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Abstract: During the assembly of mechanical systems, the dual-arm robot is always used for cabin
docking. In order to ensure the accuracy and reliability of cabin docking, a multi-objective trajectory
planning method for the dual-arm robot was proposed. A kinematic model of the dual-arm robot
was constructed based on the Denavit–Hartenberg (D-H) method firstly. Then, in the Cartesian space,
the end trajectory of the dual-arm robot was confirmed by the fifth-order B-spline curve. On the
basis of a traditional multi-objective cuckoo search algorithm, a modified cuckoo algorithm was built
using the improved initial population generation method and the step size. The total consumption
time and joint impact were selected as the objective functions, the overall optimal solution for the
modified cuckoo algorithm was obtained using the normalized evaluation method. The optimal
trajectory planning was achieved. Finally, the feasibility and effectiveness of the trajectory planning
method were verified with the experiments.

Keywords: multi-objective trajectory planning; modified cuckoo algorithm; dual-arm robot; cabin docking

1. Introduction

In the manufacturing process of mechanical products, the assembly of cabin seg-
ments is very important, such as rockets, satellites and airplanes. The performance of
the mechanical system is affected by the assembly quality [1]. Thus, there are various
manipulative mechanisms for the compartment docking. Parallel mechanisms, mechanical
mobile structures and decoupling control platform mechanisms can be found. Among
them, the decoupling control platform mechanism is widely used [2]. From Figure 1, the
cabin docking robot is often designed for the decoupling control platform mechanism, and
there is a left robotic arm, a right robotic arm and a base. The left arm and the right arm are
connected to the base, and all of the arms move axially through the gear and transmission.
The structure of the left arm is the same as the right arm’s structure.

The structure details of the right arm are given in Figure 2. The axial movement joint,
vertical lifting joint and circumferential rolling joint are seen. Thus, there are six degrees
of freedom for the dual arm: pitch, yaw, roll, lifting, front and rear. The axial movement
joint is driven by the motor–gear–rack system, and the left movement joint and right
movement joint are driven by the motor-screw systems. The vertical lifting joint is driven
by the motor–spiral elevator for the lifting, and the circular rolling joint is driven by the
motor–gear transmission system. There is an arc-shaped structure for the circular rolling
joint, and the special rubber is used to increase the friction force among the workpieces.

On the basis of the above arm construct, trajectory planning is needed for the cabin
docking. There are two steps for the trajectory planning: trajectory generation and trajectory
optimization. The precondition for trajectory planning is provided by the former, while the
trajectory performance is improved by the latter [3]. The trajectory is generated by the dis-
crete path points, and the points are obtained by polynomial functions, parabolic functions
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or B-spline curve functions [4–8]. Therefore, in order to confirm the optimal trajectories,
the multi-objective trajectory optimization algorithm has become an important aspect [9].
And some parameters are used for the multi-objective optimization parameters, such as
the minimum execution time, minimum energy consumption and minimum disturbance.
Firstly, an improved immune clone selection algorithm was proposed by Chen et al. [10].
In this algorithm, a multi-objective model for trajectory optimization was established using
the total motion time, total energy consumption and actuator thrust. The trajectory was
generated using a fifth-order B-spline curve, and the improved immune clone algorithm
was used for the trajectory optimization. Lan et al. discussed a multi-objective trajectory
planning method for collaborative robots [11]. Based on the collaborative kinematic model,
the joint trajectories were constructed from the B-spline curves. The multi-objective particle
swarm optimization algorithm was used for the Pareto optimal solution of the time-energy
jump optimal trajectories. Then, the most suitable solution is selected using the normal-
ized weighting function. A novel optimal trajectory planning method was constructed by
Wang et al. [12]. A trajectory was created with fifth-order polynomials and cubic Bézier
curves. The genetic operators were used for optimizing the travel time and torque functions,
such as Rank-based Group Selection (RGS), Direction-based Crossover (DBX) and Adaptive
Precision Controlled Mutation (APCM). Then, in virtue of Hermite cubic interpolation, the
polynomial was used for the trajectory process of space species [4].

Machines 2024, 12, x FOR PEER REVIEW 2 of 28 
 

 

Cabin workpiece

left robotic arm

right robotic arm

base

 
Figure 1. The cabin docking dual-arm robot. 

vertical lifting joint

left and right movement joint

axial movement joint

circular rolling joint

 
Figure 2. Components of the right robotic arm. 

On the basis of the above arm construct, trajectory planning is needed for the cabin 
docking. There are two steps for the trajectory planning: trajectory generation and trajec-
tory optimization. The precondition for trajectory planning is provided by the former, 
while the trajectory performance is improved by the latter [3]. The trajectory is generated 
by the discrete path points, and the points are obtained by polynomial functions, parabolic 
functions or B-spline curve functions [4–8]. Therefore, in order to confirm the optimal tra-
jectories, the multi-objective trajectory optimization algorithm has become an important 
aspect [9]. And some parameters are used for the multi-objective optimization parameters, 
such as the minimum execution time, minimum energy consumption and minimum dis-
turbance. Firstly, an improved immune clone selection algorithm was proposed by Chen 
et al. [10]. In this algorithm, a multi-objective model for trajectory optimization was estab-
lished using the total motion time, total energy consumption and actuator thrust. The tra-
jectory was generated using a fifth-order B-spline curve, and the improved immune clone 
algorithm was used for the trajectory optimization. Lan et al. discussed a multi-objective 
trajectory planning method for collaborative robots [11]. Based on the collaborative kine-
matic model, the joint trajectories were constructed from the B-spline curves. The multi-
objective particle swarm optimization algorithm was used for the Pareto optimal solution 
of the time-energy jump optimal trajectories. Then, the most suitable solution is selected 

Figure 1. The cabin docking dual-arm robot.

