
Citation: Godoy, D.R.; Álvarez, V.;

Mena, R.; Viveros, P.; Kristjanpoller, F.

Adopting New Machine Learning

Approaches on Cox’s Partial

Likelihood Parameter Estimation for

Predictive Maintenance Decisions.

Machines 2024, 12, 60. https://

doi.org/10.3390/machines12010060

Academic Editor: Ahmed

Abu-Siada

Received: 17 December 2023

Revised: 3 January 2024

Accepted: 8 January 2024

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Adopting New Machine Learning Approaches on Cox’s Partial
Likelihood Parameter Estimation for Predictive
Maintenance Decisions
David R. Godoy * , Víctor Álvarez , Rodrigo Mena, Pablo Viveros and Fredy Kristjanpoller

Predictive Lab, Department of Industrial Engineering, Universidad Técnica Federico Santa María, Avenida Santa
María 6400, Santiago 7630000, Chile; victor.alvarezb@sansano.usm.cl (V.Á.); rodrigo.mena@usm.cl (R.M.);
pablo.viveros@usm.cl (P.V.); fredy.kristjanpoller@usm.cl (F.K.)
* Correspondence: david.godoy@usm.cl

Abstract: The Proportional Hazards Model (PHM) under a Condition-Based Maintenance (CBM)
policy is used by asset-intensive industries to predict failure rate, reliability function, and mainte-
nance decisions based on vital covariates data. Cox’s partial likelihood optimization is a method to
assess the weight of time and conditions into the hazard rate; however, parameter estimation with
diverse covariates problem could have multiple and feasible solutions. Therefore, the boundary as-
sessment and the initial value strategy are critical matters to consider. This paper analyzes innovative
non/semi-parametric approaches to address this problem. Specifically, we incorporate IPCRidge for
defining boundaries and use Gradient Boosting and Random Forest for estimating seed values for
covariates weighting. When applied to a real case study, the integration of data scaling streamlines the
handling of condition data with diverse orders of magnitude and units. This enhancement simplifies
the modeling process and ensures a more comprehensive and accurate underlying data analysis.
Finally, the proposed method shows an innovative path for assessing condition weights and Weibull
parameters with data-driven approaches and advanced algorithms, increasing the robustness of
non-convex log-likelihood optimization, and strengthening the PHM model with multiple covariates
by easing its interpretation for predictive maintenance purposes.

Keywords: Physical Asset Management; CBM; Weibull PHM; condition assessment; data science;
gradient boosting; genetic algorithm; IPOPT

1. Introduction

Physical Asset Management (PAM) is a critical aspect of modern industrial operations,
as it involves the maintenance and optimization of system equipment to ensure their
reliability, availability, and safety. As part of PAM, the Proportional Hazards Model (PHM)
focuses on predicting the failure risk of assets based on their current condition and historical
data. With PHM, it is possible to estimate conditional reliability functions and remaining
useful life (RUL). Accurate RUL prediction can help reduce downtime, maintenance costs,
and safety risks and improve the overall efficiency of industrial operations.

Predictive maintenance stands out as particularly interesting within the field of main-
tenance policies. It aims to determine the optimal intervention time of equipment, thereby
minimizing the likelihood of failure through diverse techniques. A noteworthy approach
within predictive maintenance is Condition-Based Maintenance (CBM), which operates
as a prognostic policy by estimating equipment failure rates and reliability using present
and anticipated conditions. Hence, the methodology involves continuous monitoring of
those vital signs, in which PHM assigns weights to individual conditions, enabling the
calculation of the equipment’s failure risk at any given moment.

In recent years, there has been a growing interest in using data-driven approaches
and advanced algorithms to improve the accuracy of PHM modeling. In the same way,
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estimating parameters in PHM models with multiple covariates is challenging due to the
log-likelihood function non-convex nature and the high dimensionality of the parameter
space. In order to address this challenge, this work proposes a non-conventional methodol-
ogy that combines non/semi-parametric approaches, such as Random Forest and Genetic
Algorithm, to estimate the covariate weights and Weibull parameters in PHM models with
multiple vital signs.

Cox’s partial likelihood optimization is usually employed to evaluate the impact of
time and conditions on the hazard rate. However, when dealing with parameter estimation
involving diverse covariates, the problem may have multiple feasible solutions. Conse-
quently, assessing boundaries and carefully adopting an effective initial value strategy is
imperative. Therefore, this paper explores innovative non/semi-parametric approaches
to address these issues. Specifically, we integrate IPCRidge to define boundaries and
leverage Gradient Boosting and Random Forest to estimate initial covariate weighting
values. The proposed methodology is evaluated in a real-world case study in an asset-
intensive firm to demonstrate the integration of condition data scaling with diverse orders
of magnitude and units.

The rest of this paper is organized as follows. Section 2 provides a literature review
of the existing approaches to PHM and parameter estimation. Section 3 describes the
proposed methodology in detail, including the data-driven approaches and advanced
algorithms used. Section 4 presents the case study and discusses the results obtained.
Finally, Section 5 concludes the paper and outlines the future research directions.

2. Literature Review
2.1. Physical Asset Management (PAM)

PAM has gained greater relevance in recent years among asset-intensive companies,
given its ability to integrate with maintenance decisions, making the performance of
operations more efficient and safer. This approach has been implemented using Asset
Management Systems (AMS), which reduces risk and asset life cycle costs [1–3].

Given industries’ recent and cross-cutting technological development, advanced tools
can be adopted to improve asset and process management, such as predictive maintenance
and data-driven techniques [4–6]. CBM, as a predictive policy, allows for making mainte-
nance decisions based on information collected through the monitoring of asset conditions,
such as temperature or pressure, in order to predict asset failures; this method improves
asset health management and reduces the life cycle cost of assets [3,7]. As stated in [2],
CBM is a key factor of PAM and very important for developing an ASM.

2.2. Proportional Hazards Model (PHM)

As a statistical procedure, PHM estimates equipment failure risk based on condition-
monitoring information [8,9]. The way to describe Cox’s PHM is the baseline hazard
function that normally is used by assuming Weibull distribution due to its flexibility and
closed-form risk and reliability function [10,11], but others like the Gamma distribution
could be used as well [12]. Similarly, ref. [13] develops a method for calculating reliability
and remaining useful life (RUL) based on current conditions and presents a case study
with one covariate. In a step of the method, data must be discretized in several states, each
one with a representative reliability function. These functions are depicted graphically,
showing the differences in their wear-out rates. Another relevant approach is presented
in [9] with a method to optimize CBM for the decision-making process of asset interventions
with multiple covariates, transition probability matrices, PHM, and the costs associated
with corrective and preventive interventions. This method is expressed and condensed as
software for industry applications.

