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Abstract: Traditionally, condition monitoring of wind turbines has been performed manually by
certified rope teams. This method of inspection can be dangerous for the personnel involved, and the
resulting downtime can be expensive. Wind turbine inspection can be performed using autonomous
drones to achieve lower downtime, cost, and health risks. To enable autonomy, the field of drone
path planning can be assisted by this research, namely machine learning that detects wind turbines
present in aerial RGB images taken by the drone before performing the maneuvering for turbine
inspection. For this task, the effectiveness of two deep learning architectures is evaluated in this
paper both without and with a proposed fuzzy contrast enhancement (FCE) image preprocessing
algorithm. Efforts are focused on two convolutional neural network (CNN) variants: VGG19 and
Xception. A more traditional approach involving support vector machines (SVM) is also included to
contrast a machine learning approach with our deep learning networks. The authors created a novel
dataset of 4500 RGB images of size 210 × 210 to train and evaluate the performance of these networks
on wind turbine detection. The dataset is captured in an environment mimicking that of a wind
turbine farm, and consists of two classes of images: with and without a small-scale wind turbine
(12V Primus Air Max) assembled at Utah Valley University. The images were used to describe in
detail the analysis and implementation of the VGG19, Xception, and SVM algorithms using different
optimization, model training, and hyperparameter tuning technologies. The performances of these
three algorithms are compared in depth alongside those augmented using the proposed FCE image
preprocessing technique.

Keywords: wind turbine; deep learning; classification; VGG19; Xception; SVM; fuzzification

1. Introduction

In recent years, the demand for renewable energy generated from wind power has
increased rapidly. The year 2021 reflects this as wind’s second-best year of growth despite
pandemic conditions disrupting the industry and introducing supply chain problems [1].

Wind turbines used to harness wind power can be damaged and degraded by their
environments [2–5]. When the blades of wind turbines fail, the effects can be disruptive by
leading to a long-term shutdown of operations. Wind turbine blades were found to cause
over 5% of wind turbine failures in a study that surveyed more than 1500 wind turbines
for fifteen years [6]. These failures can result in wind turbine downtime over ten days [7].
Continuous condition monitoring of wind turbines can remediate such issues before a wind
turbine failure occurs.

Traditionally, rope teams manually inspect wind turbines for possible damages such
as cracks on the blades [8]. This includes certified professionals from organizations such as
the Industrial Rope Access Trade Association (IRATA) and the Society of Professional Rope
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Access Technicians (SPRAT) [9,10]. However, conditions surrounding wind turbines could
be dangerous to personnel, providing hurdles for wind energy maintenance, and potentially
increasing the cost. Additionally, in-person inspection requires turbine shutdown, resulting
in higher downtime. Consequently, alternative methods of inspecting wind turbines are of
great interest: the market is quickly turning towards unmanned aerial vehicles (UAVs) and
drones for inspecting wind turbines [8,11]. Organizations such as Clobotics and Arthwind
are pioneering work in this field [12,13]. Similar interest is seen in academia [14–17]. One
issue that still needs to be solved with the adoption of drone inspection is presenting the
data acquired from drones in a way that is understandable to the engineers performing
maintenance [11]. To mitigate this problem, a system needs to be developed to allow
the drones to act autonomously and preferably respond with a single output indicating
whether a wind turbine requires maintenance or not.

An initial key aspect of this type of autonomous drone inspection is its ability to
accurately identify the presence of wind turbines in the field. Machine learning has been
proven to be a powerful tool for classifying objects in images [18]. A classical approach
to machine learning involves the use of support vector machines (SVMs). Convolutional
neural networks (CNNs) are also extensions of the branch of machine learning known as
neural networks (NNs), and are particularly adept at classifying images, making them
instrumental to the task of identifying wind turbines [19,20].

Similar to NNs, CNNs are composed of node layers acting as a linear regression model
followed by a nonlinear activation function that prevents them from collapsing into a single
linear model and allows the network to represent more complicated relationships. CNNs
are composed primarily of three node layers: convolutional layers, pooling layers, and
fully connected (FC) layers.

In an effort to improve the performance of autonomous wind turbine inspection,
this paper analyzes and compares the effects of applying fuzzy contrast enhancement
(FCE) to three machine learning methods trained on the preliminary stage of wind turbine
inspection: classifying whether RGB images contain wind turbines. If FCE successfully
improves the performance of wind turbine detection, it may be evaluated in future research
to improve the performance of other stages of wind turbine inspection as well, such as
through the enhancement of defects in images of wind turbine blades. Fuzzification is
used in an attempt to make the wind turbines more noticeable in the RGB aerial images via
FCE preprocessing. This can potentially be manipulated to further increase accuracy in all
the tested machine learning methods. The machine learning algorithms explored are the
visual geometry group model 19 (VGG19), Xception, and SVM. The VGG19 and Xception
architectures were selected to represent the state of the art for evaluation of FCE. SVM is
a lightweight machine learning approach; it was selected to evaluate the performance of
FCE on an algorithm that requires fewer computational resources. To our knowledge, FCE
has not been applied to Xception previously. It has been applied to VGG16, a precursor
to VGG19 [21,22]. However, we found no instances where it has been applied to VGG19
through our research. FCE has previously been applied to SVM, so the performance of this
algorithm is included here as a baseline for comparison with the VGG19 and Xception deep
learning algorithms [21].