Machines 2024, 12, x FOR PEER REVIEW 2 of 28 
 

 

Cabin workpiece

left robotic arm

right robotic arm

base

 
Figure 1. The cabin docking dual-arm robot. 

vertical lifting joint

left and right movement joint

axial movement joint

circular rolling joint

 
Figure 2. Components of the right robotic arm. 

On the basis of the above arm construct, trajectory planning is needed for the cabin 
docking. There are two steps for the trajectory planning: trajectory generation and trajec-
tory optimization. The precondition for trajectory planning is provided by the former, 
while the trajectory performance is improved by the latter [3]. The trajectory is generated 
by the discrete path points, and the points are obtained by polynomial functions, parabolic 
functions or B-spline curve functions [4–8]. Therefore, in order to confirm the optimal tra-
jectories, the multi-objective trajectory optimization algorithm has become an important 
aspect [9]. And some parameters are used for the multi-objective optimization parameters, 
such as the minimum execution time, minimum energy consumption and minimum dis-
turbance. Firstly, an improved immune clone selection algorithm was proposed by Chen 
et al. [10]. In this algorithm, a multi-objective model for trajectory optimization was estab-
lished using the total motion time, total energy consumption and actuator thrust. The tra-
jectory was generated using a fifth-order B-spline curve, and the improved immune clone 
algorithm was used for the trajectory optimization. Lan et al. discussed a multi-objective 
trajectory planning method for collaborative robots [11]. Based on the collaborative kine-
matic model, the joint trajectories were constructed from the B-spline curves. The multi-
objective particle swarm optimization algorithm was used for the Pareto optimal solution 
of the time-energy jump optimal trajectories. Then, the most suitable solution is selected 

Figure 2. Components of the right robotic arm.



Machines 2024, 12, 64 3 of 25

Compared with other algorithms, the Cuckoo Search (CS) algorithm is a new swarm
optimization algorithm, which is heuristic and intelligent. There are also strong global
search capabilities and fewer parameter settings [13–16]. Thus, a multi-objective Cuckoo
Search Algorithm (MOCS) was proposed by Yang et al. [17]. The novel multi-objective
improved Cuckoo optimization algorithm was built by Azizipanah et al. [18]. A set of
non-dominated points were defined for the optimization problems. This algorithm was
applied in the multi-objective static and dynamic optimization scheduling of a thermal-
electric system, where the environmental objective was inconsistent with the economic
objective. For the automotive sequencing problem of a mixed-model assembly line, the
multi-objective Cuckoo Search algorithm was proposed by Wang et al. [19]. The algorithm
was based on the record matrices. More factors were considered, such as part usage
variation, workstation workload variation, idle time, overload time and model change
cost. Meanwhile, two search strategies were also given, and the local and global search
capabilities were enhanced. Later, the trajectory planning problems were solved by the
Cuckoo Optimization Algorithm (COA), Cuttlefish Algorithm (CFA), Seagull Optimization
Algorithm (SOA) and Tunicate Swarm Algorithm (TSA) [20].

From the above studies, less attention is paid to the optimization algorithm of the
dual-arm robot. Therefore, on the basis of a modified Cuckoo Search algorithm, a multi-
objective trajectory planning method is proposed. The trajectory is generated using a
fifth-order B-spline curve, and the total consumption time and joint impact are minimized
by the objective functions. The normalization comprehensive evaluation method is used
for the solutions in the Pareto non-dominant, and the most comprehensive optimal solution
is selected. The relative results are verified by the experiments. And the subsequent
organization is given based on the above method. In Section 2, a kinematics model of
the dual-arm robot is established. The trajectory is planned by the B-spline curve in
Section 3. Later, a modified Cuckoo Search algorithm is proposed by the objective function
and comprehensive optimal solution method, which can be found in Section 4. From
Section 5, the effectiveness of the algorithm is verified by the simulation. The confirmatory
experiment is given in Section 6. The conclusions are seen in Section 7.

2. Kinematic Analysis of Cabin Docking Dual-Arm Robot
2.1. Forward Kinematic Model

According to the organization, a simplified model of a dual-arm robot is constructed,
and the relative coordinate systems are given in Figure 3. The relationship between the
adjacent links of a dual-arm robot is established through the Denavit–Hartenberg (D-H)
method. The base coordinate system is represented by Obasexbaseybasezbase. Two robotic
arm coordinate systems OL0xL0yL0zL0 and OR0xR0yR0zR0 are established at the middle
position. The axial movement joint, vertical lifting joint, left and right movement joint
and circumferential rolling joint of the left robotic arm are, respectively, established with
OL1xL1yL1zL1, OL2xL2yL2zL2, OL3xL3yL3zL3 and OL4xL4yL4zL4. The D-H parameters of the
cabin docking dual-arm robot are given in Table 1.