The paragraph above introduces the relevant matter of this paper, the parameter
estimation for Weibull distribution with multiple covariates, considering them in the hazard
rate and conditional reliability function. There are many approaches to this particular
matter, and some of the most relevant are discussed as follows. Ref. [8] shows a way to
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obtain the covariate coefficients/weights with Maximum Likelihood Estimation (MLE).
Although the distribution parameters are not explicitly stated, Cox suggests assuming a
two-parameter distribution such as Weibull or Exponential to model the baseline hazard
rate and add these parameters inside MLE.

The two most widely used failure risk/survival analysis techniques are Cox’s PHM
and Accelerated Failure Time Model (AFTM) [14]. Due to their flexibility and efficiency, one
of the main differences between the two is that Cox’s PHM is a semi-parametric method
where no assumptions are imposed on the baseline hazard function [15]. Ref. [16] proposes
a method that uses MLE to obtain Weibull distribution parameters (shape and scale) and
weight/importance of the covariates; specifically, the authors analyze PHM as an AFTM so
they can estimate shape, scale, and covariate weights parameters with just one likelihood
function. Nevertheless, the main issue is the non-linear nature of these MLE functions,
so analytical solutions are not simple to obtain [17]. Ref. [18] shows a non-analytical
way to solve it; the authors use a defined baseline hazard rate, specifically the Weibull
hazard rate, so the model is called Weibull-PHM, or the Weibull regression model. They
maximize the associate likelihood function using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-Newton method [19], so the Weibull parameters and six covariate weights
are estimated. One limitation of the proposed method is that BFGS is sensitive to initial
conditions. If the initial value is far from the global minimum, BFGS may fail to converge or
converge to a local minimum. A second limitation is that BFGS does not guarantee global
convergence, so for non-convex objective functions such as the Weibull PHM’s MLE function,
BFGS may fail [20,21]. In addition, the Weibull PHM’s MLE function needs reasonable starting
values, according to [22]. Therefore, the boundaries and the initial value are important matters
to consider for the problem-solving strategy.

2.3. Data Driven PHM

The requirement for data-driven methods is emphasized in [23] as essential for imple-
menting and deploying more sophisticated PHM-CBM systems. Recently, some studies
have tried to incorporate non-parametric approaches to obtain Weibull PHM parameters.
For instance, a data-driven method that uses meta-heuristic rules to obtain relationships
between internal features of available data and its insights is presented in [24]. Data-driven
models have been widely used in several fields with successful results [3,17,24–26].

One of the main pillars of recent technological development is Artificial Intelligence
(AI) and Machine Learning (ML) [27], which could be described as the use of algorithms
that learn from experiences as a human being would do [3,28]. Furthermore, experience
is related to data, i.e., by showing them what to search for (supervised learning) or not
(unsupervised learning) or by punishing/rewarding them during learning (reinforcement
learning) [3,29]. Work [30] applies Gradient Boosting techniques (supervised learning)
to evaluate the quality of the inputs for an optimization problem, which is solved using
the Artificial Bee Colony (ABC) algorithm, an Evolutionary/Data Driven algorithm for
optimization close to reinforcement learning family, such as Genetic Algorithm (GA) or
Ant Colony Optimization (ACO). Hence, Gradient Boosting minimizes the potential of
ABC being trapped in a local optimum and makes it possible to obtain a global optimum
by identifying the most informative features. This study demonstrates that the feature
selection using Gradient Boosting does not sacrifice model accuracy and outperforms the
optimization results with different datasets. Other studies have used Random Forest to
improve the Evolutionary algorithm performance [31,32], reaching conclusions similar to
those of [30].

Evolutionary algorithms (EA) are characterized by simple parameters, broad applica-
bility, generality, and ease of implementation, and they have found success across various
domains [33]. GA is the most commonly used EA in the field of optimization problems [34]
due to its implementation simplicity and capacity to converge into a solution that is close
to the optimum in a prudent amount of time, but its accuracy relies on the selection of
parameters [35], such as bounds and starting values. In [35], the GAs boosted with Machine
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Learning algorithms display better performance than just using GA, providing evidence
that using Machine Learning techniques to adjust algorithm parameters is a promising
approach. In fact, Machine Learning plays a pivotal role in navigating the search space,
allowing algorithms to concentrate their computational efforts in the most promising
directions for discovering better solutions.

Feature/covariate weighting is an important subject that MLE tries to solve in the
present work. The authors of [15] present an approach using Multiple Kernel Learning
(MKL), a supervised learning algorithm, for survival prediction models and the convex
conjugate function for Cox’s PHM likelihood function. The study shows a robust perfor-
mance in likelihood function estimation. Also, the MKL allows for the complexity of the
boundaries to be avoided. Nevertheless, the study does not consider any assumption on
the baseline hazard function, so the distribution parameters are not estimated in the MLE,
and it uses a modified convex loss function for MLE. Study [36] proposes a Neural Network
(NN) autoencoding (unsupervised learning) approach to estimate the robust features of
a set. Then, Cox’s PHM and Long-Short Term Memory NN (LSTM) are used to predict
the time between failures (TBF). So, the authors select the most important features for the
prediction and use Cox’s PHM to obtain a reliability curve. They use MLE for the baseline
hazard function and covariate weighting, but they do not specify any method to solve MLE.
Ref. [26] uses reinforcement learning (Q-learning), Random Forest (RF) algorithm (super-
vised learning), and Markov Decision Process (MDP) for CBM optimization. The transition
probability matrix is not used because the study relies completely on the meta-heuristics
algorithms to obtain the reliability curves based on the Kaplan–Meier estimation method,
which is non-parametric and asymptotically efficient [37,38], so the covariate weighting is
made by using this method. Also, teh authors do not assume any distribution for wear-out;
RF is used to predict this phenomenon. MDP incorporates the state space (defined by RF),
action space (preventive and corrective interventions, “do-nothing” policy, and multi-level
preventive repair, ‘’as good as new” repair included), rewards (RUL), and punishments
(maintenance cost). Q-learning is used to simulate a decision-maker agent that decides the
action based on the “current” conditions of the data, costs, and expected RUL. A matter of
concern for this study is the high computational cost related to the Q-learning method.

To enhance parameter estimation for the q-Weibull distribution, in [17], the Adaptive
Hybrid Artificial Bee Colony (AHABC) algorithm is introduced. This innovative approach
seamlessly integrates ABC’s global exploration capabilities with the local exploitation
techniques of the Nelder–Mead simplex search, thereby improving ABC’s local search
performance. Comparative analyses with alternative optimization methods, such as the
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), reveal that the proposed
AHABC algorithm surpasses them regarding convergence speed and accuracy. While
the current study does not delve into the intricacies of covariate weighting, it echoes the
showcased potential benefits of amalgamating various statistical and heuristic models. This
scope aligns with the objective of the present work, which aims to explore and implement
a similar integration of several models to take care of the boundaries and initial value
strategy for Weibull PHM’s MLE.