An overview of our approach to training and testing the machine learning (ML)
algorithms adopted in this study is summarized in Figure 1. A dataset of 4500 aerial RGB
images was captured by a DJI Matrice 300 RTK drone with Zenmuse L1 RGB camera at Utah
Valley University (UVU). The images were used to train the three network architectures: the
SVM machine learning approach and the VGG19 and Xception deep learning approaches.
The hyperparameters within these networks were tuned, and the effects of applying the
proposed FCE algorithm were explored by implementing fifteen case studies: A1–A5,
B1–B6, and C1–C4. For each architecture, the first corresponding case studies found the set
of hyperparameters that performed best for that architecture. Afterwards, the proposed
FCE was applied to each architecture tuned with the corresponding best performing set of
hyperparameters. The best results from each network architecture were then compared
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to determine the most suitable method for wind turbine recognition in RGB images. The
main contributions of this paper are as follows:

• Implementation of the proposed fuzzy contrast enhancement (FCE) image preprocess-
ing step for VGG19, Xception and SVM algorithms. Additionally, the performances of
all algorithms without and with the proposed FCE were analyzed and compared.

• Creation of a novel RGB dataset of 4500 aerial images from a Primus Air Max small
wind turbine mimicking the environment of a wind turbine farm using a small-scale
wind turbine prototype to compare the performance of the three ML algorithms.

• Detailed analyses and implementation of the VGG19, Xception, and SVM algorithms
using different optimization methods, model training, and hyperparameter tuning
technologies.

Figure 1. Performance evaluation process for the proposed FCE image preprocessing algorithm.

The remainder of this paper is organized as follows: The architectures of the VGG19,
Xception, and SVM networks are described in Sections 2 and 3. The fuzzy contrast en-
hancement is detailed in Section 4. The formulation and process of hyperparameter tuning,
including categories, batch size, loss function, and dropout, are presented in Section 5.
The generated dataset of 4500 RGB images and experimental results of the fifteen case
studies are presented in Section 6. The last section summarizes the findings, followed by
suggestions for future work.

2. Convolutional Neural Networks (CNNs)

CNNs are a type of neural network that is particularly well-suited for image classifica-
tion and recognition tasks. They are composed of one or more convolutional layers, which
perform the convolution operation on the input data. An example of this transformation is
shown in Figure 2. In this operation, a kernel is slid along the input layer, computing the
elementwise product between the kernel and each portion of the input layer. The sum of
these products is then arranged in a new 2-D array of weights known as the feature map,
which is the output of the convolution layer [20].

CNNs use pooling layers to reduce the size of the input data. This reduces the
complexity and increases the efficiency of the neural network. Another feature commonly
used in CNNs is the fully connected (FC) layer. As the name suggests, this layer maps
every input node to every output node. The final layer in a CNN is typically an FC layer, as
this layer can make connections between all of the data at the end of the network and the
final network output. This enables the final nodes in the CNN to contain the likelihood that
the input image belongs to each class [19]. The CNN architectures used in this research,
both VGG19 and Xception, were created and trained using the Keras software package
available for the Python programming language [23].
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Figure 2. Convolution layers of CNN [19].

2.1. VGG19

One of the architectures explored in this paper focuses on transfer learning built on a
VGG network, a fundamental yet renowned machine learning algorithm introduced by
Andrew Zisserman and Karen Simonyan [24]. In order to maneuver large-scale pictures,
the VGG model analyzes the depth of layers using a relatively small convolutional filter
size (3 × 3) [25]. The pretrained visual geometry group model 19 (VGG19) was trained
on the ImageNet database of more than a million images from 1000 classes. All database
images were RGB of size 224 × 224 pixels [26].

The first 16 layers of VGG19 are convolution layers and the last 3 layers are dense
(fully connected) layers [26]. Five blocks of convolution are present in VGG19. Each block
goes along with one MaxPool Layer. Block 1: The depth of filters is 64 with two convolution
layers. Block 2: The depth of filters is 128, with two convolution layers. Block 3: The depth
of filters is 256, with four convolution layers. Block 4 and Block 5: The depth of filters is 512,
with four convolution layers [27]. The architecture of the model is summarized in detail in
Table 1.

Table 1. VGG19 layer architecture.

Layer # Layer Details Layer # Layer Details

1 Conv3 × 3 (64) 11 Conv3 × 3 (512)

2 Conv3 × 3 (64) 12 Conv3 × 3 (512)

- MaxPool - MaxPool

3 Conv3 × 3 (128) 13 Conv3 × 3 (512)

4 Conv3 × 3 (128) 14 Conv3 × 3 (512)

- MaxPool 15 Conv3 × 3 (512)

5 Conv3 × 3 (256) 16 Conv3 × 3 (512)

6 Conv3 × 3 (256) - MaxPool

7 Conv3 × 3 (256) 17 Fully Connected (4096)

8 Conv3 × 3 (256) 18 Fully Connected (4096)

- MaxPool 19 Fully Connected (1000)

9 Conv3 × 3 (512) - SoftMax

10 Conv3 × 3 (512) - -
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There are three potential approaches for the application of transfer learning on VGG19.
The first approach runs the convolution base on an image dataset, recording its output to a
Numpy array on the disk storage and then using this data as input to a densely-connected
classifier. This solution is fast and computationally inexpensive to execute as it only requires
running the convolution base once for each input image. The second approach runs the
whole model front-to-end every time the image passes through the convolution base prior
to reaching the dense layer. This increases accuracy at the cost of speed. This is the most
widely used approach since it balances between the model performance and speed. The
third approach is fine-tuning, which consists of unfreezing a few of the top layers of a
model base used for feature extraction and simultaneously training both the fully connected
classifier and these top layers. This method is computationally costly but suitable when the
training images are quite different from the those in the ImageNet database [27].

VGG19 is useful because it is a CNN with an uncomplicated structure that is effective
at image classification. It is therefore suitable for wind turbine classification, and this paper
includes an emphasis on the VGG19 model as one of the three methods to classify wind
turbines in the RGB image dataset created at UVU and to evaluate the FCE algorithm.