On the basis of the D-H method, the terminal position matrix of the left robotic arm is
as follows:

L4
baseT =L0

base TL1
L0 TL2

L1 TL3
L2 TL4

L3 T =


0 0 1 −dL1

−sin(θL) −cos(θL) 0 −dL3
cos(θL) −sin(θL) 0 dL2

0 0 0 1

 (1)

where L0
baseT is the transition matrix from Obasexbaseybasezbase to OL0xL0yL0zL0, L1

L0T is the transi-
tion matrix from OL0xL0yL0zL0 to OL1xL1yL1zL1, L2

L1T is the transition matrix from OL1xL1yL1zL1
to OL2xL2yL2zL2, L3

L2T is the transition matrix from OL2xL2yL2zL2 to OL3xL3yL3zL3, and L4
L3T is

the transition matrix from OOL3xL3yL3zL3 to OL4xL4yL4zL4.
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Similar methods are used for the right robotic arm, and the terminal position matrix
can be obtained as follows:

R4
baseT =


0 0 −1 dR1

sin(θR) cos(θR) 0 −dR3
cos(θR) −sin(θR) 0 dR2

0 0 0 1

 (2)Machines 2024, 12, x FOR PEER REVIEW 4 of 28 
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Table 1. D-H parameters for the cabin docking dual-arm robot.

Link Joint Angle θi Link Offset di Link Length ai Link Angle αi

Base-L0 π/2 0 0 −π/2
L1 0 dL1 0 π/2
L2 −π/2 dL2 0 π/2
L3 π/2 dL3 dL π/2
L4 θL dL4 0 0

Base-R0 π/2 0 0 π/2
R1 0 dR1 0 −π/2
R2 π/2 dR2 0 −π/2
R3 −π/2 dR3 dR −π/2
R4 θR dR4 0 0

2.2. Inverse Kinematics Model

The inverse kinematics model of the dual-arm rotor can be solved with the formula
Paul inverse transformation method. The pose matrix equation of the right robotic arm is

R4
baseT =


nRx oRx aRx pRx
nRy oRy aRy pRy
nRz oRz aRz pRz

0 0 0 1

 (3)

According to Equations (2) and (3), the forward kinematics formula for the right
robotic arm can be obtained as follows:

pRx = dR1
pRy = −dR3
pRz = dR2
yawR = −θR

(4)
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The same method is also used for the left robotic arm, the forward kinematics equation is

pLx = −dL1
pLy = −dL3
pLz = dL2
yawL = π + θL

(5)

In view of the mapping relationship of Equations (4) and (5), the inverse kinematics
transformation formulas of the right robotic arm and the left robotic arm can be established
as follows:

dR1 = pRx
dR3 = −pRy
dR2 = pRz
θR = −yawR

(6)

dL1 = −pLx
dL3 = −pLy
dL2 = pLz
θL = yawL

(7)

3. Trajectory Planning Method Based on B-Spline Interpolation
3.1. Trajectory Planning Scheme

In Figure 4, in order to analyze the attitude adjustment process of the dual-arm robot,
the left center coordinate system O1x1y1z1 of the cabin workpiece is established, and the right
center coordinate system is O2x2y2z2. The axial movement direction of the cabin docking
robot is defined as the Z-axis direction. The movement direction of the cabin docking robot
is defined as the X-axis direction. The movement direction of the cabin docking robot along
the vertical lifting joint is defined as the Y-axis. The distance between OL4xL4yL4zL4 and
O1x1y1z1 is D1, the distance between OR4xR4yR4zR4 and O2x2y2z2 is D3, and the distance from
OL4xL4yL4zL4 to OR4xR4yR4zR4 is D2. According to the established coordinate system, the Pitch
angle α, the Yaw angle β and the Roll angle γ are defined, which can be found in Figure 5. As
shown in Figure 4, the dashed line is the cabin workpiece axis.
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For analyzing the relationship between the workpiece and the cabin docking robot,
there are four situations: the initial equilibrium position, 0◦ pitch angle, 0◦ yaw angle and
0◦ roll angle. Their detailed descriptions are as follows:

(1) Initial equilibrium position

In the actual production process, it is generally required that the cabin docking robot
is in the balanced spatial posture. O1x1y1z1, OL4xL4yL4zL4, O2x2y2z2 and OR4xR4yR4zR4 are
in a straight line. The pitch angle α, the yaw angle β and the roll angle γ are set as 0◦, as
shown in Figure 6. The positional relationship in the z direction is

(z1 − zL4)
2 = D2

1
(zL4 − zR4)