3. Model Formulation

For the development of the present article, a flow chart of the analytical process was
made, which can be seen in Figure 1.
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Figure 1. Flow chart of the proposed model.

3.1. Data Preparation and Data Scaling

First and foremost, data preparation is crucial to ensure the integrity of information
before its utilization. This process involves thorough checks to eliminate null, missing,
or duplicated data. Additionally, various tables are integrated through the ETL process
(Extract, Transform, and Load) to consolidate all available information into a single dataset.

Simultaneously, a key aspect involves identifying and classifying maintenance types
using a binary system. This binary system assigns values of 1 and 0 to preventive and
corrective maintenance, respectively. The resulting table encapsulates only the pertinent
data essential for model development. This includes an identifier for assets and their
components (if applicable), the type of intervention represented in the binary system,
the time intervals between interventions, and individual columns for each covariate.

Before working on covariate information, it is recommended to transform or stan-
dardize the data. An alternative is scaling this data to have the same order of magnitude
and minimum and maximum values. This approach makes the analysis of the weights of
each covariate easier, allowing for establishing their relative importance to one another.
This study analyzes two transformation techniques: Min–Max scaling and a particular
transformation representing a non-scaling alternative (NS). Both are shown below.

Min–Max scaling is a widely used method in Data Science for standardization that
scales the data between two values; its formula is presented as follows:

xScaled(min, max) =
(x − Xmin)

(Xmax − Xmin)
· (max − min) + min, (1)
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where value (x) is scaled by using the minimum value (Xmin) and the maximum value
(Xmax) of the covariate data. Then, it is weighted considering a new minimum (min) and
maximum (max) values.

The NS transformation is considered in this study for comparative purposes only so
that the non-scaling alternative can be represented by this method. Its formula is shown
as follows:

XScaled =
(X + Xmin)

X∗
max

, (2)

where X∗
max is the maximum value of the transformed data column X + Xmin. Xmin is the

minimum value of the covariate data column X.

3.2. Bounds and Initial Value

As mentioned in Section 2.2, the boundaries and initial value are important to discuss.
The proposed strategies for this issue are presented below.

3.2.1. Gradient Boosting

In numerous problem domains, combining the predictions of a bunch of models
frequently results in a model with improved performance [39]. Gradient Boosting (GB)
builds additive regression models by using naive/simple parameterized function (base
learner) sequentially [40,41]. This study considers two base learners for Gradient Boosting
methods: regression tree (GBRT) and component-wise least squares (CWLS). Both methods
are based on [39,42], respectively. For this study, the ®Python library Scikit-survival is used
for the algorithm implementation of both Gradient Boosting techniques.

Specifically, GBRT and CWLS are used as initial covariate weight estimation strategies,
using the voting classifier concept [43] but in the context of Gradient Boosting. So, as the
algorithms learn and progress through the iterations (a new base learner learns from the
previous ones), the current base learner considers some covariate as the best one to explain
the dependent variable (TBF). Therefore, two strategies can be adopted for the estimation
of initial weights. The first one is to consider as weights the number of times a base
learner chooses some covariate as the best; this strategy is used for RF. The second strategy
is to capture the index (the number of iterations) of the first base learner that chooses
each covariate for the first time, considering that a base learner from the first iterations
necessarily has a lower predictive performance than one related to later iterations due to
the Gradient Boosting technique works. This last strategy is used for CWLS and GBRT.

After determining the proto-weights for each covariate, they are stored in a vector
adjusted with the same scaler with which the covariates are standardized. Finally, this
scaled vector already contains the initial weights to be used in the optimization algorithms.

3.2.2. Random Forest

RF is used as another alternative for obtaining initial covariate weights. For this
algorithm, a method more similar to a Voting classifier is performed; each tree in the RF
can choose a covariate as the best candidate. Then, a vote is taken, and each covariate is
associated with a proto-weight representing the number of trees that chose each covariate
as the best one to explain the dependent variable (TBF). Finally, the vector of proto-weights
is calibrated with the scaler that standardized the covariates to obtain the vector of initial
weights. The ®Python library Scikit-learn is used for RF regression implementation.

For both algorithms, GB and RF, the Gini impurity index [44] is used to choose the
best covariate candidate in each base learner.

3.2.3. IPCRidge

The accelerated failure time model with inverse probability of censoring weights
(IPCRidge) is a model proposed in [45] that assumes a regression model of the follow-
ing form:

log y = β
ipc
0 + Xβipc + ϵ. (3)
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Each sample of the data is weighted by the inverse probability of censoring to account
for right censoring (under the assumption that censoring is independent of the features
(covariates), i.e., random censoring). ϵ is the random error term of the regression model.
The penalty term, αipc, associated with L2-shrinkage and applied to coefficients βipc needs
to be a small positive value (between 0 and 1); in that way, it improves the conditioning of
the problem and reduces the variance of the estimates. Also, using αipc = 0 is not advised
for numerical reasons. The ®Python library Scikit-survival is used for implementation.
In this study, the coefficients are forced to be positive.

If the weight vector is transformed by taking the inverse (i.e., 1/βipc), then this vector
contains Kaplan–Meier estimators [38] associated with each covariate. The maximum value
of the estimators is used as an upper bound for the covariate weights in the optimization
algorithms. So, in the worst-case scenario, the algorithm can take these bounds at most as
the feasible weights for covariates.

3.3. Parameters Estimation

The parameter estimation of this study considers the estimation of the Weibull param-
eters, too. In that order, the initial values of these parameters are calculated by linearizing
the Reliability model proposed by Jardine (1987) [46], who indicated that reliability can be
modeled as a two-parameter Weibull distribution through

R(t) = e−(t/η)β
. (4)

Linearizing the expression above, the following equation is obtained:

ln(−ln(R(t)) = β · ln(t)− β · ln(η), (5)

where β is the shape parameter (slope), and η is the scale parameter. The reliability of the
data is obtained through the Lewis method:

R(t) =
[

n + 1 − i
n + 2 − i

](1−δ)

· R(ti−1), (6)

where δ is a binary variable that takes the value of 1 when a censure occurs (e.g., preventive
interventions) and 0 when a failure happens.

Finally, the initial values for Weibull parameters are obtained fitting a polynomial
of Degree 1 using Equation (5) and the least squares method. For MLE, parameter λ
is calculated using η and β, as can be seen in Equation (7). Therefore, feasible λ and β
are obtained from MLE, then η is calculated. Expert knowledge is used as input for the
boundaries of Weibull parameters.

