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Abstract: As manufacturing and assembly processes continue to require more adaptable systems
for automated handling, innovative solutions for universal gripping are emerging. These grasping
systems can enable the handling of wide varieties of shapes, with gripping forces varying with
grasped geometries. For the efficient usage of handling systems, precise offline and online prediction
models for resulting grasping forces for different objects are necessary. In previous research, a flexible
vacuum-based granular gripper was developed, for which no option for predicting gripping forces is
currently available. Various gripping force prediction methodologies within the current state of the
art are examined and evaluated. For an assessment of grasping forces of previously untested objects
for the examined gripper with limited data and low computational effort, two methodologies are
proposed. An analytical, 2D-geometry-derived gripper-specific metric for geometries is compared to
a methodology based on similarities of objects to a small existing dataset. The applicability and pre-
diction quality for different object types is analyzed through validation experiments. Gripping force
estimations are possible with both methodologies, with individual weaknesses towards geometric
features such as air permeabilities. With further development, robust predictions of gripping forces
could be achieved for a wide range of unknown object geometries with limited experimental effort.

Keywords: prediction; intelligent grasping; digitalization for handling; end effectors

1. Introduction—Graspability Prediction

As a key component of technology for industrial manufacturing, grasping continues
to be very relevant for the handling and assembly of components [1]. The productivity
and quality of these manufacturing processes are very reliant on a precise and efficient
grasp of components. In order to achieve a high degree of automation, secure and reliable
gripping is necessary for the planning as well as the implementation of handling processes
with minimal malfunctions or disturbances. Therefore, most industrial use cases currently
emphasize the implementation of trusted standard gripping solutions such as suction cups
or mechanical grippers. Innovative gripping solutions already offer advantages of coping
more easily with the steadily increasing requirements for rising complexity, flexibility and
product variants. However, for acceptance within the industry, it is necessary to enable
reliable grasping planning and prediction for these new systems [2,3]. Additional factors
such as a reduction in the over-dimensioning of gripper systems create advantages for
grasping force assessments such as a decrease in required energy. This incentivizes the
creation of methodologies for predicting and locating optimal gripping points on objects
and components [4]. In conclusion, when new handling solutions are developed, their
capabilities and possibly graspable object spectra have to be assessable. For this, methods
for the evaluation of surfaces regarding their graspability and achievable gripping forces
are a necessary hurdle-of-entry, especially regarding possible future industrial applicability.

In this research, different methods for the prediction of grasping forces for a specific
innovative gripper are introduced and analyzed, especially for the goals of implementation
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with limited experimental effort and applicability during a gripping process in real-time.
For this, the state of the art is shown in Section 1, with a differentiation between simulations,
analytical parameters, feature-based prediction and similarity-based assessments of the
grasping forces of different grippers. In Section 2.1, the specific gripper examined in
this research is presented and the options regarding the possibilities for a prediction of
achievable gripping forces are discussed. Previous applicable gripper-specific research,
as well as reference object datasets, are discussed in Sections 2.2–2.4. The two selected
prediction methodologies are shown in more detail in Sections 3.1 and 3.2, with their
results compared and analyzed in Section 3.3. The respective strengths and weaknesses
for this gripper and the dataset are discussed in Section 4, with outlines for possible future
continuations of these methods. The presented research is summarized in a conclusion in
Section 5.

1.1. Graspability Prediction—Approaches and the State of the Art

According to Bohg et al. [5], the planning of grasps based on data given as 3D models
such as point clouds is a widespread challenge that can be assessed with simulations as well
as analytical and model-free approaches. This planning process mostly depends on the end
effector used, as the characteristics and behavior can differ greatly. Due to the discussed
current industrial focus on reliable handling systems, there is a plethora of graspability and
gripping force prediction methods for widespread standard mechanical and vacuum-based
grippers. However, the methods for graspability assessment for more flexible grippers
are limited. There are few examples for research regarding the gripping characteristics
in soft robotic designs, which are mostly focused on the applicability of an analytical
assessment for pneumatic actuation in order to achieve curvature profiles for robotic hands
with varying flexural rigidity [6]. Therefore, examples for various approaches mostly
based on standard mechanical and vacuum-based grippers are examined in the following
paragraphs in order to provide an overview of possible methods and approaches for the
prediction of gripping behavior and achievable gripping forces. Finally, the possibility
for similarity-based prediction as an overarching option for different grasping solutions
is shown.

1.2. Simulations

Simulations theoretically enable the prediction of the behavior and achievable grasping
forces for all types of grippers, including mechanical [7] or suction-based grippers, often
implementing tools such as Finite Elements Modeling (FEM) [8,9]. Research on mechanical
grippers usually analyses the specific mechanics of the contact of finger grippers with
grasped objects [10–12], in order to determine the possible graspability based on forces
created by friction or interlocking. Typically, simulations are adjusted specifically to the type
of examined gripper, as the grasping characteristics differ greatly. Therefore, simulations of
suction cup grippers, which are often made from silicone or other elastic materials, utilize
simulation approaches optimized for these models, such as spring contact models and
compliant contact models [13,14]. Even though simulations could achieve a highly accurate
prediction of a resulting grasping force, they are usually not conducted ‘in real time’ during
the online grasping process. This is a result of the simulation time possibly exceeding
multiple hours or even days. Therefore, without significant reductions in complexity,
simulations are mostly applicable to offline planning processes.

1.3. Gripper-Specific Analytical Parameters

Analytical parameters for a grasping force analysis specific to the boundary conditions
of the handling task are widely used in research, such as quality criteria for the geometric
analysis of achievable forces [15] for finger grippers. They are often specified as a singular
quantitative value, which can be used to rank different grasping possibilities and ideally
can be efficiently calculated from an object’s surface with limited computational effort. This
could also be implemented online during the handling process in real-time in order to
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evaluate different objects for graspability. For this task, Jiang et al. [16] propose intuitive
suction grasp analytic metrics based on point clouds for small suction grippers. These
metrics could be based on physical properties such as the smoothness of a surface. These
types of analytical parameters for grasping forces or graspability are often highly specific to
the grippers’ functionality and therefore have to be developed and adjusted to the specific
gripper characteristics. If the evaluation for this parameter is achievable with limited
computational effort, a real-time assessment of object surfaces with a varying prediction
accuracy will be enabled.

1.4. Model-Free Prediction and Machine Learning

A parameter for an assessment of a successful grasp or even a possible ranking of
grasping locations could also be achieved through model-free implementations or Machine
Learning (ML) methods such as Convolutional Neural Networks (CNN). An example is
given in Lin et al. [17], where segmentation processing for mechanical grippers is applied.
The researchers developed an ML-based methodology, which tries to fit shapes into object
geometries in order to achieve a prediction of possible grippability, and validates this
with an object set of 31 objects. Especially for suction-based gripping predictions, Deep
Learning has been popular in past years. These approaches implement ML structures
such as deep Grasp Quality CNNs [14,18,19], which require large amounts of data to
create an accurate prediction of the gripping success. Combinations of multiple CNNs
with the first ‘pruning unlikely candidate grasps’ and the second CNN used for the finer
details have also been examined [20]. Additionally, CNNs are often used for the detection
or determination of the orientation for known objects [21]. This can be categorized into
the section of grasp hypotheses based on prior object knowledge [5], especially for the
object recognition of known objects. This is often implemented with further CNN-based
algorithms, such as YOLO or R-CNN [1,22]. Similar to most CNN-based algorithms, this
requires a large amount of data in advance [18] or a continuous retraining, which would
result in failures during operations [18]. Without these necessary data, the following lack of
depth regarding the training of these algorithms usually impacts the effectiveness of these
applications drastically.