2.2. Xception

The Xception architecture is a CNN evolved from Inception, a similar class of CNN
originally presented in [28]. The first variant of Inception, Inception-v1, replaces the tradi-
tional convolution layer with the Inception module, a collection of multiple convolution
operations of varying kernel sizes. The Inception architecture was subsequently refined
(Inception-v2) and followed by Inception-v3. Inception-v2 integrates batch normaliza-
tion within the model’s architecture [29]. Inception-v3 modifies the convolution kernel to
increase the architecture’s computational efficiency [30].

In [31], the author recognized that the Inception module factors the traditional CNN
convolution layer into components that separately perform spatial and cross-channel
correlations. Therefore, they presented the hypothesis that spatial and cross-channel
correlations can be entirely separated. The result was named Xception, short for Extreme
Inception, which replaces the Inception module with depthwise separable convolution
layers known as Xception modules. Xception outperformed Inception-v3 on both datasets
that were tested [31].

The Xception network architecture has been implemented for a variety of applications,
including microcrack detection on solar panels from electroluminescence images [32],
identification of medicinal plants from RGB images [33], and detection of faces created
by a generative adversarial network [34]. Additionally, the Xception module has been
implemented independently of the Xception network, such as in [35], which used the
Xception module in a modified version of the U-Net CNN network architecture to extract
buildings from high-resolution remote sensing images.

Xception differs from VGG19 due to the Xception module and residual connections
that it implements, where data are passed directly from earlier layers in the architecture
to later layers by bypassing intermediate layers. These attributes tend to increase the
accuracy of the model, which increases its suitability for wind turbine classification, at
the cost of computational complexity. As such, the Xception architecture was selected to
evaluate the performance of FCE on a complex, nonlinear architecture. The structure of the
Xception network architecture used in the case studies presented in this paper, which was
abbreviated from the version of the Xception architecture in [31], is illustrated in Figure 3.
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Figure 3. Xception network structure [31].

3. Support Vector Machine (SVM)

Support vector machines have emerged as a well-established and widely-used machine
learning algorithm for solving classification and regression problems. While they may not
be as novel or as performant as techniques like convolutional neural networks (CNNs)
or other advanced machine learning algorithms, SVMs still offer several advantages that
make them a reasonable option, particularly in scenarios where computational efficiency
and interpretability are important [36].

At the core of SVMs lies the principle of margin maximization, which aims to find a
decision boundary that maximally separates different classes. By identifying the hyperplane
with the largest possible margin between the nearest data points of different classes, SVMs
exhibit good generalization performance. This makes them suitable for applications where
robust classification is desired, even in the presence of noisy or overlapping data [37].

One of the key advantages of SVMs is their ability to handle nonlinear classification
tasks. By employing kernel functions, such as the linear, polynomial, or radial basis function
(RBF) kernels, SVMs can implicitly map the data into a higher-dimensional feature space
where linear separation becomes possible [38]. This “kernel trick” eliminates the need to
explicitly compute the transformed feature space, making SVMs computationally lighter
compared to explicit feature mapping approaches. Furthermore, SVMs offer interpretability,
which is a valuable characteristic in domains where model transparency and clarity are
essential [39]. The trained SVM models provide insights into the decision-making process,
allowing users to understand and interpret the factors influencing the classification outcome.
This interpretability can be crucial in domains such as healthcare, finance, legal applications,
or, in this case, environmental science, where accountability and trust are essential.
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Another advantage of SVMs is their robustness to overfitting, provided that appro-
priate regularization techniques are employed. SVMs inherently seek to find the decision
boundary with the largest margin, which promotes a balance between model complexity
and generalization ability. This makes SVMs less prone to overfitting compared to more
complex models [40].

In addition, SVMs offer computational efficiency compared to more computationally
demanding techniques like deep neural networks. This computational efficiency makes
SVMs suitable for situations with limited computational resources and/or real-time process-
ing requirements such as automated real-time detection of wind turbines in RGB images
captured by drones discussed in this paper. SVM was therefore selected for evaluation of
FCE preprocessing on a lightweight, computationally inexpensive architecture. However, it
is anticipated that SVM will not perform as well as the selected deep learning architectures
due to the limitations inherent in SVM’s low-complexity design. SVM was implemented
using the SVM architecture available through the scikit-learn package for Python [41].

4. Proposed Image Preprocessing with Fuzzy Contrast Enhancement (FCE)

Preprocessing of a dataset when performing artificial intelligence (AI) tasks can en-
sure data fidelity and continuity. In this section, we implement a preprocessing step to
improve the quality and contrast of the created dataset (Section 6.1) before executing the
AI algorithms. It is anticipated that the proposed fuzzy contrast enhancement (FCE) pre-
processing step will improve the quality of the dataset by increasing the contrast of the
images such that machine learning architectures will be able to more easily identify the
features differentiating the classes of images in the dataset, leading to higher classification
accuracy. To perform FCE, the RGB images were first transformed to the CIELAB color
space, and then their intensity component was amplified using fuzzy logic. Conversion
to and from the CIELAB color space was accomplished using the OpenCV package avail-
able for Python [42]. Amplification of the images’ intensity components was performed
through custom software using the Python language and the NumPy package available for
Python [43].

4.1. CIELAB Color Space

CIELAB is a three-dimensional device-independent color space model that represents
the entire range of human photopic (daylight) vision. It is known to better mimic human
vision which helps to identify small differences in color, and alter and isolate specific
channels of the image. In an RGB image, the three present channels are red, green, and
blue; thus, changing one of these three values will change the overall appearance of the
image, but only based on color. In contrast, CIELAB color space has different channels that
not only involve the color but also the intensity/lightness of an image.

The CIELAB color space was built from three channels that are perpendicular to one
another. The a*, b*, and L* channels are relative to colors green to red, blue to yellow, and
black to white, respectively [44]. The L* channel represents pixel intensity and closely
matches human perception of lightness or achromatic colors, the shades of grey. For
example, L* = 0 and L* = 1 denote pure black and white, respectively. Each color is
represented by a color point (L*, a*, b*) in the color space [44]. CIELAB color space is
selected because it is useful for detecting and predicting small differences in color of
the images.