λ =
β

eln(η)β
. (7)

3.4. Solver Strategy

The solver strategy implies the minimization of the negative partial log-likelihood; for
this study, the partial log-likelihood model proposed by Liu and Makis (1996) [16] is used,
but considering all the samples as failures. The equation is presented as follows:

LL =
n

∑
i=1

(ln(λt(β−1)
i ) +

m

∑
j=1

γjln(zij)−
λtβ

i
β

m

∏
j=1

z
γj
ij ), (8)

where n is the number of samples, m is the number of covariates, and γj is the weight
associated with the jth covariate.

When the initial value and boundaries are estimated, they are used as input for the
solver algorithms. Two methods are considered for optimization; both are shown below.
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3.4.1. Genetic Algorithm

Genetic Algorithms (GAs) establish a searching technique by combining the idea
of survival of the fittest and an inter-crossing population. GA operates by representing
solutions in chromosomes, subjecting them to selection, mating, and mutation phases to
generate new solutions that are subsequently evaluated using a fitness function [47,48].
The fitness function in this study is Equation (8); the boundaries and initial value are
obtained as presented in the above section.

The chromosomes are strings that represent a solution to the optimization problem.
This paper defines a chromosome as a (2 + m) × 1 matrix, where m is the number of
covariates. So, the first two rows contain Weibull parameters (λ and β), and the others
contain covariate weights. In order to obtain feasible solutions, a penalty function is
implemented; if the solution is not within the boundaries, a penalty is applied. Also,
the initial iteration is created by using the initial values obtained from the strategies
mentioned before (RF, GBRT, CWLS).

When a population is created, the best chromosomes are selected for the next popula-
tion based on the fitness values. Function (8) is trying to be minimized, so the chromosomes
selected (with the tournament method) are the ones with the lowest fitness values.

Mating and mutation are used for the recombination of chromosomes. Mating, also
known as crossover, is the process of mixing two selected parents’ genes to generate
new offspring chromosomes; this process happens with a pre-established probability.
Conversely, mutation is applied to the offspring chromosomes generated by crossovers
to prevent premature convergence into a local solution. Also, each parent is randomly
selected at a predetermined mutation rate. In addition, the mutation of each value within
the offspring changes by applying Gaussian additive mutation. The ®Python library Deap
is used for the GA implementation.

3.4.2. Interior Point OPTimizer

Interior point optimizer (IPOPT) implements an interior point-line search filter method
that aims to find a local solution of non-linear problems (NLP) [49]. This algorithm considers
boundaries for constraint functions and variables. The objective function can be linear,
non-linear, convex, or non-convex (but should be twice continuously differentiable).

As the approach is more like an optimization modeling programming, it requires less
hyper-parameter decision making (tunning). This approach needs an objective function,
variables, boundaries, and an initial value. In this study, the objective function is Equa-
tion (8), and the variables are Weibull parameters and covariate weights. Boundaries and
initial/starting values are estimated as mentioned in the previous sections (RF/GBRT/CWLS
+ IPCRidge). For IPOPT implementation, the ®Python library Pyomo is used.

3.5. Conditional Reliability Estimation

Once the weights are estimated, this study uses the method proposed in [9,13] to esti-
mate conditional reliability in the CBM context with multiple covariates. So, the transition
probability matrix needs to be calculated. Hence, covariate bands need to be estimated.
For that purpose, this paper relies on the work proposed in [3] that uses clustering (unsu-
pervised learning) methods to obtain covariate bands. This method takes as input the sum
of γ · Z(t) of each covariate as the data to be clustered, i.e.,

f (γ, z) = ∑
i∈Z

γiZi(t), (9)

where γi is the weight of covariate i and Zi(t) is the value of covariate i in time t. With the
calculated ranges, generating the transition probability matrix is possible. Therefore,
the state of all data samples needs to be identified. Then, ordering the samples chronologi-
cally, state transitions are identified, specifically how many times one state i transited to
state j for all possible combinations (denoted by nij). Also, it is crucial to calculate the time
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for which the equipment remains in state i (denoted by Ai). With both parameters, it is
possible to obtain the transition rates based on the following expressions:

Λij =
nij

Ai
, i ̸= j, (10)

Λii = −∑
i ̸=j

Λij. (11)

Finally, transition probabilities are calculated as follows:

πij = eΛij . (12)

For reliability calculation, the number of iterations to conduct needs to be determined,
for which an initial time and a value for the length of steps between the initial and final
time are required. The lower the value, the more precise the result is. Kt is the number of
iterations performed, calculated using the following expression:

kt = (tfinal − tinitial)/∆ = x/∆. (13)

Then, the exponent value of each covariate (xj) can be obtained through the
next equation:

e(xj) = e
(
(∆/η)β e(γj xj)

)(kβ−(k+1)β)
, (14)

where γj is the weight of covariate j and ∆ is the approximation interval length. The values
obtained through Equation (14) are expressed in a diagonal matrix and then multiplied
with the transition probability matrix, which needs to be expressed in a diagonal matrix.
Therefore, the result matrix is matrix L[i].

The next step is to obtain the matrix multiplication between L[i] from the previous
and current iteration. The conditional reliability is obtained through the sum of each
row of the last matrix. This estimation is conducted using the product property method
explained in detail in [13], for which the failure rate matrix is first estimated through the
following equation:

λ(t, Z(t)) = (β/η)(t/η)β−1e∑i γi∗Zi(t). (15)

Using the failure rate matrix and the transition probability matrix, the L̃[i] matrix and
L[x, t] are finally solved. Consequently, conditional reliability for each state can be obtained.

4. Case Study and Discussion

The study of this paper intends to show a real case example by using the proposed
methodology on real data from an electrical distribution company in Chile. An extract of
the data set is shown as follows.

Table 1 shows the different columns available in the data set. The first one is the
TBF of each sample in hours; the second is the type of intervention (one as preventive
and zero as corrective); the “Machine ID” represents the electric transformer’s ID; and the
last four columns are the covariates considered in this case study. The electric demand
satisfied by the electric transformer is measured in megavolt-ampere (MVA), the internal
temperature of the transformer is registered in Celsius degrees (◦C), the ethylene (C2H4) in
transformer oil is measured as a percentage of gas presence. Finally, the dielectric strength
of the transformer oil is measured in (kV). Additionally, Table 2 shows some relevant
statistical indicators for covariate data, such as mean, standard deviation , and quartiles.
The selection of these four covariates is based on their data availability. However, it is
important to note that the model has the capacity to consider a larger number of covariates,
with the possibility of rejecting some during the subsequent covariate weighting step.
As shown in Section 3.3, Weibull parameters are estimated to be used as initial values for
the optimization methods. Those starting values are presented in Table 3.
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Table 1. Extract of the case study data.