1.5. Similarity-Based Prediction

Prediction based on similarity to known or familiar objects is quite common and can be
performed by analytical methods. Compared to CNNs, this implementation can achieve a
prediction with significantly reduced training data. Different methods for matching surfaces
or point clouds [23] are possible. The usage of the Coherent Point Drift algorithm (CPD) has
shown a broad spectrum of applications. This was first proposed by Myronenko and Song
in 2010 [24] and can now be described as a well-known probabilistic framework which uses
variational calculus on the basis of Gaussian mixture models for object comparison. CPD is
applicable for both rigid as well as non-rigid applications in the presence of noise, outliers
and missing points. This enables not only a prediction of the most optimal transformation
for a best fit of two point clouds, but also a parameter for the similarity of two point
clouds. This can be used to create a ‘score’ for the comparison of an object with an existing
database. Its applicability to gripping strategies for different gripper types has already
been shown [25,26] and is expected to be theoretically feasible for most grippers. The
computational effort is dependent on the implemented calculus models as well as the
size of the comparison dataset and could take from seconds up to hours to achieve an
assessment of a single surface.

1.6. Summary of the State of the Art

In conclusion, simulations are generally feasible for the examination of the possible
graspability of an object, but can be very resource-intensive depending on the gripper type.
A feature-based and gripper-specific analytical parameter or a feature examination with a
model-free approach (such as ML) would also be applicable. However, ML-based solutions
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tend to require large datasets. Lastly, predictions based on similarity to a known dataset
could be achieved through ML or methods such as the CPD algorithm and are somewhat
promising regarding their applicability towards new grippers. These possibilities should
be evaluated for a possible implementation, especially regarding necessary boundary
conditions resulting from a comparatively small amount of available data or a planned
implementation in real-time for an online assessment during handling processes.

2. Materials and Methods

As an introduction to this section, the specific gripper examined is presented. In
order to enable an overarching assessment of the applicability of the methods presented
in the state of the art towards the specific examined gripper, a brief overview of existing
insights into the behavior and characteristics is shown. This knowledge is applied to the
selection process for appropriate methodologies to predict achievable grasping forces with
this gripper and the set boundary conditions of a limited availability of experimental data
and the goal of enabling online predictions. In order to enable the functionality of the
selected methods with these set boundary conditions, two object datasets for the training
and validation of these methods are discussed.

2.1. Examined Gripper

The examined gripping solution was developed at TU Braunschweig [27,28] and has
opened up possibilities for the handling of a large variety of object geometries with a single
gripper (see Figure 1). This gripper shows some similarities to granular grippers [29], the
most characteristic difference being the porous area in the membrane. The gripper cushion
can mold to different object geometries, creating a seal between the porous membrane area
and the object (Figure 1b). When a pressure difference is applied to this setup, the granular
material jams around the grasped object and the combined forces resulting from the
pressure difference, as well as jamming effects, can achieve a secure grasp for a multitude
of objects. However, due to the multitude of influences on the grasping process, from
jamming to vacuum-based effects, the achievable grasping force varies for different object
geometries (see Figure 2). This geometric dependency of the achievable grasping forces is
addressed in this publication.
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Figure 1. Vacuum-based granulate gripper examined in this research. (a) Example of this gripper [30];
(b) schematic of the gripper (based on [31]).

In order to improve the implementation of this new type of gripper in handling
systems, which take advantage of the flexibility of this gripper, a prediction methodology
specific to this new innovative system has to be created.

As seen in Figure 2, the knowledge of an object’s geometry can be used as an input
parameter, which could be made available in online handling setups via various sensors
or via CAD files during the planning in offline setups. However, due to the novelty of the
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gripper shown in Figure 1, there are currently no possible methodologies for predicting
the resulting grasping forces for different geometries of handled objects. This grasping
force therefore has to be evaluated through manual, time-consuming experiments for each
individual new geometry.

In order to automate the assessment of differently shaped objects or object surface
areas for a prediction of the resulting achievable grasping forces, an evaluation of possible
methodologies is required. As discussed in Section 1, an implementation of such a method
has to be selected and evaluated specifically with a focus on the requirements and boundary
conditions of the examined gripper. The resulting output of such a methodology should
enable a prediction for the expected resulting grasping force for any arbitrary surface with
this new gripper.
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Figure 2. In-and outputs for a method for predicting the achievable gripping forces achievable for
the examined gripper.

2.2. Gripper-Specific Previous Research

Previous research has shown a dependency of this molding and jamming characteristic
on gripping design parameters such as a membrane stiffnesses and granular materials [27].
Object surface roughness and materials have a negligible influence within a tested spectrum
of materials [31]. For the following paragraphs, objects additively manufactured from PLA
(Polyactic Acid) as well as a single gripper configuration with a height of 60 mm, a diameter
of 150 mm and a filling of roughly 4100 ABS (Acrylonitrile-Butadiene-Styrene) beads with
a diameter of 6 mm are examined (as seen in Figure 1). The membrane consists of 1.25 mm
Polyurethane, and the symmetrically arranged porous area on the bottom of the gripper
extends to a diameter of 95 mm and makes up a porous area Apor of about 4500 mm2. The
forces in the Z-direction, as well as the vacuum during the gripping process, are shown in
Figure 3. The contact of the gripper is achieved through an initial contact force surpassing a
minimum (80 N for this research) by a Kuka LBR iiwa robot. The forces are measured with
a K6D40 force sensor with a maximum force of 500 N in the Z-direction. The air pressure
difference is measured by a VS VP8 SA M8-4 vacuum sensor and reaches up to 0.42 bar
created by a Variair Unit SV201/2 (up to 4 kW), which is applied after opening the valve
shown in Figure 1. After a delay of 2.5 s, the gripper is pulled up vertically at a defined
pull-off-speed and detaches from the object surface. The maximum force measured during
this process is used in the following paragraphs as the achievable gripping forces for an
experiment. Further information about this setup can be found within the references [31,32].

As analyzed in Wacker et al. [31], this gripper’s characteristics are very comparable to
a standard suction gripper for mostly flat surfaces. As long as over ~90% of the gripper’s
porous membrane is covered by the object, the gripper can create a gripping force which
can be described as being linear with the applied vacuum (see Equation (1)). However,
for more complex geometries, the achievable gripping force Fachievable is also influenced
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by jamming as well as slip-off effects affecting the seal of the gripper with the object. The
achievable gripping force continues to correlate with the applied vacuum ∆p; however, an
additional object-specific correction parameter Ccombined (Equation (1)) is utilized as well
as the gripper-specific area Atmax.