4.2. Fuzzification of Image Pixel Intensity

Fuzzy logic refers to the generalization of a real number, which is a fuzzy number. It
introduces a connected set of possible values, where each value has a weight between 0
and 1. Therefore, it is possible to use fuzzy numbers in the area between two values so
that a certain classification or result is not rigidly bound to either one of the two values. In
this paper, fuzzy logic is selected for contrast enhancement due to its simplicity and robust
outcomes, particularly in classification problems, where values exhibit confidence intervals.



Machines 2024, 12, 55 8 of 22

To perform FCE, fuzzy logic rules were used to amplify channel L* (pixel intensity)
with a value of 0 being black and 255 being pure white. After isolating the L* channel
in the CIELAB color space, the image undergoes fuzzification using the specified fuzzy
rule set [21,45]. This rule set is comprised of a predefined inventory of interval values in
which the L* of each pixel is categorized. Gaussian membership functions were used to
establish these intervals using if-then rules. The functions vary according to each set of
intervals defined for the L* value of the pixel. In this setting, each of the intervals get a
classification title: “Extremely Dark (ED)”, “Very Dark (VD)”, “Dark (Da)”, “Slightly Dark
(SD)”, “Slightly Bright (SB)”, “Bright (Br)”, “Very Bright (VB)”, and “Extremely Bright (EB)”
(see Figure 4). While the intervals for each of these classifications are different, the base
equation is the same, a Gaussian function is given by (1)

µ(x; µ, s) = exp
(
− 1

2
(

x − µ

s
)2) (1)

where x is the pixel value, µ or ‘M’ is the mean (the average pixel value of the given image)
and s is the standard deviation of pixel values in the given image. Figure 4 shows the fuzzy
membership functions for µ=128.

Figure 4. Fuzzy membership functions for µ = 128 and µ = 64 [45].

After assigning the new classification to the pixel, the proposed fuzzy rule set becomes
operational (Figure 5). The execution involves utilizing fuzzy rules for elevating all classifi-
cations by one level to achieve contrast enhancement (Algorithm 1, [45]). For example, if
a pixel receives a classification of “Very Dark (VD)” then according to our fuzzy rule set,
the new fuzzified classification would be “Extremely Dark (ED)”, and so on. This rule set
eliminates any “Slightly Bright (SB)” or “Slightly Dark (SD)” classifications. By applying
Algorithm 1 to images of wind turbines, these contrast modifications will be applied as
defined by the if-then rules. This will lead to contrast enhancement in the images, where
an increase in the overall accuracy of the ML architectures is anticipated. A visualization of
images processed with this FCE algorithm is given in Figure 6, and results indicating the
effectiveness of FCE are presented in Section 7 as well as Tables 2 and 3 and Figures 7 and 8.
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Table 2. Comparison of VGG19, Xception, and SVM without the proposed FCE using derived
performance metrics averaged over ten trials.

Algorithm Accuracy Precision Hit Rate Miss Rate Specificity Fall-Out F1 Score

Xception 99.00% 99.21% 98.78% 1.21% 99.21% 0.78% 98.99%
VGG19 98.26% 98.34% 98.16% 1.83% 98.36% 1.64% 98.25%

SVM 90.31% 91.00% 87.15% 12.84% 94.01% 5.98% 90.12%

Table 3. Comparison of VGG19, Xception, and SVM with the proposed FCE using derived perfor-
mance metrics averaged over ten trials.

Algorithm Accuracy Precision Hit Rate Miss Rate Specificity Fall-Out F1 Score

Xception 99.18% 99.50% 98.84% 1.15% 99.51% 0.49% 99.17%
VGG19 97.99% 97.05% 98.87% 1.12% 97.14% 2.85% 97.95%

SVM 95.48% 95.63% 94.75% 5.25% 96.23% 3.76% 95.48%

Algorithm 1 Fuzzy Logic-Based Image Contrast Enhancement

Input: Aerial RGB image
Output: Aerial RGB image with fuzzy contrast enhancement

1: Convert input image from RGB to CIELAB color space and calculate the average pixel intensity
(µ) of the image

2: Fuzzification: For each pixel, calculate degree of membership of each class based on pixel intensity
and µ value; intensity ∈ [0, 255]

3: Inference: Calculate the output fuzzy set from the input pixel intensity based on the following
rule set:

• If input is “Very Dark (VD)” then output is “Extremely Dark (ED)”
• If input is “Dark (Da)” then output is “Very Dark (VD)”
• If input is “Slightly Dark (SD)” then output is “Dark (Da)”
• If input is “Slightly Bright (SB)” then output is “Bright (Br)”
• If input is “Bright (Br)” then output is “Very Bright (VB)”
• If input is “Very Bright (VB)” then output is “Extremely Bright (EB)”.

4: Defuzzification: For each pixel, calculate the centroid value of its output fuzzy set; centroid
∈ [−50, 305]

5: Normalize output pixel intensity from [−50, 305] to [0, 255]
6: Merge modified L* channel to the original a*b* channels
7: Convert output image from CIELAB color space to RGB

Figure 5. Overview of fuzzy contrast enhancement (FCE; Algorithm 1) [45].
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Figure 6. Selected images from the Primus Air Max wind turbine dataset captured at UVU before
and after FCE preprocessing.

Figure 7. Performance comparison of VGG19, Xception, and SVM without the proposed FCE filters
using highest-accuracy confusion matrices.
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Figure 8. Performance comparison of VGG19, Xception, and SVM with proposed FCE filters using
highest-accuracy confusion matrices.