TBF (h) Type of
Intervention Machine ID Electric Demand

(MVA)
Internal

Temperature (◦C) C2H4 (%) Dielectric Strength
(kV)

162,770 0 1 18.1 64 2.1392 64.1948
163,210 0 1 16.4 54 2.1082 64.0284
186,900 0 1 16.6 59 3.3276 63.7482
156,630 0 2 8.9 53 1.6896 66.2913
157,060 0 2 12.8 50 1.7452 65.9824

Table 2. Data Analysis of covariates.

Electric Demand
(MVA)

Internal Temperature
(◦C) C2H4 (%) Dielectric Strength

(kV)

count 60.0000 60.0000 60.0000 60.0000
mean 11.6550 53.5833 5.1092 68.8628

std 5.5781 14.0728 7.8651 3.6886
min 0.0000 29.0000 0.0000 61.1533
25% 8.9000 42.7500 1.7313 65.9329
50% 12.4000 52.5000 3.0694 69.6306
75% 16.0750 64.0000 5.4385 71.7698
max 20.4000 96.0000 45.7537 75.5950

Table 3. Starting values for Weibull parameters.

Weibull Parameter Initial/Starting Value

β 1.593
η 209,013

The next step requires the performance of data scaling; the covariates have different
orders of magnitude ( as shown in Table 2), so, for reasons already explained, it is important
to standardize them. Therefore, for the next steps, the types of scaling are considered in
parallel in separate ways. For the four covariates considered in this case study, the three
alternatives of starting values estimations are presented as shown in Section 3.2; the hyper-
parameter tunning of this algorithm is made using GridSearchCV of the ®Python library
Scikit-learn.

Table 4 shows that the proto-weight estimations have orders of magnitude different
from the data, so scaling is necessary. It is also possible to observe, for example, that the
Gradient Boosting method CWLS choose Covariate 3 first and Covariate 4 last. Hence, they
are the least and most important, respectively, to explain the behavior of the TBF. Moreover,
RF is more impartial in assigning importance to each covariate based on its voting. For the
case of the “NS” method, the proto-weights are scaled using the MinMax method between
zero and three, which is arbitrary and must be considered a case with expert knowledge
influence. Therefore, the starting weights are made with an intuitive approach and are easy
to interpret. The scaled weights, which are used as starting values, are presented in Table 5.
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Table 4. Proto-Weights obtained for covariates.

Scaler Weight Method Electric Demand (p1) Internal Temperature (p2) C2H4 (p3) Dielectric Strength (p4)

NS CWLS 9 65 1 578
MinMax(0,1) CWLS 15 8 1 64
MinMax(0,2) CWLS 15 8 1 64

NS GBRT 19 49 4 1
MinMax(0,1) GBRT 19 49 4 1
MinMax(0,2) GBRT 19 49 4 1

NS RF 181 189 157 173
MinMax(0,1) RF 181 189 157 173
MinMax(0,2) RF 181 189 157 173

Table 5. Starting Weights estimated for each covariate.

Scaler Weight Method p1 p2 p3 p4

NS CWLS 0.0416 0.3328 0.0000 3.0000
MinMax(0,1) CWLS 0.2222 0.1111 0.0000 1.0000
MinMax(0,2) CWLS 0.4444 0.2222 0.0000 2.0000

NS GBRT 1.1250 3.0000 0.1875 0.0000
MinMax(0,1) GBRT 0.3750 1.0000 0.0625 0.0000
MinMax(0,2) GBRT 0.7500 2.0000 0.1250 0.0000

NS RF 2.2500 3.0000 0.0000 1.5000
MinMax(0,1) RF 0.7500 1.0000 0.0000 0.5000
MinMax(0,2) RF 1.5000 2.0000 0.0000 1.0000

As the lower bounds of the covariate weights are zero, two ways are considered for
the upper bounds: the IPCRidge method and non-upper bounds. This approach aims to
identify which part is more important for optimization: the boundaries or the starting
value. The boundaries calculated are shown in Tables 6 and 7. The upper bounds for NS
are more relaxed than the others; this method does not standardize the magnitude orders
of all the covariates as the other methods.

Table 6. Boundaries for the optimization algorithms considering upper bounds (with IPCRidge).

Scaler λ β p1 p2 p3 p4

Lower Bounds - 0 1.1 0 0 0 0
Upper Bounds NS 10 11 16.8393 16.8393 16.8393 16.8393
Upper Bounds MinMax(0,1) 10 11 1.3164 1.3164 1.3164 1.3164
Upper Bounds MinMax(0,2) 10 11 2.4083 2.4083 2.4083 2.4083

Table 7. Boundaries for the optimization algorithms without upper bounds.

λ β p1 p2 p3 p4

Lower Bounds 0 1.1 0 0 0 0
Upper Bounds 10 11 Inf Inf Inf Inf

Then, it is possible to put the optimization algorithms in action. The results obtained
for the IPOPT approach are shown in Table 8, where the scaler method that achieves
the lowest LL values on average is the Min–Max(0,1) method. However, the NS method
manages to obtain feasible solutions in all its scenarios. The Min–Max(0,2) method achieves
the lowest LL value with GBRT and upper bounds, but its solutions are worse or infeasible
in the rest. Regarding the latter, the estimated values of β and η show a wear-out stage
in the asset life cycle, which is why β > 1, in turn, explains the order of magnitude
of η. The method decreases the value of η; hence, its estimation must be less than the
value previously shown in Table 3. Therefore, the MinMax(0,2) method reaches just one
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feasible solution, using GBRT with upper bounds. CWLS is the seed weighting method
that becomes more feasible solutions in all its scenarios compared to the other methods,
so it is the most consistent. The MinMax(0,2) method obtains η with orders of magnitude
that escape the rest of the solutions and only obtains one feasible solution; it is the least
consistent for IPOPT. The NS method (with expert knowledge) is the most consistent for
the same reasons.

Table 8. Results of the IPOPT solver.