Fachievable = Ccombined · ∆p · Atmax (1)

This correction parameter combines the influences of the affected area with the slip-
off and granular jamming effects and can reach values between 0 and 1. Even for flat
surfaces (with minimal influence from the granular jamming effects), a gripping force can
be reached, which is higher than expected from the size of the porous area Apor and the
standard relation of the pressure difference and the affected surface area. This is suggested
to be a result of airflow effects and the curvature of the porous area (Figure 4a). The
theoretical maximum gripping force would be achieved if the area of the entire diameter
Atmax of the gripper arched inwards. In this case, no granular gripping effects (which are
smaller than the suction effects) would influence the gripping force, and therefore this is the
maximum achievable force and would be equal to the value 1. In this theoretical extreme,
the gripper would be functioning as a suction cup and the actual effective area would be
equal to Atmax.
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A value for Ccombined close to zero can be achieved by trying to grasp an object with
extreme geometries, where a limit of the gripper’s deformability is exceeded. This limit
depends on factors such as the granular material or the membrane used. An example for
the limited deformability towards objects is shown with a corrugated surface in Figure 4b.
Visible is the CAD view of the geometry, as well as an image of the gripper being placed on
top of the object, resulting in the described value for Ccombined close to zero.

This object-specific correction parameter Ccombined can currently only be determined
through experiments or an approximation to available data. It shows a high accuracy to
the linearization proven by a high coefficient of determination (R2) of up to 0.99 [31,32]. An
example is shown for three different objects in Figure 5, where the achievable forces for the
different objects are mostly linear with the pressure difference.

Machines 2024, 12, x FOR PEER REVIEW 7 of 29 
 

 

 
Figure 4. (a) Deformation of the membrane increasing the effective area; (b) 3D-rendered image of 
a corrugated (wavy) surface with a diameter of 30 mm as well as photographs of the gripper being 
placed on this surface. 

This object-specific correction parameter Ccombined can currently only be determined 
through experiments or an approximation to available data. It shows a high accuracy to 
the linearization proven by a high coefficient of determination (R²) of up to 0.99 [31,32]. 
An example is shown for three different objects in Figure 5, where the achievable forces 
for the different objects are mostly linear with the pressure difference. 

 
Figure 5. Achievable gripping forces over pressure difference for different objects for 30 repetitions, 
from 30% to 100% of the possible compressor power [31]. 

Here, the geometric dependency is visually perceptible as the parameter Ccombined, 
which can be described as the slope for individual objects (see also: Equation (1)). 

The necessity for an experimental determination of Ccombined for every possible object 
is time-consuming. The experiments would have to be repeated for different configura-
tions of this type of gripper, if, for example, a sturdier membrane has to be implemented 
due to requirements of a possibly rougher industrial environment. The capability of an 
offline prediction of a possible coverage of over 90% (as mentioned above) of the gripper’s 
porous surface as well as a prediction of Ccombined for unknown object geometries is a ne-
cessity for a preliminary assessment of a gripping possibility in order to achieve a certain 
reliability for handling processes. Therefore, the key questions for handling any new ob-
ject surface with a specified gripper of this type have to be:  
• Is the geometry grippable? (Is the object surface > 90% airtight?) 
• Which Ccombined is achievable for this geometry? 

Figure 5. Achievable gripping forces over pressure difference for different objects for 30 repetitions,
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Here, the geometric dependency is visually perceptible as the parameter Ccombined,
which can be described as the slope for individual objects (see also: Equation (1)).

The necessity for an experimental determination of Ccombined for every possible object
is time-consuming. The experiments would have to be repeated for different configurations
of this type of gripper, if, for example, a sturdier membrane has to be implemented due
to requirements of a possibly rougher industrial environment. The capability of an offline
prediction of a possible coverage of over 90% (as mentioned above) of the gripper’s porous
surface as well as a prediction of Ccombined for unknown object geometries is a necessity for
a preliminary assessment of a gripping possibility in order to achieve a certain reliability
for handling processes. Therefore, the key questions for handling any new object surface
with a specified gripper of this type have to be:

• Is the geometry grippable? (Is the object surface > 90% airtight?)
• Which Ccombined is achievable for this geometry?

In the future, this could be expanded for larger objects, in order to determine the
optimal placement of the gripper for the highest possible grasping force or a minimal
required vacuum.

2.3. Assessment and Selection of Possible Gripping Prediction Approaches for the
Examined Gripper

According to the state of the art, a multitude of solutions for a prediction of Ccombined
are possible (see Figure 6). A solution for the graspability prediction has to be chosen
in accordance with the gripper’s design and the availability of data. Multiple combined
approaches or multi-step solutions could also be a possibility. The main goal within this
research is to determine and enable methods which allow for an assessment of achievable
grasping forces for online as well as offline approaches with realistic experimental effort.
Therefore, an analysis and selection of the possible approaches and their applicability with
regard to experimental and computational effort are presented in the following paragraphs.
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2.3.1. Applicability and Challenges of Simulations and Model-Free Approaches

As shown in Figure 6, simulations can be specifically adjusted to the design of the
gripper. FEM models used for mechanical finger grippers are not easily transferrable to the
characteristics of the examined gripper in this research. Similarly, the sealing of standard
suction-based grippers is difficult to adjust to the characteristic interactions of deformability,
granular contacts, sealing and suction, as well as to the larger scale of the examined gripper.
In order to evaluate the jamming of particles with air flow, a simulation based on discrete
elements (DEM) could also be examined. However, all of these simulations of this gripping
design would be very resource-intensive. The achievable gripping force is influenced by
a multitude of parameters. Possibly influential are the characteristics and the amount of
granular material, the type and stiffness of the used membranes, etc., and these would
have to be combined with a flow analysis (CFD) for an evaluation of the resulting grasping
force. Therefore, even though simulations could achieve the most accurate predictions even
with limited experimental validation, they are not part of the research discussed within
this publication.

The current research for other types of grippers shows good results for CNN-based
grasping predictions. However, this requires large amounts of either experimental or
simulated data, which are not currently available for this gripper. Theoretically, all kinds of
prediction methodologies could be simplified and approximated with ML-based methods,
ranging from a similarity comparison to a simulative analysis. However, as none of these
methodologies are currently available for the examined grasping solution, ML can be
viewed merely as a possible aspect for future research regarding this gripper.

2.3.2. Selection of Prediction Methods Based on Similarity and Feature Extraction

As discussed above, solutions based on analytical parameters as well as similarity
(Figure 6) could offer possibilities for a graspability assessment with limited computa-
tional or experimental effort, while still achieving adequate results. As a result, analytical
parameters based on the geometry of grasped objects as well as a similarity to a pool of
experimentally tested objects are the two approaches selected to enable a prediction of
achievable grasping forces.