2 = D2
2

(zR4 − z2)
2 = D2

3

(8)
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(2) 0◦ pitch angle

Due to frictional force between the cabin docking robot and the workpiece, the vertical
lifting of the docking robot is limited, and the value is often ±50 mm. When the pitch angle
of the workpiece is changing, the end of the docking robot still contacts with the workpiece.
Therefore, O1x1y1z1, OL4xL4yL4zL4, O2x2y2z2 and OR4xR4yR4zR4 are also on a straight line.
As seen in Figure 7, the positional relationship of the coordinate system is

(y1 − yL4)
2 + (z1 − zL4)

2 = D2
1

(yL4 − yR4)
2 + (zL4 − zR4)

2 = D2
2

(yR4 − y2)
2 + (zR4 − z2)

2 = D2
3

(9)
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As seen in Figure 7, there are two dashed lines in red, one is the current cabin workpiece
axis, the other is the cabin axis at the balance position, and the angle between the two
lines is attitude angle. The relationship between the pitch angle and the coordinate system
parameters is

sinα =
yR4 − yL4

D2
(10)

(3) 0◦ yaw angle

The same method used for the pitch angle is also used for the yaw angle. From
Figure 8, the positional relationship of the coordinate system is

(x1 − xL4)
2 + (z1 − zL4)

2 = D2
1

(xL4 − xR4)
2 + (zL4 − zR4)

2 = D2
2

(xR4 − x2)
2 + (zR4 − z2)

2 = D2
3

(11)
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The relationship between the pitch angle and the coordinate system parameters is

sinβ =
xR4 − xL4

D2
(12)

(4) 0◦ roll angle

In view of the workpiece, the positional relationships of various coordinate systems
are not affected by the changing roll angle. Thus, all the coordinates are also on a straight
line, which can be seen in Figure 9. However, in consideration of the bolt connection
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between the workpieces, the roll angle is also adjusted with a slight change in the cabin
space pose.
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Based on the above analysis, the adjustment processes for the position and attitude of
the workpiece are independent of each other. It is assumed that the trajectory for the end of
the left robotic arm is KL4(xL4(t), yL4(t), zL4(t)), and the end of the right arm is KR4(xR4(t),
yR4(t), zR4(t)). The first formula for the trajectory planning scheme is

(xL4(t)− xR4(t))
2 + (yL4(t)− yR4(t))

2 + (zL4(t)− zR4(t))
2 = D2

2 (13)

In Equation (13), on the basis of the motion trajectory for the left robotic arm, the
spatial position is aligned, the end of the right robotic arm is changed with the action of
the left robotic arm. The distance from the end of the left robotic arm to the end of the
right robotic arm is constant. In addition to participating in spatial position adjustment, the
right robotic arm is also used to adjust the posture of the cabin segment. Thus, the motion
trajectory of the right robotic arm can be divided into two parts: KR4

1(xR4
1(t), yR4

1(t),
zR4

1(t)) and KR4
2(xR4

2(t), yR4
2(t), zR4

2(t)). The relationship is as follows:

KR4(xR4(t), yR4(t), zR4(t)) = K1
R4(xR4(t), yR4(t), zR4(t)) + K2

R4(xR4(t), yR4(t), zR4(t)) (14)

where KR4
1(xR4

1(t), yR4
1(t), zR4

1(t)) is used to follow the action of the left robotic arm, while
KR4

2(xR4
2(t), yR4

2(t), zR4
2(t)) reflects the attitude change of the cabin segment, and the

relative formula is given as follows:
x2

R4(t) = xL4(t) + D2cosα(t)cosβ(t)
y2

R4(t) = yL4(t) + D2cosα(t)sinβ(t)
z2

R4(t) = zL4(t) + D2cosα(t)
(15)

where α(t) and β(t) represent the pitch angle and yaw angle trajectory of the workpiece,
respectively.

3.2. B-Spline Curve Construction

The B-spline curves are widely used for the robot trajectory planning due to the
advantages, such as derivative continuity, piecewise processing and local support. The
first and second derivatives of the B-spline curve are both continuous, which can meet
the requirements of trajectory planning. The definition of a k-th degree B-spline curve is
as follows:

p(u) =
n

∑
i=0

ci Ni,k(u) (16)

where ci is the control point, and Ni,k(u) is a k-th degree B-spline basis function. There are
several approaches for representing B-Spline base functions, which are often defined as the
de Boor–Cox recursion formula [21,22]. The order of the B-spline curve is selected as five,
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the number of intermediate control points is five, three expresses the endpoint repetitions
of control points, and the endpoint repetitions of node vectors is six. Then, the total number
of control points is 11, and the element number in the node vector is 17. The initial and
final pose of the cabin segment is expressed as follows:

po =
[

px
o , py

o , pz
o, pα

o , pβ
o , pγ

o

]
pe =

[
px

e , py
e , pz

e , pα
e , pβ

e , pγ
e

] (17)

There are three repetitions for the control points at the beginning and end positions:

dp
0 = dp

1 = dp
2 = p0

dp
8 = dp

9 = dp
10 = pe

(18)

Therefore, the vector can be represented as

d =
[
dp

0 , dp
1 , dp

2 , dp
3 , dp

4 , dp
5 , dp

6 , dp
7 , dp

8 , dp
9 , dp

10

]
(19)

