the
optimization of input weights, output weights, and biases of hidden layer units. Addi-
tionally, the initialization process of the HPO algorithm undergoes quadratic optimization
utilizing the K-means algorithm, thereby enhancing the search efficiency and iteration
speed of the initial population in the HPO algorithm.
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5. Experimental Methods
5.1. Experimental Settings

The experimental subject comprises ABB IR52 six-jointed robotic arm equipped with
the GFA-200 automatic paint spray gun, utilizing the rock GFA-200 as the object of study.
The research is conducted within an automatic offline spraying system, incorporating
custom fixture devices, water-based paint, a magnetic thickness gauge, and a roughness
detector. This configuration forms a robotic automated water-based paint spraying exper-
imental system. The system serves as the foundation for designing pre-experiment data
acquisition and validation experiments, ensuring the reliable verification of the spraying
quality prediction model, as illustrated in Figure 3.
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5.2. Acquisition of Data

To establish the mapping model capturing the coupling effect between spraying
process parameters and spraying quality, this study devises flat waterborne paint spraying
experiments involving five input parameters: spraying speed, spraying height, spraying
width pressure, atomization pressure, and oil spraying pressure. These experiments,
conducted with a magnetic thickness gauge and a roughness detector, evaluate the quality
of sprayed plates based on the average film thickness at the center point and surface
roughness. The obtained results reveal the impact of various spraying parameters on
spraying quality.

The common value ranges for the five input parameters—spraying speed, spray-
ing height, spray width pressure, atomization pressure, and oil spraying pressure—are
presented in Table 1 below through the conducted study.

Table 1. Range of values for spraying process parameters.

Parameter Value

Spraying speed 180 mm/min–280 mm/min
Spraying height 160 mm–230 mm

Spraying width pressure 0.10 MPa–0.17 MPa
Atomizing pressure 0.16 MPa–0.23 MPa

Oil spraying pressure 0.09 MPa–0.13 MPa



Machines 2024, 12, 100 11 of 18

In orthogonal experiments, in order to target the study of the effect of the five input
parameters, the robot end spraying angle is set at a constant 90◦ to exclude the interference
of the spray gun factors, and at the same time, by ensuring the consistency of the experi-
mental environmental conditions and the material conditions, to exclude the interference
of factors such as temperature, humidity, plate, paint, and so on.

To systematically investigate the impact of the five input parameters, a five-factor,
four-level orthogonal experiment is designed. The experimental parameter combinations
are detailed in Table 2. Employing an isometric sampling approach, the five spraying
input parameters are subjected to 3–5 sets of orthogonal experiments within the specified
value interval. To mitigate the influence of random errors, three repetitive experiments are
conducted to secure more accurate and comprehensive experimental samples and results.

Table 2. Parameter combinations of L16 (4&5) orthogonal experiments.

SN/Parameter Factor 1: Spraying
Speed (mm/min)

Factor 2: Spraying
Height (mm)

Factor 3: Spraying Width
Pressure (MPa)

Factor 4: Atomizing
Pressure (MPa)

Factor 5: Oil Spraying
Pressure (MPa)

1 1 (180–190) 1 (160–170) 1 (0.10–0.11) 1 (0.16–0.17) 1 (0.09–0.10)
2 1 2 (180–190) 2 (0.12–0.13) 2 (0.18–0.19) 2 (0.10–0.11)
3 1 3 (200–210) 3 (0.14–0.15) 3 (0.20–0.21) 3 (0.11–0.12)
4 1 4 (220–230) 4 (0.16–0.17) 4 (0.22–0.23) 4 (0.12–0.13)
5 2 (210–220) 1 2 3 4
6 2 2 1 4 3
7 2 3 4 1 2
8 2 4 3 2 1
9 3 (240–250) 1 3 4 2

10 3 2 4 3 1
11 3 3 1 2 4
12 3 4 2 1 3
13 4 (270–280) 1 4 2 3
14 4 2 3 1 4
15 4 3 2 4 1
16 4 4 1 3 2

Upon the completion of the spraying experiments, the collected experimental samples
undergo center point average film thickness detection and roughness detection using
a magnetic thickness gauge and a roughness detector. The magnetic thickness gauge
employed in the spraying experiment is illustrated in Figure 4. Each sample undergoes
three repetitive measurements, and the average of these measurements is considered the
measured value for the average film thickness at the center point. The roughness tester
utilized in the spraying experiment is depicted in Figure 5.
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5.3. Validation of Algorithms

In order to verify the reliability of the prediction model, 540 sets of experimental
sample data are randomly disrupted in this paper to generate 540 sets of unordered
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experimental datasets. Then the unordered datasets are divided into 530 sets of training
data and 10 sets of testing data. The training datasets are used to construct the KHPO-ELM
prediction model, and the test datasets are used to test the reliability of the model.
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In this paper, MATLAB software (v. R2022b) is used to build the KHPO-ELM prediction
algorithm model for spraying quality of robotic spraying process with multiple inputs
and multiple outputs. The initial parameters of the model are set using the experimental
method; that is, model testing experiments are conducted for all possible parameters within
a reasonable range of values. After several experiments, the model parameters summarized
in this paper are shown in Table 3. The evolution curve of the model is depicted in Figure 6.