2.3.3. Structure and Further Procedure

Due to the analysis of the current state of the art, this research aimed to create specially
developed analytical parameters based on the requirements of the examined gripper. As a
comparison, a prediction of achievable gripping forces based on a similarity of geometric
features achieved through CPD is implemented. Both methodologies are promising in
regard to an implementation with limited experimental effort and are not directly depen-
dent on Machine Learning implementations more complex than a simple regression. The
approaches are examined regarding their respective strengths and weaknesses of achievable
prediction quality as well as computational effort.
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In order to enable this comparison of the suitability of the prediction methods for
this gripper, sets of objects have to be specified which can be used to train and later
validate and compare the prediction methods. As a basis for both methods, an adequate
data structure for the object sets is defined which is used in the same format for both
prediction methodologies. With these object datasets, as well as the defined data structure,
the starting conditions for approaches are achieved and the description of the specific
suggested procedures is presented in Sections 3.1 and 3.2. In Section 3.3, results for both
approaches are compared and possible further improvements are discussed in Section 4. A
summary of this further structure is shown in Figure 7.
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2.4. Examined Object Datasets

For both analytical as well as similarity-based predictions of gripping forces, experi-
mental datasets consisting of different object geometries are necessary. As mentioned in
Section 2.2, all used objects for both datasets are created from PLA in an additive manufac-
turing process, as surface parameters within specific limits have a negligible influence [31].

For the analyzed gripper, Wacker et al. [31] have shown a dependency of the graspa-
bility of an object on the creation of a vacuum, for which a good seal with the object surface
is necessary. This graspability is mostly impacted by three object geometry characteristics:

• Sealing difficulties due to holes in the surface (air permeability);
• Sealing difficulties on the sides due to convexity of the object (Figure 8a);
• Sealing difficulties under the gripper due to a structured surface or concavity

(Figure 8b,c).
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Some other effects, such as slipping-off for more convex geometries or deformation of
the membrane (as shown in Figure 4a), are also heavily influenced by the object geometries.
When stable sealing is realized, the achievable gripping forces will most likely vary for
different object shapes, even if they are of a similar size. This can be explained by suction-
as well as non-suction-based grasping force components being influenced by granular jam-
ming, slip-off and possible air-flow effects within the grasping interface. These additional
forces vary in their strength with the geometrical features of the grasped objects, so the
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examined objects should vary broadly in their shape and geometry. The spectrum should
range from being unable to create a seal due to the features shown in Figure 8 to reaching
various strengths of gripping forces after achieving stable sealing of the gripper surfaces
with the object.

Distinct training and validation datasets are required to calibrate and validate the
characteristics of the methods. The training dataset has to be representative for limits and
extremes regarding the object geometry for the capabilities of the examined gripper. Thus,
a broad spread of geometries should be included, while the number of objects should still
be limited, so that the necessary experimental efforts are still tolerable.

For the dataset used for validation, the inter- as well as extrapolation possibilities of
the methodologies have to be analyzed, so the applicability to different object types can be
gauged, while an analogue restraint regarding the number of objects is applicable to limit
the size of experimental efforts.

2.4.1. Training

The training object set is shown in Figure 9 and consists of 31 different objects. The
object surfaces are centered and averaged to be perpendicular to the gripper’s surface,
and the gripping process itself is also always perpendicular (see Figure 3). Different basic
geometries placed on a 170 mm × 170 mm pedestal are used, with rotational and non-
rotational symmetrical features. Additionally, different structured repetitive surfaces are
examined. Different shapes as well as overlaps of the structured surfaces are used, as the
achievable gripping forces strongly differ even with these small changes, such as 200 N for
10 mm beads with 0% overlap to 300 N with 20% overlap (see Appendix A with Figure A1)
at the maximum available pressure difference. In general, the values for Ccombined vary
between 0 and 0.4.
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2.4.2. Validation

For the validation data, 25 objects of three different types are used (see Figure 10), with
the objects centered to the gripper.

Flat surfaces with different air permeabilities as well as rectangular and square objects
in different sizes smaller than the gripper’s diameter are part of this dataset. As a second
type of objects, the intra- as well as extrapolation for known object geometries was tested
with untrained diameters of convex cylinders. As a third data set, a selection of different
geometries such as convex and concave pyramids and cones was examined. A step geome-
try with differently rounded edges as well as a 3D-structured surface were also included,
which were not similar to the trained structure type. In order to avoid a skewing of the
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results by the pedestals of the training data, no pedestals were used for the validation data.
For these objects, values for Ccombined varied between 0 and 0.37.

The objects of both datasets were evaluated experimentally in accordance with Figure 3,
with three gripping attempts per setting of compressor power. With this compressor power
being varied between 50 and 100% in five steps, 15 experiments were recorded for each
object and used to fit Ccombined.
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3. Prediction Approaches and Results

In the following paragraphs, the creation and functionality of the examined prediction
methods of an analytical contact score and a CPD-based similarity are shown and discussed.
As a boundary condition, the approaches should be compatible with implementations for
offline as well as online prediction tasks. As a result, typical offline point clouds, which
could be sourced from CAD/CAM systems as well as point clouds generated by sensors
(such as stereo cameras), should be possible inputs in order to secure future expandability
and enable a broad applicability of the presented methods.

3.1. Analytical Contact Score

The main goal for the analytical parameter is to create a time-efficient method to
exclude surfaces with a very limited graspability and, if possible, enable a prediction of
the achievable grasping force. Therefore, the discussed difficulties for the creation of a
seal should be identified without any further input, while being comparable over most
conceivable objects. This difficulty could vary for other gripping configurations with other
membranes or granular material, and therefore should be detected in a way which enables
an adjustment to the currently examined gripper. In consequence, a type of object analysis
has to be created which uses a similar data structure for all objects and embeds adjustable
information, which enables the completion of two subgoals:

• Identification of air permeability;
• Identification of locations, where the gripper is capable of creating an interface with

the surface contour.

3.1.1. Procedure for the Calculation of the Analytical Contact Score

For most approaches, data structures with a homogenous distribution of data are ideal;
this would also open up possibilities for implementing usually image-based CNN methods
in the future, when more data are available. In the scenarios examined for this research, it is
necessary to create a basic structure for a comparison of different objects. Consequently, the
formatting of data into a grid form (similar to pixels) should be achieved. After formatting
into a grid, the two subgoals of identifying air permeability and the creation of an interface
with a surface contour are addressed.
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3.1.2. Detecting Air Permeability

In the following paragraphs, STL files are used as a starting point. STL is a widespread
data format which is based on surfaces created by triangularly connected points and could
be the output of a surface sensor such as a stereo camera or CAD software. As seen in
Figure 11a (step 0), due to the nature of formatting as a triangle mesh, the raw data density
of these STL files is not necessarily suitable for the creation of a grid on the surface of objects.
Different possibilities exist for the creation of a grid, such as ray casting or interpolating
the grid on the triangles. The main risk to avoid is the interpolation of points over holes
in the surface, as the aim is to find the grid coordinates where no triangle is anywhere
below the gripper. This would represent a hole and therefore air permeability. In order
to achieve a grid without an interpolation over holes, a function for the generation of
randomly (Poisson) distributed points on the triangle mesh from the Python package
open3D is created in step I (Figure 11b) and a grid with the width dGrid in the x-y-plane
is overlayed (here: dGrid = 1 mm). The randomly generated points are assigned to the
respective closest grid coordinates in step II. As a result, this grid contains information
regarding the density of this point cloud projected onto the x-y-plane. This is visible as the
colorization of the grid coordinates in Figure 11c, with most coordinates having a point
density between 40 and 80, and merely a few coordinates counting up to 160 points due to
larger vertical structures at the respective coordinates. Grid coordinates with no assigned
sampled points (or a number below a selected threshold) can be regarded as areas, where
the surface is air permeable. In order to achieve a density of the sampled points, which
is large enough to avoid mislabeling grid coordinates as ‘air permeable’ merely because
there was no point statistically generated, 300,000 points are sampled per surface for this
research. This could be adjusted to achieve a less resource-intensive calculation. A similar
threshold is advisable for possible online usage by stitching together multiple scans of the
same object until the number of sampled points is achieved.
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Figure 11. Overview of the first batch of implemented steps for creating analytical parameters with
3D/2D exemplary illustrations for the object shown in Figure 4b starting from (a) the STL-File to (b) a
pointcloud format, (c) an assigned grid and (d) the resulting statistically determined z-heights.