5. Hyperparameter Tuning

The three ML approaches used in this research (VGG19, Xception, and SVM) were fur-
ther tweaked to tune the network architectures for the detection of wind turbines through
the selection of hyperparameters: parameters of a network that can be modified before
training to improve model performance [46]. As the number of hyperparameters can
increase significantly, the process of determining the ideal hyperparameters for the network
becomes computationally expensive and time-consuming. Therefore, a method of determin-
ing productive hyperparameters must be used [46]. Due to its association with the popular
deep learning framework Keras and its strong results, KerasTuner was used to tune the
hyperparameter values [23,47]. Of the hyperparameter algorithms provided by KerasTuner,
Bayesian optimization and the Hyperband algorithm were explored. Bayesian optimization
is a very efficient method as it takes into account past hyperparameter performance for
the future decision. Hyperband is beneficial because it early-stops poor-performing sets of
hyperparameter optimization in exchange for more emphasis on more promising sets of
hyperparameters. Additionally, RandomSearch was tested briefly until it was apparent the
other options were superior. RandomSearch is a method in which random combinations of
hyperparameters are selected and used to train a model, resulting in reducing the number
of hyperparameter configurations searched [47]. The Bayesian optimization hyperparame-
ter algorithm assumes the optimization function comes from a Gaussian process. Based on
all previous evaluations, the algorithm builds a probabilistic function on this assumption
and attempts to optimize hyperparameters. Bayesian optimization is a black box approach,
as the function being optimized is never directly identified [48].

The Hyperband algorithm employs a different approach called successive halving
where each hyperparameter configuration is given a computational budget. After the
budget is consumed, the algorithm filters through and determines the worst-performing
configurations, terminating them. The remaining configurations are given another compu-
tational budget and the process continues until the most performant configuration remains.
The algorithm assumes that all configurations can be stopped early and evaluated [49].

5.1. Hyperparameter Categories

Many categories of hyperparameters are available: some are specific to the type of
model being used and the task being performed; others have a broader scope and can be
applied to multiple models. The tuning performed in this research focuses on the latter.
Specifically, the hyperparameters explored in this research include the network’s optimizer
type, activation function, batch size, loss function, and dropout, which are explored in the
remainder of this section. Each hyperparameter and its corresponding values were selected
and optimized using a reasonably wide search space paired with a series of case studies.
Hyperparameters and values that performed well were used in future case studies while
those that performed suboptimally were dropped from future consideration. The values
of numerical hyperparameters, such as batch size and dropout, were selected from a pool
of practical size; the values of other hyperparameters, such as optimizer and activation
function, were selected using the pool of values available through the Keras software.
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The impact of hyperparameter selection and values on the performance of each machine
learning architecture is presented in the case studies of Section 6.

5.1.1. Optimizer

A key hyperparameter experimented with was the optimizer. An optimizer is an
equation or a set of equations that update the values of the model weights during back-
propagation by traversing the gradients of the loss function, which can be represented as
a multidimensional curve. The purpose of an optimizer is to find a local minimum on
this curve to increase model accuracy. Various optimizers exist, and each implements a
different gradient-traversal method. The optimizers explored here include Adam, NAdam,
AdaMax, and RMSProp [23,50–52].

5.1.2. Activation Functions

Activation functions are nonlinear layers in neural networks that require inputs to
be greater than a critical value to be passed to further layers. They prevent the network
from collapsing into a singular matrix and enable the network to perform more complex
tasks. Selection of the proper activation function can make a significant difference to the
performance of the network [23,53–58].

5.1.3. Batch Size

In calculations for gradient descent, two schools of thought are presented for the
management of training sources: stochastic gradient descent and batch gradient descent.
The former suggests updating the model with each training data point; the latter suggests
updating the model after processing each training data point reference. However, both
stochastic gradient descent and batch gradient descent have drawbacks that can be analyzed
to determine which will be more effective depending on the task.

A trade-off exists between the two methods. Large batch sizes benefit heavily from the
highly parallel nature of machine learning; therefore, the training execution time can be greatly
reduced. However, larger batch sizes require large pools of available memory to perform
calculations and can be trapped in local minima in the loss function. Smaller batch sizes tend
to be more noisy, allowing optimizers to break out of local minima and saddle points [59].

5.1.4. Loss Function

The loss function defines the margin of error of image classification in the network
during training. Three loss functions were explored here: categorical cross-entropy, binary
cross-entropy, and Kullback–Leiber (KL) divergence [60,61].

5.1.5. Dropout

Dropout is a method to prevent overfitting. Using the dropout during training, a
percentage of nodes from fully connected layers are dropped from the network, preventing
their weights from being used or updated. This forces the network to prioritize more
than one major network path and avoid overfitting. It also simulates training multiple
subnetworks and combining the results into the overall network [62].

6. Experimental Results
6.1. Dataset Overview and Characteristics

The machine learning algorithms introduced in Sections 2 and 3 were trained on the
created dataset of 4500 RGB images. The dataset contains two classes of images: those with
wind turbines (WT class) and those without (NWT class). The WT class has 2250 images
that contain a small-scale wind turbine (12V Primus Air Max wind turbine) assembled
at Utah Valley University (UVU). This wind turbine is shown in Figure 6. These images
were captured on a Zenmuse L1 RGB camera that was mounted on a DJI Matrice 300 RTK
drone. To ensure diversity and relevance to real-world wind turbine detection scenarios,
emphasis was placed on creating dataset images with diverse angles and distances to the
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wind turbine to simulate perspectives that are commonly observed from a drone-mounted
camera in a wind turbine farm. Additionally, images were captured in multiple weather
conditions at various times of day to ensure the dataset was robust. The NWT class also
has 2250 images that were taken in the same location as the WT images, so both sets have
similar backgrounds including trees and sky. The NWT class also contains images captured
at multiple times of day with various weather patterns. Additionally, all images in the
dataset were manually validated to ensure that each image had been placed in the correct
class and that each image was an accurate representation of the class it had been placed in.