The time nodes of the initial and final pose points have a duplicate degree of six.
Therefore, the time node vector can be represented as follows:

t = [0, 0, 0, 0, 0, 0, t1, t2, t3, t4, t5, t6, t6, t6, t6, t6, t6] (20)

The B-spline curve of pose motion trajectory is differentiated as velocity, acceleration
and jerk. The relative expression is as follows:

v(t) =
9
∑

i=0
dv

i · Ni,4(t) (i = 0, 1, . . . , 9)

a(t) =
9
∑

i=0
da

i · Ni,3(t) (i = 0, 1, . . . , 8)

j(t) =
9
∑

i=0
da

i · Ni,2(t) (i = 0, 1, . . . , 7)

(21)

The sequence of control points are

dv
i =

k·(dp
i+1−dp

i )
tp
i+k+1−tp

i+1
(i = 0, 1, . . . , 9)

da
i =

(k−1)·(dv
i+1−dv

i )
tv
i+k−tv

i+1
(i = 0, 1, . . . , 8)

dj
i =

(k−2)·(da
i+1−da

i )
ta
i+k−1−ta

i+1
(i = 0, 1, . . . , 7)

(22)

k is the order of the position B-spline curve, and the value is five. The node vector
corresponding to each control point is as follows:

tv = [0, 0, 0, 0, 0, t1, t2, t3, t4, t5, t6, t6, t6, t6, t6]

ta = [0, 0, 0, 0, t1, t2, t3, t4, t5, t6, t6, t6, t6]

tj = [0, 0, 0, t1, t2, t3, t4, t5, t6, t6, t6]

(23)

According to Equations (21)–(23), the velocity, acceleration and jerk curves can be
computed. The trajectory planning process of the fifth degree B-spline curve is shown in
Figure 10.
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4. The Modified Multi-Objective Cuckoo Search Algorithm
4.1. The Objective Function and Comprehensive Optimal Solution

During the docking process of the workpieces, the docking time should be shortened,
which can ensure the efficiency. Therefore, the total consumption time of the dual-arm
robot is selected as the first objective evaluation function:

S1 = T = ∑ ti (24)

where ti is the node vector for the parametric variable of the B-spline.
In addition to the high work efficiency, the stability is also very important. However,

the impacts are often generated when the dual-arm robot is working. In order to keep the
motion trajectory smoother and more stable, the impact must be contained within a small
range. Therefore, the second objective evaluation function is defined as follows:

S2 =
N

∑
j=1

√
1
T

∫ T

0

[...
q j(t)

]2dt (25)

where
...
q j(t) refers to the jerk of the j-th joint.

After the objective evaluation functions are confirmed, the comprehensive optimal
solution should also be given. However, the comprehensive optimal solution is closely
linked to the multi-objective optimization. The significant feature of multi-objective op-
timization is that each objective function is mutually constrained. If the value of one
objective function is optimal, the performance of other objective functions is often lost. In
the feasible solution set of multi-objective optimization problems, there is no traditional
absolute optimal solution, which can ensure that all objective functions are the optimal
value simultaneously. Then, it is often determined by the dominance relationship, and the
non-dominated solution is considered as the final effective solution, which is also called as
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the Pareto optimal solution [23]. The normalization of various indicators is used for the
Pareto optimal solution. In this method, all the indicators are normalized, the influence of
units is eliminated, and a comprehensive evaluation value for the non-dominated solutions
can be obtained. Each set of Pareto solutions is calculated for the satisfaction indicators of
all objective functions. And the satisfaction indicator is minimized as the optimal solution,
which is defined as follows:

δ =
1
m

m

∑
i=1

wi

(
fimax − fi

fimax − fimin

)
(26)

where m represents the number of objective functions, and fimax and fimin are the maximum
and minimum values of the i-th objective function. w = [w1, w2] represents the weight
coefficient, which serves as a trade-off criterion between time optimality and impact
optimality. By adjusting the ratio between w1 and w2, different weights for time and impact
can be achieved.

4.2. Traditional Multi-Objective Cuckoo Search Algorithm

The Cuckoo Search algorithm (CS) is an optimization algorithm, and it is used to
simulate the special habit of cuckoo laying eggs. The Multi-Objective Cuckoo Search
algorithm (MOCS) is an improvement of the CS algorithm, where a single objective function
is replaced by multiple conflicting objectives for the global search [24]. The search path and
location update equations of the algorithm are as follows:

Xι+1
i = Xι

i + α⊕ Le′vy(β) (27)

where Xι+1
i represents the location of the i-th nest in generation t + 1, α > 0 denotes the step

size, Xι
i is the random location of the nest in generation t, and ⊕ denotes the point-to-point

multiplication. Le′vy(β) is the randomized step size, which can be calculated as

Le′vy ∼ u = t−1−β, 0 ≤ β ≤ 2 (28)

In MOCS, the complete Le′vy equation is as follows:

α0

(
x(t)j − x(t)i

)
⊕ levy(β) ∼ 0.01

u

| v|1/β
(x(t)j − x(t)i ) (29)

where u and v are normally distributed.