Additionally, a statistically adjusted 3D geometry can be created by analyzing the
z-heights for the sample points assigned to the grid coordinates. In Figure 11d (step
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III:Statistical z-heights for the grid), the 20% quantile is used as the parameter Zstat_value,
which determines the resulting z-height used for each grid coordinate. This also enables a
containment of outliers, which could be created by errors in an online sensor. With steps
0–III and by cutting the size of this grid to a chosen diameter (such as the gripper’s diameter
of 150 mm), a division of ‘air permeable grid coordinates’ nperm and the total amount of
points within this diameter ntotal enables an assessment of the air permeability of the object,
as seen in Equation (2). Here, air permeable grid coordinates are defined as the number of
coordinates which contain fewer randomly generated points than a set limit. This threshold
could be individually varied, in order to contain the influence of outliers, and is set to 1 for
the following sections, so that grid coordinates with no found randomly generated points
are defined as air permeable.

Sa_permeability = nperm/ntotal (2)

3.1.3. Detecting Gripper Surfaces in Contact with the Object

However, the procedure described above is not sufficient for an identification of the
grid coordinates where the gripper is in contact with the object surface. In order to also
model this contact, this approach is expanded further. In step IV (Figure 12a), the grid
coordinates are separated into surface geometries which can be grasped, and those which
cannot be grasped. Different methods are possible to achieve this. For the sake of simplicity
as well as calculation time, the current approach, implementing a value based on the
sum of the absolute z-height-distances to its eight grid neighbors, is used. When a certain
(adjustable) threshold Zgrasp (such as ‘5 mm’) is crossed, the point is designated as ‘differing
too much from its surrounding neighbors’ and therefore as ‘not graspable’.
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Figure 12. Overview of the second batch of implemented steps for creating analytical parameters, with
3D/2D exemplary illustrations for the object shown in Figure 4b continuing with (a) the extraction of
ungraspable areas, (b) the segmentation of graspable areas, (c) the combination of these segments
and (d) the creation of a cutout and the resulting metric.

In step V, the coordinates of the graspable areas are combined within continuous
areas, going from highest to lowest graspable coordinates. As seen in Figure 12b and the
photography of the gripper on this object in Figure 4, not necessarily just one of these
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continuous areas is in contact with the gripper. When multiple distinct segments are at very
similar heights, the gripper could create a gripper–object interface with multiple segments
at once. Therefore, segments of similar height are combined in dependence of a selectable
parameter. For this, the maximum z-height of the segments are compared in step VI. If
these heights are within a distance Zcomb_segments, the segments are combined (as seen in
Figure 12c). As the segments are indexed by height, the combined segment with the lowest
index is the area where the gripper is in contact with the object.

The areas shown as blue-purple in Figure 12c are unsuitable for being in contact with
the gripper and the green segments are too far away to be in contact with the gripper. By
limiting this grid to a selected diameter in step VII, it is now possible to gauge the amount
of grid coordinates which are in contact with the gripper ncontact and thus which allow for
an approximation of the grippability for any desired object surface (Figure 12d). Similar to
Equation (2), the parameter Sa_extended, representing the fraction of contact coordinates to
the total amount of coordinates within the cutoff diameter, is shown in Equation (3).

Sa_extended = ncontact/ntotal (3)

3.1.4. Calibration to Training Data

The parameter Sa_permeability could be calibrated by varying the first few discussed
influencing parameters as well as the set limit for the definition of the air permeability of a
grid coordinate. This enables the prediction of a value for Ccombined for previously untested
surfaces. As this procedure is a scaled-down analogue procedure for the parameters used
for the calibration of Sa_extended, the calibration of this second, expanded approach is the
focus of this section.

As shown in Sections 3.1.1–3.1.4, the creation of the analytical parameters has a
large number of possible settings, which have to be adjusted or “trained” for the current
configuration of the gripper, as these factors depend on characteristics such as ‘stiffness of
the outer membrane’ or ‘friction within the granular material’. In order to set the parameters
to a suitable setting for the examined gripper configuration, the training dataset objects are
used. For this, a grid search of the settings ‘Grid distance’ dGrid, ‘used statistical parameter
for the z-height’ Zstat_value, ‘parameter for the graspability threshold’ Zgrasp and ‘segment
combination threshold’ Zcomb_segments is implemented for all 31 training objects for cutoff
diameters between 50 and 150 mm in 0.1 mm steps. For all parameter settings, Sa_extended
(see Equation (3)) is evaluated for the 31 training objects. This value can then be compared
to Ccombined either by scaling it to the maximum achievable Ccombined or through a linear or
quadratic regression (see Equations (4)–(6)). If necessary, even higher polynomial fits could
be feasible, but are probably not advisable for a fit of merely 31 data points. The maximum
achievable Ccombined would be equal to a full contact of the entire grasp and therefore be
synonymous with the highest possible gripping force (which is achieved for a flat surface).

Unmodified Ccombined,predicted = Max (Ccombined,experimental) · Sa_extended (4)

Linear fit Ccombined,predicted = a · Sa_extended + b (5)

Quadratic fit Ccombined,predicted = a · (Sa_extended)2 + b · Sa_extended + c (6)

In the following paragraphs, an analysis of the prediction quality is made by compar-
ing the Root Mean Square Error (RMSE), which allows a rough estimation of the size of the
average error of the fitted prediction over the entirety of the examined objects in the dataset.
In order to allow for better comprehensibility, the factor Ccombined is used to estimate the
maximum possible grasping force at the maximum possible pressure difference of 0.42 bar,
and therefore the RMSE is expressed in Newton for the following paragraphs. It should be
noted that a vacuum pump with a very high airflow could be necessary for some objects
to achieve this vacuum. Especially for very low achieved values for Ccombined, where the
achievable grasping forces are around 1–5 N, the achieved vacuum for these objects with
the pump used in this setup was around 0–0.05 bar.



Machines 2024, 12, 57 15 of 27

As an example for the influence of these calibrated parameters, the different possible
settings of the cutout diameter were analyzed further. By comparing the lowest possible
RMSE of all 31 objects for all grid points for the linear fit over the examined diameter,
Figure 13 could be created in order to identify the most viable diameter and settings for the
analytical contact score.
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As seen in the graph in Figure 13a, the diameter of the gripper shows a small dent
between the 90 and 100 mm mark, which is suggested to be a result of the influence of
the size of the air-permeable area on the gripper’s surface (see Figure 13b). The global
minimum can be found at a diameter of roughly 150 mm, which is the actual gripper size.
The diagram also suggests that an even larger diameter would achieve a better result. This
is not feasible due to the limited elasticity of the gripper.