The analysis of machine learning algorithms in this paper prioritized fast training
times so that more experimentation and iterative improvement could occur. As a result,
the images in the dataset were downscaled to 210 × 210 pixels. Additionally, the dataset is
separated into 3150 training images and 1350 test images to verify the performance of the
machine learning algorithms using previously unseen data. A selection of images from this
dataset is displayed in Figure 6, where Figure 6a,b show sample images from the NWT and
WT classes, respectively. Figure 6c,d show corresponding images after the application of
the proposed FCE preprocessing technique of Section 4.

6.2. VGG19 Experimental Results

The VGG19 network used the weights of the ImageNet dataset to expedite feature
extraction, and the dense classifier on top helped in identifying whether there was a turbine
in the image or not. The dense classifier had a total of six layers. The VGG base and dense
classifier were trained concurrently for better results as described in Section 2.1. The number
of neurons in the last layers depends on the number of classes in the training data, which is
an important detail to remember. Since there are only two classes (turbine or no turbine) in
the training database, the final layer contains two neurons. The VGG19 network underwent
several hyperparameter searches and tuning in order to determine the combination of
parameters that would perform the best on the dataset. This took place in Case Studies
A1–A3 on images downscaled to 135 × 85 pixels so that successful hyperparameters could
be identified more quickly due to the increased training speeds associated with smaller
images. Case Studies A4–A5 apply the resulting hyperparameters to the 210 × 210 pixel
dataset described at the start of this section for evaluation of fuzzy contrast enhancement.
The sections that follow outline the design and results of these studies.

6.2.1. VGG19 Case Study A1

Case Study A1 used the RMSProp optimizer in grid search for the VGG19 network. The
network’s dropout rate, image batch size, and optimizer learning rate were the hyperparameters
selected for the grid search, while the validation accuracy was used to measure optimization.
The image batch size was tested with values of 2, 5, 10, 15, 30, 50, and 120, the optimizer
learning rate with values of 10−5, 10−4, 5 × 10−4, 10−3, 10−2, and 10−1, and the dropout
rate with values of 10%, 20%, and 30%. Each set of hyperparameters was trained on the
wind turbine dataset for 100 iterations. Table 4 lists the best-performing hyperparameters for
each search.

6.2.2. VGG19 Case Study A2

Since the VGG19 network received beneficial results with RMSProp, Case Study A2
used the same combination but with a different search space of the hyperparameters
and a different search algorithm. The network’s dropout rate, image batch size, and
optimizer learning rate were again chosen as the hyperparameters, but this time for the
Bayesian optimization search. The validation accuracy was used as a measure to be
optimized. The image batch size was tested with values of 20, 50, 100, 150, 300, 350, and
400, and the dropout rate was tested with values of 20%, 30%, and 50%. The optimizer
learning rate was tested with the same values as Case Study A1. The wind turbine dataset
was used to train for 100 iterations of all hyperparameter options. Table 4 lists the best-
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performing hyperparameters for each search. The performance of the VGG19 architecture
with RMSProp in Case Study A2 was comparable to results from Case Study A1.

Table 4. Top three hyperparameters for VGG19 Case Studies A1–A3 with batch size (BS), learning
rate (LR), dropout rate (DR), and validation accuracy (VA).

Case Study No. BS LR DR Validation Accuracy (VA)

Case Study A1 1 30 0.0005 30% 98.36%
2 60 0.0001 30% 98.35%
3 30 0.001 20% 98.32%

Case Study A2 1 20 0.0005 20% 98.35%
2 60 0.0005 30% 98.30%
3 60 0.0001 20% 98.29%

Case Study A3 1 300 0.0001 30% 98.41%
2 60 0.0001 20% 98.39%
3 150 0.0001 20% 98.25%

6.2.3. VGG19 Case Study A3

This case study is very similar to Case Study A2. Since VGG19 performed well with
RMSProp, the same hyperparameters were used in Case Study A3. The same search
space for the hyperparameters was also used, but it was implemented via the Hyperband
algorithm instead of Bayesian or grid search. The best-performing hyperparameters for
each search are listed in Table 4. Across Case Studies A1 through A3, all combinations of
hyperparameter values performed reasonably well.

6.2.4. VGG19 Case Study A4

To obtain the final evaluation of VGG19’s performance for comparison with the other
deep learning methods explored, VGG19 was retrained using only the top performing set
of hyperparameters from Table 4; each image from the created dataset was then classified
by this trained network. The results were gathered into a confusion matrix from which
performance metrics such as accuracy and precision were calculated. The results of this
process were averaged across 10 separate runs and the highest accuracy overall was
recorded. The resulting averaged performance metrics, as well as the confusion matrix
with the highest accuracy for this model, are given in Figure 7a.

6.2.5. VGG19 Case Study A5

This case study tested the impact of fuzzy contrast enhancement as a preprocessing
step on the image dataset for the VGG19 network. Its procedure replicated that of Case
Study A4 in many ways. However, it differed in the addition of image preprocessing and a
lower batch size of 128 rather than 300 which was used previously. These results are shown
in Figure 8a and Table 3.

6.3. Xception Experimental Results

Six case studies of hyperparameter searches were conducted on the Xception network
to find the combination which performed best on the wind turbine dataset. In order to
increase the speed of hyperparameter selection, Case Studies B1–B4 used images down-
scaled to 135 × 85 pixels. Once hyperparameters had been identified which consistently
performed well, they were applied to the larger 210 × 210 pixel images for evaluation of
fuzzy contrast enhancement in Case Studies B5-B6. More information on the performance
of each is described in the sections that follow.