Table 3. Values of initial parameters of the KHPO-ELM prediction algorithm.

Parameter Value

Number of neurons in the input layer of the ELM 5
Number of output layer neurons of ELM 2

Number of initial hidden layer neurons of ELM 50
Number of iterations of HPO 500

Population size of HPO 50
Upper and lower bound values of HPO ±1

Contraction factor of HPO 0.1
Initial value of K-means 30
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6. Results

To demonstrate and validate the superior performance of the prediction network,
two additional prediction models, BP and ELM, are established using the same set of
data samples. All three models are input into the identical batch of the robotic automated
waterborne paint spraying quality prediction system to assess the feasibility of these
prediction models on the same group of test samples. The comparisons of MAE, MSE,
RMSE, and MAPE for the prediction data obtained by the KHPO-ELM, ELM, and BP
prediction networks are presented in Table 4. Further visual comparisons of predictions
are depicted in Figure 7, prediction errors in Figure 8, and the mean absolute error of
predictions in Figure 9.

Table 4. Comparison of errors of KHPO-ELM prediction model, ELM prediction model and BP
prediction model.

Type
KHPO-ELM ELM BP

Havg Ra Havg Ra Havg Ra

MAE 0.8731 0.0719 2.2946 0.0736 1.7750 0.1563
MSE 0.9483 0.0068 7.6553 0.0077 5.2170 0.0289

RMSE 0.9738 0.0825 2.7668 0.0878 2.2841 0.1701
MAPE 1.4545 9.0026 4.0016 9.1725 2.9918 19.0310

Through validation experiments, the neural network prediction algorithm proves its ca-
pability to map coating process parameters to coating quality before the automated robotic
coating operation. When compared with ELM and BP neural networks, the KHPO-ELM
prediction network exhibits superior prediction accuracy for both the mean film thickness
at the center point and surface roughness, eliminating the interference of error factors.
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The prediction model excels in forecasting the average film thickness at the center
point of the paint film, with its MAE reduced to 0.8731 µm. The errors in the sample
test results predominantly fall within ±1.5 µm, meeting the requirements of spraying
operations. This reduction amounts to 61.95% and 50.81% when compared to the ELM and
BP prediction models, respectively. Similarly, the KHPO-ELM prediction model performs
admirably in predicting surface roughness, achieving an absolute average error reduced
to 0.0707 µm. The sample test results mostly exhibit errors within ±0.1 µm, meeting the
operational requirements. Compared to the ELM and BP prediction models, the error
reductions are 2.31% and 54.00%, respectively.

7. Conclusions

(1) The robotic automated waterborne paint spraying process involves predicting the
average film thickness at the center of the film and surface roughness, relying on five key
spraying process parameters: spraying speed, spraying height, spray pressure, atomization
pressure, and spray pressure. Despite the inherent variability in the spraying process, the
accumulation of a substantial number of data samples allows for a detailed analysis and
summarization of the impact of spraying process parameters during operations. Building
upon this, a highly accurate, generalizable, and universal prediction algorithm is proposed,
facilitating the rational prediction of spraying process parameters for quality spraying.
This algorithm serves as a potent predictor for the application of spraying robots and the
implementation of automated coating production lines, demonstrating wide applicability.

(2) In the prediction of coating quality in automated waterborne paint spraying pro-
cesses by robots, the KHPO-ELM prediction algorithm model demonstrates superior pre-
diction ability and lower prediction errors compared to the ELM and BP models. The MAE,
MSE, RMSE, and MAPE indexes of the KHPO-ELM model outperform those of the other
two models. The average error of the KHPO-ELM model is 61.95% and 50.81% lower than
that of ELM and BP, respectively, ensuring all errors are controlled within approximately
±1.5 µm. Additionally, the average error of the absolute value of surface roughness pre-
diction is 2.31% and 54.00% lower than that of ELM and BP, respectively, with all errors
controlled within around ±0.1 µm. This aligns with the quality evaluation requirements of
the spraying process.