4.3. Modified Multi-Objective Cuckoo Search Algorithm

Compared with other multi-objective optimization algorithms, there are some ad-
vantages of the MOCS algorithm, such as few parameters and strong optimization ability.
However, the drawbacks are not ignored, such as slow convergence speed in the later
period and uneven distribution of optimal solutions. Aiming at the above drawbacks, a
modified multi-objective Cuckoo algorithm (IMOCS) is proposed for chaotic initialization
of the population. The diversity and uniformity of the initial population are ensured,
the adaptive step size is introduced during the Levi flight process, which can effectively
develop the algorithm’s global and local optimization capabilities, and the improvement
plan will be described in detail.

4.3.1. Improvement of Initial Population Generation Method

In the traditional MOCS algorithm, the initial population is generated randomly, and
the equation is as follows:

X0
i ∼ N(0, 1) (30)

where X0
i represents the position of the i-th bird’s nest at the initial moment.
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The random initialization may lead to an uneven population distribution, a large
number of poor solutions are generated, and the convergence speed of the algorithm
becomes slower. Thus, the characteristics of chaos principles are integrated, the population
diversity is improved without losing individual randomness, a foundation is provided
for a further effective global search. Bernoulli chaotic mapping is used to initialize the
population for chaos, and its expression is

Zk+1 =

{
Zk/(1− ρ) Zk ∈ (0, 1− ρ]

(Zk − 1 + ρ)/ρ Zk ∈ (1− ρ, 1)
(31)

where Zk represents the current value of the chaotic sequence generated in the k-th genera-
tion, and ρ is the control parameter.

The steps of chaos initialization are as follows:
Step 1: For the locations of S nests in n-dimensional space, a random n-dimensional

vector is generated as the location of the first nest. Among them, yi ∈ (0, 1), 1 ≤ i ≤ d.
Step 2: each dimension of Y1

(0) is iterated for S-1 times, S-1 chaotic variables Y2
(0), . . .,

YS-1
(0), YS

(0) are generated.
Step 3: the positions of the nests in the solution space are generated by using the S

chaotic variables, which is described as

xid = Ld + yid (Ud − Ld) (32)

where Ud and Ld represent the upper and lower bounds of the d-th dimension of the search
space.

4.3.2. Improvement of Step Size in Cuckoo Algorithm

There is a fixed step size factor α0 in the traditional cuckoo algorithm, the adaptive
adjustment of step size cannot be achieved during the optimization process, and the
convergence speed of the algorithm is slow. In the optimization process, if the step size
factor α0 is large, the algorithm has strong exploration ability, but the high-precision
global optimal solutions cannot be obtained. If the step size factor α0 remains small, the
algorithm will require more iterations for target accuracy. In addition, biological heuristic
algorithms originate from the characterization of natural biological behavior habits, and
there is significant randomness.

In response to the above shortcomings, an adaptive Levi flight mechanism is used
for the global search, and the Levy flight step size continuously decreases with iteration.
The improved algorithm has a larger step size factor in the early stage of optimization,
thereby the search space in the early stage of the algorithm is expanded, and the global
search ability is improved. During the optimization process, the step size is reduced, and
the local search performance of the algorithm is improved. The step size updating equation
is shown as follows:

α0 = αmax

(
1−

(
iter− 1
Maxiter

)2
)

(33)

where αmax represents the maximum step length, iter denotes the current iteration number,
and Maxiter is the total iteration number.

4.4. Flowchart of Trajectory Optimization Algorithm

Firstly, the parameterized B spline curve is used to express the trajectory. According
to the optimization objective and the range of adjusting mechanism parameters, the opti-
mization algorithm adaptation functions and constraints are constructed to establish the
multi-objective optimization trajectory. The multi-objective optimization algorithm is used
for the set of Pareto optimal solutions, and the index normalized evaluation method is
given for the comprehensive optimal solution. The relative flowchart is shown in Figure 11.
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5. Simulation Analysis

To verify the effectiveness of the multi-objective trajectory optimization algorithm,
the trajectory planning simulation is conducted on the docking robot. At the same time,
in order to verify the modified multi-objective cuckoo search algorithm, the NSGA-II
algorithm, MOPSO algorithm, MOCS algorithm and IMOCS algorithm are, respectively,
used in the simulation experiments, comparative simulation experiments are carried out,
and the experimental results are analyzed.

5.1. Parameter Configuration

The start point and end point of the position for the simulation process are set as

Po = [775,−35,−1315, 0.2,−0.2, 190]
Pe = [745,−5, 1515, 0, 0, 180]

(34)

The elements from left to right in the vector are the X-axis position, the Y-axis position,
the Z-axis position, the pitch angle, the yaw angle and the roll angle. The parameters of a
docking robot are selected as the constraint conditions, and the relative value is given in
Table 2.