6.3.1. Xception Case Study B1

This case study paired the Xception network with the Adam optimizer while image
batch size, optimizer learning rate, and the network’s dropout rate were allowed to vary
as hyperparameters. The image batch size was tested with values of 1, 5, 10, 20, 32, 64,
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and 128, the optimizer learning rate was tested with values of 10−5, 10−4, 5 × 10−4, 10−3,
2 × 10−2, and 10−2, and the network dropout rate was tested with values ranging from
0% to 95% in 5% increments. For this case study, the hyperparameters were tuned with
KerasTuner’s RandomSearch algorithm. Additionally, the results were averaged from three
independent executions, and each search was trained for 30 epochs but set to stop early if
epoch loss did not improve for three epochs.

The results from this case study are visualized in Figure 9. Notably, the batch sizes
in the middle of the selected range (5, 10, 20, and 32) consistently performed with high
accuracies (90–95%), while the extremes in the tested batch size range (1, 64, and 128)
consistently had low accuracies (50–60%). The best hyperparameters are given in Table 5
under Case Study B1.

Figure 9. Xception results for Case Study B1 (red and blue colors indicate higher and lower model
validation accuracies, respectively).

6.3.2. Xception Case Study B2

In this case study, the hyperparameters were tuned using KerasTuner’s Bayesian
optimization tuner. These hyperparameters included the dropout ratio, the learning rate,
the activation function used in Xception’s final layer, the optimizer paired with the Xception
network, and conditional inclusion of the dropout layer. The optimizer was tested with
Adam and NAdam, the final layer activation function was tested with Softmax and Sigmoid,
and the dropout ratio was tested with values of 0% through 90% in 10% increments when
the dropout layer was included.

During training, the learning rate was allowed to vary logarithmically with a minimum
value of 10−5 and a maximum value of 10−1. This assigns equal probabilities to each order
of magnitude range [47]. The results from Case Study B2 are given in Figure 10, where it
can be seen that Softmax consistently performed poorly as Xception’s final layer activation
function, while Sigmoid consistently performed well. Softmax was removed from further
trials for this reason. The hyperparameters that consistently performed well in this case
study are listed in Table 5 under Case Study B2.
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Figure 10. Xception results for Case Study B2 (red and blue colors indicate higher and lower model
validation accuracies, respectively).

Table 5. Top three hyperparameters for Xception Case Studies B1-B4 with batch size (BS), loss (L),
optimizer (O), dropout layer (DL), dropout rate (DR), optimizer learning rate (LR), Adam Beta1 (B1),
Adam Beta2 (B2), Adam Epsilon (E), and Adam AMSGrad (AMSG). In all of these case studies, we
used the ReLU activation function and Sigmoid was utilized as the final layer activation function.

Case Study No. BS L O DL DR LR B1 B2 E AMSG Accuracy

Case B1 1 20 BC Adam True 60% 5 × 10−4 0.9 0.999 10−7 False 95.321%
2 5 BC Adam True 10% 10−4 0.9 0.999 10−7 False 94.509%
3 5 BC Adam True 80% 10−4 0.9 0.999 10−7 False 94.209%

Case B2 1 32 BC Adam False - 10−5 0.9 0.999 10−7 False 88.953%
2 32 BC Adam False - 10−5 0.9 0.999 10−7 False 88.590%
3 32 BC Adam False - 10−5 0.9 0.999 10−7 False 88.462%

Case B3 1 10 BC Adam True 45% 5 × 10−4 0.9 0.99 10−7 True 93.686%
2 20 BC Adam True 35% 10−3 0.0 0.99 10−7 True 93.103%
3 5 BC Adam True 25% 5 × 10−4 0.0 0.0 10−7 True 89.103%

Case B4 1 5 BC Adam True 45% 2 × 10−3 0.0 0.0 10−1 True 96.058%
2 10 BC Adam True 20% 10−4 0.0 0.999 10−7 False 94.872%
3 5 BC Adam True 20% 10−4 0.9 0.9999 10−7 True 94.359%

6.3.3. Xception Case Study B3

This case study focused on tuning the Adam optimizer’s learning rate, Beta1, Beta2,
Epsilon, and AMSGrad inputs as well as dropout ratio and batch size using Bayesian
optimization. Each combination of hyperparameters was independently executed ten
times, and the results of each were averaged to obtain each search’s final outcomes.

The hyperparameters were tested with values of 10−4, 5 × 10−4, 10−3, and 2 × 10−3

for the learning rate, 0.0 and 0.9 for Beta1, 0.0, 0.99, 0.999, and 0.9999 for Beta2, 10−7, 10−1,
and 1.0 for Epsilon, true or false for AMSGrad, and 0% through 50% in 5% increments
for the dropout ratio. The batch sizes were tested with the same values as Case Study B1.
The available values for Beta1 and Beta2 were selected based on [63], with Beta2 being
modified to include a value of 0.0. The available values for Epsilon were selected from
the Keras documentation. The results from Case Study B3 are visualized in Figure 11, and
the hyperparameters with the highest average accuracies from this case study are listed in
Table 5 under Case Study B3. The hyperparameters with the consistent best performance
had batch sizes in the middle of the tested range (5, 10, 20) and dropout ratios in the upper
half of the tested range (25–45%).
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Figure 11. Xception results for Case Study B3 (red and blue colors indicate higher and lower model
validation accuracies, respectively).

6.3.4. Xception Case Study B4

This trial used the same hyperparameters with the same tested values as Case Study B3,
but they were tuned with the Hyperband algorithm rather than the Bayesian optimization
algorithm. The results are visualized in Figure 12, and the hyperparameters that had the
highest averaged accuracies are given in Table 5 under Case Study B4. In Figure 12, note
that the accuracies at the low-end of the scale are about 88%. In other case studies, the low
end of the scale for accuracies ranged from 50% to about 68%. The Hyperband algorithm
resulted in higher accuracies.

Figure 12. Xception results for Case Study B4 (red and blue colors indicate higher and lower model
validation accuracies, respectively).