Upper Bound Weight Method Scaler LL Reached
Value λ η β Elapsed Time (s)

No CWLS NS 748.3538 1.3063 × 10−14 144,571.8120 2.7767 5.7463
Yes CWLS NS 748.3538 1.3063 × 10−14 144,571.6497 2.7767 1.2767
No GBRT NS 748.3538 1.3063 × 10−14 144,571.6005 2.7767 15.3737
Yes GBRT NS 748.3538 1.3063 × 10−14 144,571.6497 2.7767 8.4927
No RF NS 748.3538 1.3063 × 10−14 144,571.6005 2.7767 13.0116
Yes RF NS 748.3538 1.3063 × 10−14 144,571.6497 2.7767 4.4905
No CWLS MinMax(0,1) 747.1369 5.0210 × 10−15 145,706.4477 2.8577 3.5969
Yes CWLS MinMax(0,1) 747.1369 5.0210 × 10−15 145,706.4502 2.8577 2.2430
No GBRT MinMax(0,1) 2.5358
Yes GBRT MinMax(0,1) 747.1369 5.0210 × 10−15 145,706.4399 2.8577 4.5415
No RF MinMax(0,1) 4.4798
Yes RF MinMax(0,1) 747.1369 5.0210 × 10−15 145,706.4399 2.8577 5.7032
No CWLS MinMax(0,2) 1.8389
Yes CWLS MinMax(0,2) 748.7728 1.2140 × 10−17 1,726,525.4024 2.7834 2.1190
No GBRT MinMax(0,2) 4.0725
Yes GBRT MinMax(0,2) 747.1155 4.5026 × 10−15 151,169.8890 2.8579 4.2528
No RF MinMax(0,2) 5.2494
Yes RF MinMax(0,2) 748.7728 1.2140 × 10−17 1,726,525.4024 2.7834 7.4087

In Table 9, it can be seen that there is little difference in the decision of the method for
initial weight estimation and the estimated values of covariate weights. The scaler method
has more importance for the value in estimating weights than the method of starting weight.
For MinMax(0,2), there is more variation, but it could be explained because of the poor
consistency of this scaling method. Also, the weights change when the scaler changes; the
covariate weight with more variation is Dielectric Strength (p4) and Internal Temperature
(p2), which are the covariates with the higher orders of magnitude of all (see Table 2).
Nevertheless, there is not much difference between the Min–Max scaler methods for these
two covariates (taking into account the consistency of the Min–Max(0,2) method); the main
difference occurs between NS and Min–Max methods.

For GA, the mating probability is set to 1, the mutation rate is equal to 0.7, the mutation
of each value within the offspring, as it said before, changes applying Gaussian additive
mutation with a mean equals to 0, standard deviation equal to 1 and independent probabil-
ity for each value to be mutated equal to 0.3. Finally, the population size is 500 individuals,
and 1000 generations are simulated in this study for each iteration. Therefore, the following
results are obtained.

From Table 10, it is possible to observe a higher consistency in all the values achieved
no matter the chosen method. Min–Max(0,1) obtains the lowest values of LL. GA obtains
a different β than IPOPT but is compensated with lower values of λ, so the orders of
magnitude of η do not change between optimization algorithms. Also, β stills are greater
than one. The results of the Min–Max(0,2) method are sensitive to the presence or absence
of upper bounds, thus reaffirming the inconsistency of the method when changing the
optimization algorithm and the importance of the upper bounds to obtain lower LL values
in a smaller amount of time. The choice of the method to obtain the initial weights is not
important enough to affect the obtained results.
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Table 9. Weights estimated using the IPOPT solver.

Upper Bound Weight Method Scaler p1 p2 p3 p4

No CWLS NS 1.3852 × 10−7 1.2185 × 10−5 7.3698 × 10−2 1.9637 × 100

Yes CWLS NS 1.9493 × 10−7 1.6818 × 10−5 7.3698 × 10−2 1.9637 × 100

No GBRT NS 1.9493 × 10−7 1.6818 × 10−5 7.3698 × 10−2 1.9638 × 100

Yes GBRT NS 1.9493 × 10−7 1.6818 × 10−5 7.3698 × 10−2 1.9637 × 100

No RF NS 1.9493 × 10−7 1.6818 × 10−5 7.3698 × 10−2 1.9638 × 100

Yes RF NS 1.9493 × 10−7 1.6818 × 10−5 7.3698 × 10−2 1.9637 × 100

No CWLS MinMax(0,1) 1.7591 × 10−7 7.8057 × 10−7 7.5727 × 10−2 6.8442 × 10−2

Yes CWLS MinMax(0,1) 1.7591 × 10−7 7.8057 × 10−7 7.5727 × 10−2 6.8442 × 10−2

No GBRT MinMax(0,1)
Yes GBRT MinMax(0,1) 1.9281 × 10−7 8.5577 × 10−7 7.5727 × 10−2 6.8442 × 10−2

No RF MinMax(0,1)
Yes RF MinMax(0,1) 1.9281 × 10−7 8.5577 × 10−7 7.5727 × 10−2 6.8442 × 10−2

No CWLS MinMax(0,2)
Yes CWLS MinMax(0,2) 3.1597 × 10−3 1.3733 × 10−1 6.0173 × 10−2 1.1878 × 100

No GBRT MinMax(0,2)
Yes GBRT MinMax(0,2) 1.3115 × 10−7 5.9619 × 10−7 7.2702 × 10−2 6.6582 × 10−2

No RF MinMax(0,2)
Yes RF MinMax(0,2) 3.1597 × 10−3 1.3733 × 10−1 6.0173 × 10−2 1.1878 × 100

Table 10. Results of the GA solver.

Upper Bound Weight Method Scaler LL Reached Value λ η β
Elapsed Time

(s)

No CWLS NS 756.7873 4.8460 × 10−9 127,529.7255 1.6723 1175.9755
Yes CWLS NS 756.7873 4.8460 × 10−9 127,419.1777 1.6724 1174.8894
No GBRT NS 756.7873 4.8460 × 10−9 127,315.7402 1.6725 1201.4359
Yes GBRT NS 756.7873 4.8460 × 10−9 127,490.0126 1.6723 1182.3434
No RF NS 756.7873 4.8460 × 10−9 127,387.1861 1.6724 1184.8883
Yes RF NS 756.7873 4.8460 × 10−9 127,490.1241 1.6723 1177.2808
No CWLS MinMax(0,1) 756.3793 4.8460 × 10−9 133,799.8400 1.6651 1126.4223
Yes CWLS MinMax(0,1) 756.3793 4.8460 × 10−9 133,799.8405 1.6651 1056.5227
No GBRT MinMax(0,1) 756.3793 4.8460 × 10−9 133,799.8405 1.6651 1165.5899
Yes GBRT MinMax(0,1) 756.3793 4.8460 × 10−9 133,799.8412 1.6651 1046.7461
No RF MinMax(0,1) 756.3793 4.8460 × 10−9 133,799.8409 1.6651 1118.3745
Yes RF MinMax(0,1) 756.3793 4.8460 × 10−9 133,799.8408 1.6651 1072.9131
No CWLS MinMax(0,2) 757.1333 4.8460 × 10−9 156,459.0487 1.6422 1118.3847
Yes CWLS MinMax(0,2) 756.4737 4.8460 × 10−9 139,765.1829 1.6586 1112.1583
No GBRT MinMax(0,2) 757.1333 4.8460 × 10−9 156,459.0482 1.6422 1140.9477
Yes GBRT MinMax(0,2) 756.4737 4.8460 × 10−9 139,765.1844 1.6586 1103.4481
No RF MinMax(0,2) 757.1333 4.8460 × 10−9 156,459.0473 1.6422 1105.1039
Yes RF MinMax(0,2) 756.4737 4.8460 × 10−9 139,765.1829 1.6586 1114.9228

In Table 11, similar behavior to that achieved by IPOPT is observed ( as shown in
Table 9). Nevertheless, GA shows a better consistency in the weights estimated for all the
covariates. The Min–Max(0,2) method still presents poor consistency through the iterations,
in the same covariates as the IPOPT case, and shows sensibility to the existence (or not)
of upper bounds. The NS method still has a greater difference in orders of magnitude of
the weights of Covariates 2 and 4 compared to the values estimated using the Min–Max
methods. Table 12 shows a lower mean computational cost reached by Min–Max methods
against the non-scaling alternative. So, it is easier for solver algorithms to deal with scaled
data than to handle covariate data with a simple increasing transformation (NS).
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Table 11. Weights estimated using the GA solver.