5.2. Results and Discussion

Compared with the performance of different Multi-Objective Evolutionary Algorithms
(MOEAs), the indicators are divided into counting indicators, convergence indicators,
diversity indicators and comprehensive indicators [25]. The counting index is used to
count the number or proportion of non-dominated solutions, which is based on the Overall
Non-dominated Vector Generation (ONVG) [26]. The convergence index is chosen as the
Generational Distance (GD) [27], and the average distance from the solution to the closest
reference point is calculated. The diversity selection spatial indicator spacing (SP) [28] is
used to reflect the diversity of the optimal solution in the spatial distribution. To ensure the
rationality of the simulation, the population size is set to 150, and after 100 iterations, the
Pareto front is shown in Figure 12.
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Table 2. Design parameters of cabin docking robot.

Number Parameter Value

1 Roll angle range ±15◦

2 Z-axis direction travel range ±600 mm
3 Y-axis direction travel range ±50 mm
4 X-axis direction travel range ±50 mm
5 Roll angle speed range 0~6.8◦/s
6 Z-axis direction speed range 0~400 mm/s
7 Y-axis direction speed range 0~25 mm/s
8 X-axis direction speed range 0~2.5 mm/s
9 Roll angle acceleration range 0~240◦/s2

10 Z-axis direction acceleration range 0~100 mm/s2

11 Y-axis direction acceleration range 0~100 mm/s2

12 X-axis direction acceleration range 0~100 mm/s2
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Figure 12. Pareto frontier for robot arm trajectory planning.

(1) Comparing the number of non-dominated solutions, the non-dominated solutions
of the NSGA-II algorithm, the MOPSO algorithm, the MOCS algorithm and the IMOCS
algorithm are 150, 36, 133 and 150, respectively. Therefore, in terms of the number for
non-dominated solutions, the IMOCS algorithm is superior to the MOPSO and MOCS
algorithms, and it is comparable to the NSGA-II algorithm.

(2) Comparing the convergence of non-dominated solutions, the GD values of the
NSGA-II algorithm, the MOPSO algorithm, the MOCS algorithm and the IMOCS algorithm
are 0.0065, 0.0220, 0.0041 and 0.0019, respectively. As a result, the convergence of the
IMOCS algorithm is better.

(3) Comparing the spacing of non-dominated solutions, the SP values of the NSGA-II
algorithm, the MOPSO algorithm, the MOCS algorithm and the IMOCS algorithm are 0.0049,
0.0420, 0.0064 and 0.0037, respectively, so the spacing of the IMOCS algorithm is better.

In order to analyze the time shock distribution relationship in the non-dominated
solution set more intuitively, 11 sets of solutions are uniformly selected from the non-
dominated solution set obtained by the IMOCS optimization algorithm, as shown in
Table 3. The total time of cabin docking is increasing from 21.5743 s to 59.5678 s. With the
increasing total time, the joint impact decreases from 3.9448 to 0.0753. The normalization
method is used to solve the optimal solutions in these 11 groups. The weight coefficients
are set according to Equation (26), which is shown in Table 4.
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Table 3. The 11 sets of IMOCS trajectory planning non-dominated solutions.

Serial Number Total Time Joint Impact

1 21.5743 3.9448
2 23.4057 1.5797
3 24.7217 1.0077
4 27.5831 0.6339
5 31.9816 0.3965
6 34.3913 0.3104
7 38.1978 0.2363
8 42.6796 0.1724
9 44.9217 0.1483
10 51.1223 0.1025
11 59.5678 0.0753

Table 4. Normalized weight coefficient setting table.

Type w1 w2

1 1 1
2 0 1
3 1 0

From Table 4, three coefficient types are set using the normalized evaluation method.
Type 1 is a weight coefficient [w1, w2] = [1, 1], and the comprehensive optimal solution
of the total time and joint impact objective functions in the non-dominated solution are
selected. Type 2 is a weight coefficient [w1, w2] = [0, 1], and the solution with the smallest
total time among non-dominated solutions is selected. Type 3 is the weight coefficient
[w1, w2] = [1, 0], and the solution with the smallest joint impact among non-dominated
solutions is selected. The corresponding solutions can be obtained from Table 4 based on
the selection method of these solutions. Then, the simulations are made for the end X-axis
motion trajectory of the left robotic arm, the end Y-axis motion trajectory of the left robotic
arm, and the end Z-axis motion trajectory of the left robotic arm.

5.2.1. Simulation of X-axis End Motion Trajectory of Left Robotic Arm

The X-axis displacement, X-axis velocity and X-axis acceleration for the end of the
left robotic arm are shown in Figures 13–15, respectively. The displacement in the X-axis
direction is uniformly reducing from 775 mm to 745 mm. The X-axis direction speed of
Type 2 is relatively high, and a maximum value 2.39 mm/s can be found, but the maximum
value is not more than 2.5 mm/s. The X-axis acceleration of Type 2 is relatively high, and a
maximum value for 1.39 mm/s2 appears but not exceeding 100 mm/s2.

5.2.2. Simulation of Y-axis End Motion Trajectory of Left Robotic Arm

The Y-axis displacement, Y-axis velocity and Y-axis acceleration for the end of the
left robotic arm are shown in Figures 16–18, respectively. The displacement in the Y-axis
direction is uniformly reducing from −35 mm to −5 mm. The Y-axis direction speed of
Type 2 is relatively high, and a maximum value 3.09 mm/s can be seen but not exceeding
25 mm/s. The Y-axis acceleration of Type 2 is relatively high, and there is a maximum
value 0.91 mm/s2, but the value is not more than 100 mm/s2.