Across Case Studies B1 through B4, very low and very high batch sizes (below 5
and above 64) tended to perform poorly. Additionally, the NAdam optimizer and the
Softmax final layer activation function performed poorly in combination with the other
hyperparameters and values selected in Case Studies B1 through B4. The inclusion of
the dropout layer was also a key hyperparameter: performance significantly decreased
when the dropout layer was not included in the architecture. Overall, the best results were
attained when using medium-range batches sizes (5 through 32), the Adam optimizer,
the Sigmoid final layer activation function, and when a dropout layer was included in
the architecture.

6.3.5. Xception Case Study B5

In this case study, fine-tuning was implemented for the Xception network structure.
The model was initialized with weights pretrained on the ImageNet dataset and given a
densely connected final layer. Where appropriate, the model was assigned with the top set
of hyperparameters from Table 5. To prepare the network for fine-tuning, the pretrained
weights were frozen, while the final dense layer was trained on the wind turbine dataset.
During fine-tuning, the final seventeen layers, including the densely connected layer, were
unfrozen and trained with one-tenth of the learning rate used in the fine-tuning preparation
stage. The model was evaluated using the process described in VGG19 Case Study A4. The
results are illustrated in Figure 7b and Table 2.
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6.3.6. Xception Case Study B6

This case study analyzed the effect of implementing fuzzy contrast enhancement as a
preprocessing step for the Xception network. Its procedure mirrored that of Case Study B5
with the only difference being the addition of image preprocessing. These results are given
in Figure 8b and Table 3.

6.4. SVM Experimental Results

Experiments in this section were undertaken to explore the effects of the proposed FCE
image preprocessing of Section 4 on the performance and accuracy of the SVM algorithm.
Four SVM case studies were conducted, encompassing default hyperparameter settings
and Bayesian optimization, both with and without FCE image preprocessing.

6.4.1. SVM Case Study C1

In the first case study with SVM, the default hyperparameters were used. The model
was built using the Scikit-learn library in Python and no hyperparameter values were
altered. The default hyperparameter values are C = 1, Gamma = Scale, and Kernel = rbf.
These hyperparameter values are the same for any SVM built using Scikit-learn in Python.

6.4.2. SVM Case Study C2

The second case study with SVM is executed using Bayesian optimization instead of
the default hyperparameters setting. This study aims to identify the optimal combination
of hyperparameters to attain the highest accuracy for our model. The results are presented
in Figure 7c and Table 2.

6.4.3. SVM Case Study C3

The third SVM case study mirrors Case Study C1 by relying on default hyperpa-
rameters. However, it incorporates the proposed FCE procedure outlined in Section 4.
Consequently, a preprocessing step is integrated into the SVM algorithm to modulate the
intensity of all images within the generated dataset. This study aims to establish a baseline
accuracy when implementing fuzzy contrast enhancement, providing a benchmark for
comparison with the accuracy achieved in the subsequent section.

6.4.4. SVM Case Study C4

The ultimate SVM study integrated elements from both Case Study C2 and C3, incor-
porating both Bayesian optimization and the proposed FCE preprocessing step of Section 4.
The application of these combined techniques generated the highest accuracy attained
by the SVM model. Comprehensive results and details of this conclusive case study are
presented in Figure 8c and Table 3.

7. Conclusions

This paper examines and contrasts the impact of applying fuzzy contrast enhancement
(FCE) as an image preprocessing algorithm to various strategies for detecting the presence of
wind turbines in RGB images, an initial key aspect of autonomous wind turbine inspection.
The three methods under investigation are VGG19, Xception, and SVM. The primary
contributions of this paper encompass the following:

• A comprehensive exploration, implementation, and comparison of three distinct
machine learning algorithms, comprising two convolutional neural networks and the
SVM algorithm. These algorithms are utilized to classify whether RGB images contain
wind turbines.

• The application of the proposed fuzzy contrast enhancement (FCE) data preprocessing
step to the VGG19, Xception, and SVM machine learning algorithms, accompanied
by a comparison of their conventional performance against their performance when
augmented by this preprocessing step.



Machines 2024, 12, 55 19 of 22

• The creation of a novel Primus Air Max wind turbine classification dataset, consisting
of 4500 RGB images, and its utilization to assess the performance of the implemented
VGG19, Xception, and SVM algorithms.

Based on our analysis, primary conclusions are as follows:

• The assessed convolutional neural networks, namely Xception and VGG19, demon-
strated commendable performances with accuracies above 98%. In contrast, as antici-
pated, the SVM algorithm exhibited a less favorable accuracy of around 90%.

• The implementation of the proposed FCE results in enhanced accuracy for Xception
and SVM, while VGG19 does not experience similar improvements.

• The results presented in Figures 7 and 8 and Tables 2 and 3 demonstrate that im-
plementing the proposed FCE leads to improvements in accuracy, precision, and F1
score. Specifically, for the Xception model, these metrics increase from 99%, 99.2%, and
98.99% to 99.18%, 99.5%, and 99.18%, respectively. Similarly, for the SVM algorithm,
the application of FCE raises accuracy, precision, and F1 score from 90.3%, 91%, and
90.12% to 95.48%, 95.63%, and 95.48%, respectively.

In summary, FCE as a data preprocessing algorithm for wind turbine detection is
promising: two of the explored machine learning architectures experienced a performance
increase when this algorithm was applied. Future research into autonomous condition
monitoring of wind turbines may similarly benefit from applying FCE as a dataset prepro-
cessing step. For future investigations, the authors intend to expand the existing dataset
to incorporate RGB images depicting both intact and defective wind turbine blades, with
and without cracks. Further enhancements and training of the Xception, VGG19, and SVM
algorithms are envisaged to facilitate their utilization in automated drone path planning,
enabling the autonomous detection of faults in wind turbine blades.
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