Based on this result, the analysis regarding the fit for each of the 31 objects was reduced
to an examination of the diameter of 150 mm as a boundary condition for this research.
For this, the predicted Ccombined was plotted over the experimentally determined Ccombined
in Figure 14. This was undertaken for the best achieved unmodified fit, the best linear fit
as well as the best quadratic fit, as determined through the RMSE. In general, the fitting
operations do not appear to achieve a qualitative improvement, and the clusters of objects
only change their positions as groups. Some outlier objects are highlighted and shown
for the linear fit (Figure 14b). Objects (i) and (ii) are concave edges, which are predicted
too highly, whereas the objects (iii) and (iv) are predicted as achieving lower forces than
experimentally determined. The specific weaknesses of this prediction methodology with
regard to types of shapes and object geometries is analyzed further for the extrapolation to
validation objects in Section 3.3.

The RMSE does not appear to significantly improve by using a quadratic fit over a
linear one, so the linear fit is used in the following paragraphs in order to avoid introducing
unnecessary complexity into the system.

By fitting the created parameter to the small training dataset of 31 objects, the influence
of each of these training objects becomes relatively large. Consequently, it is important to
have a balanced selection of objects, so a shift of the data towards a better fit for a specific
object shape can be avoided. No such shift is apparent in the examination of this training
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data, and therefore the calibration appears to be somewhat balanced in the assessment of
different geometries.
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3.2. CPD-Based Similarity

As discussed in Sections 1.5 and 2.3, the use of the Coherent Point Drift algorithm [24]
could achieve a meaningful result for the goal of determining the similarity of two shapes.
Here, the different aspects specific to the gripper, such as a dependence of the achievable
gripping force on the air-permeability of different objects, is not specifically developed, but
rather inherent to the methodology. Comparing different objects regarding their similarity
to a set of training objects therefore abstracts the entire gripping concept, which is examined
in the following paragraphs.

Procedure for the Methodology Using CPD-Based Similarity

In order to achieve a time- and resource-efficient assessment of similarity to a pool
of known objects (in this case, the training objects), a uniform data structure of the point
clouds is necessary. This creation of the data structure was already discussed in the previous
section, especially with the steps 0–III, shown in Figure 11. This was used for the CPD-
based similarity as well, because the extraction of a grid of the exact same x-y-shape can be
achieved for any object (Figure 15b) and used as the input for the compared point clouds.
With these steps, a pool of grids for the 31 training objects was created and can now be used
as a comparison for any object (Figure 15c). As the similarity score is lowered by rotational
and translational movement, the grids are centered in the x/y-plane and the minimum of
the grid value is moved to z = 0. In order to avoid the influence of a possible rotation on
the CPD-similarity score, multiple grids for different rotations around the z-axis are created
and compared to the training data. The maximum achievable CPD-similarity score for all
z-rotations is used as the similarity score to each of the 31 training objects. The five best
similarity scores are then used to create a percentage-based prediction of similarity (see
Figure 15d).

This is undertaken as objects often have features which cannot be sufficiently described
by a single object out of this very small pool of data, so a basis for the comparison of
the similarity scores has to be created. In this case, the authors have chosen this pool
of data as the five best-fitting objects, and which could be adjusted in the future. This
comparison to multiple objects is achieved by assigning a percentage value scaled to their
relative similarity Arel_sim to the predicted object, so that the total percentage adds up to
100%. This percentage value is multiplied with the parameter of the compared objects
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Ccombined,object (see Equation (7)), and the resulting equation could also be described as a
weighted arithmetic mean of the five most similar objects.

Ccombined,predicted = ∑(Arel_sim · Ccombined,object) (7)

Using this approach for the entire set of the training objects, a RMSE of about 33.6 N
is achieved.
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3.3. Results and Comparison with Validation Objects

In the following section, the applicability and the specific challenges for prediction
with the introduced methodologies are discussed by comparing the results for the validation
with the respective objects introduced in Section 2.4.2, starting with a general overview as
well as specific evaluations for all validation objects.

Experimentally determined values for Ccombined below 0.15 would result in a max-
imum gripping force of under 111.3 N at a 0.42 bar pressure difference. This value for
Ccombined was chosen by the authors of this research as the threshold for a successful grasp.
This threshold could be adapted for specific process requirements resulting from parame-
ters such as object weights and safety factors. Therefore, a predicted Ccombined of over 0.15
for experimental results below 0.15 would lead to a recommendation for gripping a surface,
despite it being unsuitable for this gripper. This can be described as a ‘false positive’, as a
gripping success is predicted, but could not be achieved in experiments. A ‘false negative’
would therefore be a prediction of an unsuccessful grasp (predicted Ccombined < 0.15) for
a higher experimental value (experimental Ccombined > 0.15) and describe a prediction of
unsuccessful grasping, despite the experiments suggesting a successful grasp. In general,
a false negative would probably result in some minor inefficiencies, but not necessarily
disrupt handling processes. Disruptions could, however, be a result of false positives when
an object surface is classified as suitable for handling by this gripper, resulting in a high
risk of detachment during the handling process. In order to examine this more closely, the
results for the different categories of validation objects are discussed in more detail in the
following figures.

As an overview, the results for both examined approaches are compared in Figure 16.
The largest numbers of false positives and negatives occur for air-permeable objects for
both prediction methods. For the analytical contact score in Figure 16a, a number of false
negatives of varying error sizes for the category ‘different geometries’ is visible. The
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CPD-based prediction shows a false positive for an object from the spectrum of ‘different
geometries’ in addition to the air-permeable objects.
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In order to examine this more closely, the results for the different categories of valida-
tion objects are discussed in more detail in the following figures.

3.3.1. Validation Objects with Geometries Resulting in Air Permeability

As seen in Figure 17, flat objects with air permeability directly under the porous area
of the gripper appear to be very difficult to predict for the two examined approaches. For
the different profiles, the parameter Sa_permeability tuned to a diameter of 150 mm is capable
of identifying air permeability; however, this is not reflected within Sa_extended. Similarly,
as there are no objects within the validation dataset which could reflect this specific pattern
of air permeability, the CPD-based prediction does not have a similar comparison object at
its disposal and therefore predicts a force based on the ‘closest’ objects, which are mostly
flat surfaces with high achievable gripping forces.

Machines 2024, 12, x FOR PEER REVIEW 19 of 29 
 

 

results for the different categories of validation objects are discussed in more detail in the 
following figures. 

As an overview, the results for both examined approaches are compared in Figure 
16. The largest numbers of false positives and negatives occur for air-permeable objects 
for both prediction methods. For the analytical contact score in Figure 16a, a number of 
false negatives of varying error sizes for the category ‘different geometries’ is visible. The 
CPD-based prediction shows a false positive for an object from the spectrum of ‘different 
geometries’ in addition to the air-permeable objects. 

 
Figure 16. Overview of the possible predictions for the two examined methodologies of the valida-
tion data; a perfect fit would be on the bisecting red line. The colors are based on the validation 
object categories (introduced in Section 2.4.2). 