5.2.3. Simulation of Z-axis End Motion Trajectory of Left Robotic Arm

The Z-axis displacement, Z-axis velocity and Z-axis acceleration for the end of the
left robotic arm are shown in Figures 19–21, respectively. The displacement in the Z-axis
direction is uniformly reduced from−1315 mm to−1515 mm. The Z-axis direction speed of
Type 2 is relatively high, and a maximum value 18.19 mm/s is reaching but not exceeding
400 mm/s. The Z-axis acceleration of Type 2 is relatively high, and a maximum value
4.81 mm/s2 can be found but not more than 100 mm/s2.
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6. Experimental Confirmation

In order to verify the effectiveness of the algorithm, trajectory planning and tracking
experiments of the cabin docking robot are conducted based on the cabin docking exper-
imental platform. The cabin docking experimental platform is shown in Figure 22. One
of the cabin-docking robots is selected as the research object for trajectory planning and
trajectory following experiments.
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In order to ensure the accuracy of the trajectory following control, explosion-proof
servo motors are selected for driving the cabin docking experimental platforms. Based
on the experimental platform, the trajectory generated by the modified multi-objective
cuckoo algorithm is taken as the target trajectory, and the actual position is used as the
target trajectory. Then, the experiments for the X-axis trajectory planning and the Z-axis
trajectory planning are carried out.

6.1. X-axis Trajectory Planning

The starting position in the X-axis direction of the cabin docking robot is set as 4.04 mm,
and the stopping position is −1.514 mm. The planned target trajectory is compared with
the collected actual trajectory, which is given in Figure 23. A comparison between the
planned target speed and the collected actual speed is shown in Figure 24. It is found that
the maximum and minimum tracking errors of the X-axis trajectory are 0.014 mm and
0 mm, respectively. The maximum tracking error of the X-axis speed is 0.465 mm/s, and
the minimum value is 0 mm. The error is very small.

6.2. Z-axis Trajectory Planning

The starting position in the Z-axis direction of the cabin docking robot is set as
−1591.03 mm, and the stopping position is −1601.47 mm. The comparison between
the planned target trajectory and the collected actual trajectory is shown in Figure 25.
The relative results for the speed can be seen in Figure 26. The maximum and minimum
tracking errors of the Z-axis trajectory are 0.018 mm and 0 mm, respectively. The maximum
tracking error of the speed is 0.364 mm/s, and the minimum value is 0 mm. The error is
also very small, and the effectiveness of the modified cuckoo search algorithm is proven.
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7. Conclusions

In order to ensure the accuracy and reliability of cabin docking, a multi-objective
trajectory planning method for the dual-arm robot is proposed. The relative results are
summarized as follows:

(1) A forward kinematics model of the cabin docking dual-arm robot is established
based on the D-H modeling method, and the inverse kinematics analysis is also conducted.
Based on the analysis of four different cabin attitudes, the relationship between the end
trajectory and attitude parameters of the cabin-docking robot is studied. A trajectory
planning scheme for the robotic arm is designed, and B-spline curve construction and
parameterization methods are introduced.

(2) The selection method of objective function and comprehensive optimal solution is
introduced. On the basis of the traditional multi-objective cuckoo algorithm, a modified
multi-objective cuckoo search algorithm is proposed from two aspects: initial population
generation method and cuckoo algorithm step size.

(3) The performance of the NSGA-II algorithm, MOPSO algorithm, MOCS algorithm
and IMOCS algorithm are compared using simulations. Three types of normalization meth-
ods are selected: the optimal total time and joint target synthesis, the minimum total time
and the minimum joint impact. The simulation analysis is conducted on the end effector
of the cabin docking robot in the X-axis and Y-axis directions. The trajectory planning
effect in the Z-axis direction is smooth in all three directions, and the maximum speed
and acceleration in the X-axis direction are 2.39 mm/s and 1.39 mm/s2. The maximum
operating speed in the Y-axis direction is 3.09 mm/s, and the maximum operating acceler-
ation in the X-axis direction is 0.91 mm/s2. The maximum operating speed in the Z-axis
direction is 18.19 mm/s, and the maximum operating acceleration in the Z-axis direction is
4.81 mm/s2. The simulation results can meet expectations, and the values are within the
constraint range.

(4) On the basis of the cabin docking experimental platform, trajectory planning
and tracking time of the end effector of the cabin docking robot in the X-axis and Z-axis
directions are carried out. The maximum trajectory tracking error in the X-axis direction



Machines 2024, 12, 64 24 of 25

of the cabin docking robot is 0.014 mm, and the maximum velocity tracking error is
0.465 mm/s. The maximum trajectory tracking error in the Z-axis direction of the cabin
docking robot is 0.018 mm, and the maximum velocity tracking error is 0.364 mm/s, which
proves the effectiveness and feasibility of the modified algorithm.
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