Upper Bound Weight Method Scaler p1 p2 p3 p4

No CWLS NS 9.7500 × 10−16 1.8989 × 10−1 5.0954 × 10−2 1.0428 × 100

Yes CWLS NS 5.8443 × 10−16 1.9170 × 10−1 5.0992 × 10−2 1.0507 × 100

No GBRT NS 1.1242 × 10−13 1.9340 × 10−1 5.1027 × 10−2 1.0581 × 100

Yes GBRT NS 2.3680 × 10−15 1.9054 × 10−1 5.0968 × 10−2 1.0456 × 100

No RF NS 1.2804 × 10−15 1.9223 × 10−1 5.1003 × 10−2 1.0530 × 100

Yes RF NS 1.2422 × 10−15 1.9054 × 10−1 5.0968 × 10−2 1.0456 × 100

No CWLS MinMax(0,1) 2.3341 × 10−16 3.5369 × 10−16 5.1027 × 10−2 4.4779 × 10−2

Yes CWLS MinMax(0,1) 4.7749 × 10−16 4.0651 × 10−16 5.1027 × 10−2 4.4779 × 10−2

No GBRT MinMax(0,1) 3.8399 × 10−16 3.5341 × 10−16 5.1027 × 10−2 4.4779 × 10−2

Yes GBRT MinMax(0,1) 4.7636 × 10−16 4.0128 × 10−16 5.1027 × 10−2 4.4779 × 10−2

No RF MinMax(0,1) 3.7140 × 10−16 3.8111 × 10−16 5.1027 × 10−2 4.4779 × 10−2

Yes RF MinMax(0,1) 2.9873 × 10−16 1.7825 × 10−16 5.1027 × 10−2 4.4779 × 10−2

No CWLS MinMax(0,2) 3.2435 × 10−16 2.2551 × 10−15 3.5347 × 10−2 2.9013 × 10−15

Yes CWLS MinMax(0,2) 1.4053 × 10−16 5.8639 × 10−16 4.8051 × 10−2 4.0673 × 10−2

No GBRT MinMax(0,2) 3.2011 × 10−16 2.2414 × 10−16 3.5347 × 10−2 1.2945 × 10−15

Yes GBRT MinMax(0,2) 1.7579 × 10−16 3.4217 × 10−16 4.8051 × 10−2 4.0673 × 10−2

No RF MinMax(0,2) 3.4526 × 10−16 6.2181 × 10−16 3.5347 × 10−2 9.1053 × 10−16

Yes RF MinMax(0,2) 1.1811 × 10−16 4.1346 × 10−16 4.8051 × 10−2 4.0673 × 10−2

Table 12. Mean Times elapsed for each scaling method and solver.

Scaling Method Mean Time GA (s) Mean Time IPOPT (s)

NS 1182.8022 8.0652
MinMax(0,1) 1097.7614 3.8501
MinMax(0,2) 1115.8276 4.1569

In addition, for goodness-of-fit purposes, the p-values for each parameter estimated
through both solver strategies are calculated based on 95% profile likelihood confidence
intervals and Wald test using the Python library VeMoMoTo. The p-values for the GA and
IPOPT cases are shown in Table 13 and Table 14, respectively.

Table 13. Calculation of p-values for GA estimated parameters.

Upper Bound Weight Method Scaler η β p1 p2 p3 p4

No CWLS NS 0.360 <0.001 <0.001 <0.001 <0.001 <0.001
Yes CWLS NS 0.360 <0.001 <0.001 <0.001 <0.001 <0.001
No GBRT NS 0.360 <0.001 <0.001 <0.001 <0.001 <0.001
Yes GBRT NS 0.360 <0.001 <0.001 <0.001 <0.001 <0.001
No RF NS 0.360 <0.001 <0.001 <0.001 <0.001 <0.001
Yes RF NS 0.360 <0.001 <0.001 <0.001 <0.001 <0.001
No CWLS MinMax(0,1) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Yes CWLS MinMax(0,1) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No GBRT MinMax(0,1) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
Yes GBRT MinMax(0,1) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No RF MinMax(0,1) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
Yes RF MinMax(0,1) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No CWLS MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
Yes CWLS MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No GBRT MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
Yes GBRT MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No RF MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
Yes RF MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
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Table 14. Calculation of p-values for IPOPT estimated parameters.

Upper Bound Weight Method Scaler η β p1 p2 p3 p4

No CWLS NS 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
Yes CWLS NS 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No GBRT NS 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
Yes GBRT NS 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No RF NS 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
Yes RF NS 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No CWLS MinMax(0,1) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Yes CWLS MinMax(0,1) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No GBRT MinMax(0,1)
Yes GBRT MinMax(0,1) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No RF MinMax(0,1)
Yes RF MinMax(0,1) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No CWLS MinMax(0,2)
Yes CWLS MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No GBRT MinMax(0,2)
Yes GBRT MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001
No RF MinMax(0,2)
Yes RF MinMax(0,2) 1.000 <0.001 <0.001 <0.001 <0.001 <0.001

Note that p < 0.05 means that the results are statistically significant, rejecting the null
hypothesis. Tables 8 and 10 show that both optimization algorithms reach feasible solutions
in most of the simulated iterations. The iterations that do not reach a feasible solution have
the absence of an upper bound as a common factor. In addition, from Table 12, it is possible
to appreciate that GA, on average, requires much more computational cost than IPOPT
but manages to always reach feasible solutions, unlike IPOPT. In almost all cases (with
a feasible solution), the shortest times are achieved when upper bounds are considered.
Therefore, the upper bounds have an impact to consider in the optimization methods,
which is higher in IPOPT.

The initial value method for the weights that presents the highest robustness is CWLS;
in the least consistent optimization algorithm (IPOPT), it manages to obtain feasible solu-
tions without upper bounds in most cases; this could indicate that CWLS is closer to the
real covariate weights than the other methods. The results of IPOPT (Table 8) reach lower
values of LL than those of GA (Table 10) in all cases (with a feasible solution).