In order to examine this more closely, the results for the different categories of vali-
dation objects are discussed in more detail in the following figures. 

3.3.1. Validation Objects with Geometries Resulting in Air Permeability 
As seen in Figure 17, flat objects with air permeability directly under the porous area 

of the gripper appear to be very difficult to predict for the two examined approaches. For 
the different profiles, the parameter Sa_permeability tuned to a diameter of 150 mm is capable 
of identifying air permeability; however, this is not reflected within Sa_extended. Similarly, as 
there are no objects within the validation dataset which could reflect this specific pattern 
of air permeability, the CPD-based prediction does not have a similar comparison object 
at its disposal and therefore predicts a force based on the ‘closest’ objects, which are 
mostly flat surfaces with high achievable gripping forces. 

 
Figure 17. Overview of results for the examined validation objects with different air permeability
arrangements.



Machines 2024, 12, 57 19 of 27

The other objects in the validation data defined as ‘air permeable’ consist of surfaces
smaller than the gripper’s diameter (see Figure 18). For these, the predictions are more
precise, ranging from ungraspable for the cuboids with 60 mm width to covering the entire
porous area of the gripper with 120 mm cuboids.
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Figure 18. Overview of results for rectangular and square objects in different sizes smaller than the
gripper’s diameter.

Overarchingly, for all objects with geometries resulting in air permeability, the factor
Sa_permeability could be used to exclude these objects. However, influences located under the
porous area of the gripper appear to be significantly more influential compared to objects
slightly smaller than the examined grippers. Therefore, if the parameter Sa_permeability was
to be used for grasping, planning to exclude objects with air permeability from further
consideration, it should be applied not to the entire diameter of the gripper (150 mm), but
rather to the reduced diameter of the porous area of the gripper.

3.3.2. Validation Objects with Geometries Differing from the Training Dataset

Figure 19 shows the results for the validation objects of new geometries with mostly
convex and concave features. The CPD-based prediction is able to extrapolate rather
precisely from the known features to these new geometries. The largest error is visible for
the convex pyramids (Figure 19e,f), where the comparison appears to differentiate very little
for the different opening angles of the two examined pyramids, while the experimentally
achievable Ccombined varies by about 70% or 25 N for the highest achievable pressure
difference. The analytical parameter Sa_extended is capable of differentiating between the
two pyramid geometries; however, the predicted Ccombined categorizes the surface quite far
apart in the graspable/ungraspable categories. The parameter configuration of Sa_extended
assumes an almost ‘full’ contact of the gripper with the pyramid 120 convex (f), which
results in the maximum possible Ccombined. The same phenomenon is visible for the convex
cone (a), where the prediction parameter models the gripper to be entirely in contact
with the object surface. But as the parameter is unable to incorporate the slip-off and
jamming-based effects, the experimentally measured result differs by a large percentage.
The STL-based Sa_extended prediction also appears to be incapable of properly assessing the
enclosed volumes for concave geometries (b–d), so the predictions for the three concave
geometries show a large error.

The objects with different surface structures are shown in Figure 20. For these, the
Sa_extended-based prediction appears to predict some objects quite well, and for the cor-
rugated and 3D-structured surfaces (Figure 20c–e) the prediction again shows an overly
optimistic estimation for the achievable Ccombined, which continues to most likely stem from
the inability to incorporate non-suction-based effects. The CPD-based comparison again
visualizes its prediction quality, dependent on the available training data. The two different
step geometries (a/b), which achieve a very similar result for a slightly different radius,



Machines 2024, 12, 57 20 of 27

show a large difference in prediction accuracy for this approach, while the Sa_extended-based
prediction appears to be barely influenced by this small alteration.
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3.3.3. Validation Objects with Geometries Similar to the Training Data, but with
Different Scaling

Figure 21 shows the predictions for different convex cylinders, which were also part of
the training objects with the diameters 100/150/200 mm. Resulting from the experimental
procedures, the determination of Ccombined is affected by a statistical distribution. As an
effect resulting from this statistical variance of experiments, the experimentally determined
Ccombined for the diameter of 90 mm (Figure 21a) appears to be slightly higher than the
diameter of 120 mm (Figure 21b), although the actual difference for the 15 recorded forces
is minimal. This statistical variance cannot be predicted by either of the methodologies,
and therefore the Sa_extended-based approach shows results which directly correlate with
the cylinder diameter. A similar effect is visible for the CPD-based prediction, despite
the comparison not identifying the cylinder with a diameter of 100 mm as the closest
comparable training object for the cylinder with 90 mm diameter.
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4. Discussion and Further Possibilities

Concluding Figures 16–21, the two analyzed approaches both exhibit different
strengths and weaknesses inherent to their prediction procedure (see Table 1).

Table 1. Overview of the advantages and disadvantages of the gripping prediction methods shown
within this research.

Category Analytical Contact Score CPD Comparison

Applicability to:
Variations of known

geometries
New geometries

Air-permeable geometries

RMSE:

• 27.4 N
• 60.8 N
• 101.6 N

RMSE:

• 13.6 N
• 33.0 N
• 112.8 N

Weaknesses

• Concave objects with
enclosed pockets

• Effects from granular
gripping

• Air permeability

• Extreme scaling and
variations in details of
known objects (size and
features)

• Air permeability

Required time
for real-life application • Seconds

• For 31 comparison
objects: additional
minutes

Applicability for different
gripping configurations • With training data • With training data

The CPD-based prediction shows great applicability towards variations of known
geometries, but even small variations of surface features can have a large influence on the
prediction quality (see Figure 20). Especially when the training dataset has no objects with
similar features, the predicted graspability can differ from the experimentally determined
parameters noticeably. Additionally, the calculation time for a comparison of the data
makes this approach currently inapplicable for usage in time-efficient processes. This
prediction methodology would most likely be appropriate in an industrial setting with very
little variation of a known spectrum of surface features, and therefore a small comparison
dataset. The analytical contact score is suggested to therefore be more robust than the
CPD-based prediction, with a reduced computational effort, but a reduced accuracy. Both
methodologies show significant weaknesses for the assessment of air-permeable surfaces.
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4.1. CPD Improvements—Additional Factors and Parameters

The procedure for the methodology based on CPD similarity could be expanded upon,
for example by introducing pre-factors, which could be calibrated to adjust the influence of
a similarity to specific objects. In practice, this could lead to a high similarity to a specific
object type (for example too extreme convex or concave shapes) decreasing the likelihood
of a high gripping force prediction immensely. This is not examined in this research, as
this would require additional datasets with more objects. Applying processes such as
‘jack-knifing’ for the adjustment of these pre-factors, where each dataset is removed from
the object individually in a training session (which would require 31 of these removal and
training sessions for 31 objects) is also not applicable, as the training object data are of a
small size and have very limited overlaps of the objects.

4.2. CPD Improvements—Continuous Retraining

A continuous re-training process would be feasible by continuously expanding the
data size. This could be undertaken by implementing a sensor such as a stereo cam-
era into a handling setup and continuously updating the comparison database with the
actually achieved values. However, the calculation of the CPD similarity is somewhat
resource-intensive; the creation of the comparison matrix for this training dataset of merely
31 objects took multiple hours on a 2 GHz/16 GB RAM machine and therefore can only be
recommended for limited sizes of training data.