(3) The core direction for the transformation and upgrading of the machinery industry,
particularly in manufacturing processes heavily reliant on manual experience such as
welding and grinding, is the substitution of people with robots. The nonlinear mapping
model proposed in this paper, based on experimental data and neural networks, stands
as a dependable solution to address challenges in this context. This intelligent prediction
scheme holds promising applications in the industrial and intelligent transformation of the
machinery industry. Primarily, the implementation of such a prediction scheme enhances
the intelligence, flexibility, and efficiency of the production process. Additionally, in the
realm of human-machine collaboration, this scheme supports machine learning to adapt
to human operations and habits, thereby improving the collaborative efficiency between
machines and humans. Furthermore, this solution is well suited for future implementation
in decision support systems for intelligent mechanical operations. This system not only
handles unexpected events adeptly but also optimizes the operational efficiency of mechan-
ical systems. As for the intelligent prediction method, future developmental directions
include enhancing the interpretability of the fitted model, improving data security and
privacy protection, and advancing multimodal fusion. These aspects are anticipated to
contribute to the ongoing evolution and refinement of this intelligent prediction approach.
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Appendix A

Table A1. Description of notation.

Notation Explanation Unit

Havg The average film thickness at the center point µm
Ra The surface roughness µm
D The distribution model obeyed by the quality parameters with spraying /
V The spraying speed mm/min
S The spraying distance mm

Pspray The spraying width pressure MPa
Patomization The atomization pressure MPa

Poil The oil spraying pressure MPa

References
1. Assadi, H.; Kreye, H.; Gärtner, F.; Klassen, T.J.A.M. Cold spraying–A materials perspective. Acta Mater. 2016, 116, 382–407.

[CrossRef]
2. Sarikaya, O. Effect of some parameters on microstructure and hardness of alumina sprayings prepared by the air plasma spraying

process. Surf. Spray. Technol. 2005, 190, 388–393. [CrossRef]
3. Almansoori, N.; Aldulaijan, S.; Althani, S.; Hassan, N.M.; Ndiaye, M.; Awad, M. Manual spray painting process optimization

using Taguchi robust design. Int. J. Qual. Reliab. Manag. 2021, 38, 46–67. [CrossRef]
4. Park, R.M.; Bena, J.F.; Stayner, L.T.; Smith, R.J.; Gibb, H.J.; Lees, P.S. Hexavalent chromium and lung cancer in the chromate

industry: A quantitative risk assessment. Risk Anal. Int. J. 2004, 24, 1099–1108. [CrossRef]
5. Arrais, R.; Costa, C.M.; Ribeiro, P.; Rocha, L.F.; Silva, M.; Veiga, G. On the development of a collaborative robotic system for

industrial spraying cells. Int. J. Adv. Manuf. Technol. 2021, 115, 853–871. [CrossRef]
6. Evjemo, L.D.; Gjerstad, T.; Grøtli, E.I.; Sziebig, G. Trends in smart manufacturing: Role of humans and industrial robots in smart

factories. Curr. Robot. Rep. 2020, 1, 35–41. [CrossRef]
7. Xie, F.; Liu, X.-J.; Wu, C.; Zhang, P. A novel spray painting robotic device for the spraying process in automotive industry. Proc.

Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 2081–2093. [CrossRef]
8. Pendar, M.R.; Rodrigues, F.; Páscoa, J.C.; Lima, R. Review of spraying and curing processes: Evaluation in automotive industry.

Phys. Fluids 2022, 34, 101301. [CrossRef]
9. Wu, H.; Xie, X.; Liu, M.; Chen, C.; Liao, H.; Zhang, Y.; Deng, S. A new approach to simulate spraying thickness in cold spray. Surf.

Spray. Technol. 2020, 382, 125151.
10. Zhang, Y.; Li, W.; Zhang, C.; Liao, H.; Zhang, Y.; Deng, S. A spherical surface spraying thickness model for a robotized thermal

spray system. Robot. Comput.-Integr. Manuf. 2019, 59, 297–304. [CrossRef]
11. Gleeson, D.; Jakobsson, S.; Salman, R.; Ekstedt, F.; Sandgren, N.; Edelvik, F.; Carlson, J.S.; Lennartson, B. Generating optimized

trajectories for robotic spray painting. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1380–1391. [CrossRef]
12. Gadow, R.; Candel, A.; Floristán, M. Optimized robot trajectory generation for thermal spraying operations and high quality

sprayings on free-form surfaces. Surf. Coat. Technol. 2010, 205, 1074–1079. [CrossRef]
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