For illustrative purposes, taking as an example the solutions from IPOPT optimization
with the NS method, CWLS, and upper bounds, it is possible to estimate the conditional
reliability functions, as explained in Section 3.5. So, the generated transition probability
matrix is shown below.

Therefore, three states are generated using the proposed method in [3], and the Table 15
matrix is calculated. With this matrix, it is possible to obtain conditional reliability for each
state (with ∆ = 100 and tinitial = 0), as can be seen in Figure 2.

Table 15. Transition Probability Matrix.

State 1 2 3

1 99.9917% 0.0050% 0.0033%
2 0.0049% 99.9828% 0.0123%
3 0.0024% 0.0048% 99.9929%

Then, Figure 2 shows the corresponding conditional reliability functions using the
probability transition matrices as input to the aforementioned product property method.
The reliability behavior for each state is similar. Consequently, State 1 corresponds to the
state where the asset exhibits the highest reliability, followed by State 2 and then State 3,
which present the lowest reliability over time.
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Figure 2. Conditional reliability function for the case study.

Figure 3 illustrates the remaining useful life (RUL) by incorporating the estimated
conditional reliability functions as inputs for predictive analysis. This representation
considers the progression of clustered covariate data across various states. Unsurprisingly,
State 1 emerges as the optimal condition, characterized by a gradual decline in RUL from
its peak, indicative of a smoother degradation process. Conversely, State 3 is identified as
the least favorable clustered condition, exhibiting the most pronounced and aggressive
deterioration throughout its operational lifespan.

Figure 3. Remaining useful life for the case study.

With respect to the other component of the Predictive PHM Model (Equation (15)),
i.e., the contribution of age to the risk rate, values of β and η align with their interpretation
in conditional reliability and Remaining Useful Life (RUL), as evidenced in Figures 2 and 3.
In Table 8, it is observed that the value of β is greater than one, indicating a stage of wear in
the asset’s life cycle. This implies that the studied equipment is aging over the analyzed
period. Characteristic life η also aligns with the values of operating time. However, it is
interesting to note that in the initial stages of the life cycle, the impact of the clustered
condition is slightly more significant than the effect of age; that is, the difference in RUL
between states is more noticeable.

In alignment with the PHM model, divergences in Remaining Useful Life (RUL)
decrease during the later stages of the asset’s lifespan. This indicates that, over prolonged
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operational periods, the influence of time becomes more prominent as the overall condition
of the asset undergoes significant degradation in advanced operating times.

In summary, the Genetic Algorithm (GA) exhibits greater robustness compared to
IPOPT, even though GA falls short of achieving results as optimal as IPOPT concerning log-
likelihood values (LL) and computational cost. It is important to notice that LL measures
the goodness of fit of a statistical model, but p-values related to 95% confidence intervals for
the estimated parameters are calculated as well. Introducing the Kaplan–Meier estimator
as an upper bound yields superior results compared to scenarios without upper bounds,
establishing it as a valuable technique for upper bound estimation. Additionally, Gradient
Boosting with component-wise least squares (CWLS) as the base learner demonstrates
robustness in providing reliable initial value estimates across all analyzed iterations. Hence,
it is evident that addressing boundaries and employing a thoughtful initial value strategy is
crucial for effectively solving this problem. Moreover, the estimation strategy introduced in
this study enhances the robustness of Maximum Likelihood Estimation (MLE) optimization
in the Weibull Proportional Hazard Model (PHM).

The data scaling methods improve performance of solver algorithms, reaching optimal
solutions with less computational efforts. Additionally, the Gradient Boosting approach
and the voting method of Random Forest (RF) are easily interpretable due to their intuitive
operation. Furthermore, their calculation processes are straightforward to follow. However,
the Component-Wise Least Squares (CWLS) method appears to outperform other methods
for the considered optimization algorithms. Finally, as an illustrative example of attainable
solutions, a transition matrix is calculated. Subsequently, the conditional reliability function
and Remaining Useful Life (RUL) are estimated for each state, contributing to enhanced
predictive analyses for Condition-Based Maintenance (CBM).

All the presented findings are derived from a real-world dataset within the electric in-
dustry, encountering typical data handling challenges such as missing values and non-ideal
behaviors of the underlying data distributions—a common occurrence across various fields.
To address these challenges, mixed semi/non-parametric algorithms are employed, capable
of handling multiple variables with diverse behaviors and units. However, the multi-
objective problem-solving approach proposed in this study may need further validation
with additional covariates when diverse datasets from other capital-intensive scenarios are
presented. Additionally, a dedicated study focusing on challenges related to parameter
estimation and the integration of covariate bands calculation is essential to develop a robust
and integrated Data-Driven multi-covariate Weibull Proportional Hazard Model (PHM).

5. Conclusions

This paper adopted new data-driven approaches for parameter estimation in the
Weibull PHM context. Several Machine Learning methods were proven to estimate bound-
aries and starting/initial values for a non-convex problem, i.e., Cox’s partial likelihood
with multiple covariates and Weibull distribution. Two optimization algorithms, a genetic
algorithm (non-parametric) and an interior point optimizer (semi-parametric), were used
to solve this non-convex problem, reaching feasible results in both cases. In addition, data
scaling was analyzed, and the inclusion of Min–Max methods showed consistent MLE
results when the max value was 1 and was better than the expert knowledge method (NS).
So, regarding computational cost, data scaling simplifies the work for the optimization
methods and helps to reach an outperformed MLE.

In conclusion, the proposed methodology establishes a novel framework for evalu-
ating covariate weights and Weibull parameters by applying data-driven methodologies
and advanced algorithms in scenarios when the boundaries assessment and seed values
strategy are critical. This approach contributes to heightened robustness in non-convex
log-likelihood optimization. Furthermore, data scaling helps the covariate data handling
when different orders of magnitude and units are involved. Finally, it enhances the Propor-
tional Hazards Model (PHM) by assessing multiple covariates under a Machine Learning
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approach, thereby offering a more interpretable model for the decision-making process in
predictive maintenance.

In future work, one possible area of focus could be the validation and testing of the pro-
posed methodology in a wider range of industrial applications. While the real-world case
study in the electric power industry provides promising results, testing the methodology in
other industries, such as transportation, energy, or mining, to evaluate its effectiveness and
generalizability. Additionally, further research could explore integrating other advanced
data-driven techniques to enhance the accuracy and reliability of RUL prediction in PHM
models with multiple covariates. Finally, future work could also investigate using other
probability distributions, such as log-normal or Gamma distributions, to model the failure
data and compare their performance with the Weibull distribution.
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