4.3. Analytical Contact Score Improvements—Detection of Enclosed Concave Geometry Segments

In contrast to this, the STL-based analytical contact score can predict a grasping force in
seconds. However, this approach is mostly based on the possible deformation and contact
of the gripper with the object, which does not directly correlate with all effects of the suction
and jamming-based gripping force generation. Especially for enclosed concave geometries,
it would be possible to develop an extension of this procedure to detect segments, which
are encircled by ‘contact segments’ in order to combat this source for errors. Depending on
the approach and calculation efficiency, the impact on the computational effort would have
to be assessed.

4.4. Analytical Contact Score Improvements—Area-Based Weighting of the Contact Score

Furthermore, the influence of the porous and non-porous area of the gripper cannot
entirely be set aside. While a height difference for the outer rim of the gripper can influence
an object’s grippability substantially, a permeability or a non-existing contact at the air
permeable area has a defining influence on the creation of a vacuum and thus the graspa-
bility of a surface. With a larger dataset for training, the influences of these different areas
could be weighted within the contact score and increase the accuracy of the methodology;
however, a larger dataset would be required in order to achieve this modification. For a
very large dataset, the input of the height-based and weighted grid could also be used as
an input for a CNN.

4.5. Analytical Contact Score Improvements—Adaption for the Bordering Value towards a
Cumulative Trained Value

The categorization of the surface into ‘graspable’ and ‘non-graspable’ (see Figure 12a) is
currently relatively simple and static. A possible modification could be the implementation
of a cumulative value for bordering coordinates, which could model the behavior of
the elastic membrane better. This modification would have a negative influence on the
computing time.

4.6. Improvements for Both Approaches—Preliminary Classification with Sa_permeability

Both prediction methods showed large errors for air permeable geometries, especially
those which had air permeable areas located at the porous surface of the gripper. Due to
this large influence, a possible solution would also be to use the parameter Sa_permeability
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for the diameter of 95 mm in order to entirely exclude those geometries which surpass a
set threshold of permeability under this porous area. This would exclude these surfaces
entirely and could be implemented as a preliminary step before applying either of the two
main prediction methodologies.

4.7. Improvements for Both Approaches—Adaption of a Three-Dimensional Base Grid

For a better comparability of the different objects, the diameter of the gripper is
currently simplified and set as 150 mm in the x-y-plane. This is not entirely realistic, as
the gripper is capable of forming on objects to a limited degree. This could be modelled
closer to a real elastic membrane fitting on a surface. However, this would result in varying
sizes of grids due to this elastic and three-dimensional formation of the membrane, which
would hinder the comparability of grids between different objects and drastically influence
the calculation time.

4.8. Improvements for Both Approaches—Curating Training Data for the Optimization of
Specific Processes

As already discussed, the analytical contact score could achieve a higher prediction
quality by curating the data used for the training process. As an example, if only convex
orbs were applicable for a specific process, the training data and linear fit could incorporate
the slip-off and jamming effects better and therefore provide a higher prediction quality.

4.9. Improvements for Both Approaches—Adaption of the Prediction Models towards Different
Designs and Configurations

Both prediction methods were intentionally based on a training dataset, and therefore
adjustments of the gripper’s configuration, such as membranes with different levels of
stiffness, could be incorporated with a relatively limited experimental effort.

The different adaption possibilities are summarized in Table 2; the largest overall
hinderances for modifications of the examined approaches are the increased necessary
training objects, as well as possibly very large increases in computational effort.

Table 2. Possible adaptions to the examined approaches for CPD similarity, as well as Analytical
Contact Score (ACS).

Applicability Adaption Potential Hinderance

CPD Additional factors and
parameters

Some potential for an increased prediction
quality, based on number of training objects

Required amount of training
geometries would be very large

CPD Continuous retraining High potential for a continuously improved
prediction quality

Continuously increasing
calculation time

ACS Detection of enclosed concave
geometry segments

High potential for an increased prediction
quality specifically for concave geometries Increased calculation time

ACS Area-based weighting of the
contact score

Some potential for an increased prediction
quality, based on number of training objects

Required amount of training
geometries would be very large

ACS Adaption of the bordering value
towards a cumulative trained value

Some potential for an increased
prediction quality Increased calculation time

ACS and CPD Preliminary classification with
Sa_permeability

High potential for an increased prediction
quality for handling processes with

air-permeable surfaces

Only applicable for handling
processes with air-permeable

surfaces

ACS and CPD Adaption of a three-dimensional
base grid

Some potential for an increased
prediction quality Largely increased calculation time

ACS and CPD Curation of training data for the
optimization of specific processes

Some potential for an increased prediction
quality specific to an application combined

with reduced calculation time

Usability of grippability
prediction is then reduced to the

specific application
->Reduced versatility

ACS and CPD
Adaption of the prediction models

towards grippers with different designs
and configurations

Potential for a specific selection of an optimal
gripper setup with granular materials and

membranes for a specific handling application

Requires training data for the new
gripper configurations
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5. Conclusions

The goal of this research was to examine possibilities for the prediction of graspability
and gripping forces for a specific innovative handling solution, especially regarding the
possibility of implementation in an online handling system with a limited availability of
experimental data. Different approaches within the state of the art were examined and
selected. A methodology based on similarities to objects of an existing dataset as well as an
analytical parameter for the gripper–object interface was created. Fully fledged simulations
were disregarded due to the associated computational effort, which hinders implemen-
tation into real-time handling process severely. In order to compare these approaches,
31 training and 25 validation objects were used for the analysis of the prediction methods.
The similarity-based approach shows a high degree of precision with an RMSE of up to
13.6 N for objects similar to its training data, but is very limited in its ability to extrapolate to
different surface features, with the RMSE increasing almost tenfold. The analytical parame-
ter is based on a simplification of the 3D geometry and is mostly capable of differentiating
types of surfaces regarding the gripper’s capability of deforming sufficiently to create a
proper seal between gripper and object. However, this analytical parameter is currently not
capable of fully incorporating all effects inherent to the specific influences on the gripping
force for this gripper. Therefore, this methodology exhibits comparably worse RMSE values
of over 27.4 N even for the most closely related validation geometries, with the variations
of known objects. Possible enclosed pockets of air for concave geometries and the jamming
of the granular material, as well as effects leading to a slip-off of the membrane from an
object’s surface, appear to influence the achievable grasping force in such a way that the
prediction quality suffers significantly for specific geometries. The shortcomings found
were discussed and an overview of possible adaptions and optimization approaches was
given. Overall, increasing the prediction quality is likely to significantly increase calculation
times, negatively impacting the suitability for online implementations. In general, for the
very limited dataset used within this research, a high accuracy for a determination of
graspable and non-graspable surfaces was achieved and could be improved even further
with the outlined adaptions to the prediction processes. More detailed studies based on
larger datasets from experimental procedures or simulations would be an appropriate next
step to examine further possible expansions to the proposed prediction methods.

Supplementary Materials: The data and scripts used for this study are available at: https://git.rz.tu-
bs.de/c.wacker/analytical_prediction/.
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