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Abstract: Since the discovery of electricity, electric cables have become ubiquitous in human construc-
tions, from machines to buildings. Insulators play a crucial role in ensuring the proper functioning of
these cables, so it is important to monitor their possible damage, which can be caused by environ-
mental contamination, severe temperature variations, and electrical and mechanical stress. While
shunt conductance is a direct health indicator of cable insulation, measuring the cable average shunt
conductance is not sufficient for the detection of localized insulator damage, since localized conduc-
tance variations are diluted over a long cable length in such measurements. The objective of this
paper is to assess the feasibility of reflectometry techniques for the monitoring of insulator damage
in electric cables. To this end, the estimation of localized conductance variations is investigated
based on electrical measurements made at one end of a cable. To avoid estimating a large number of
discretized conductance values along a long cable, the proposed method relies on sparse regression,
which automatically focuses on localized conductance variations at unknown positions caused by
accidental insulator damage. In order to efficiently apply sparse regression techniques, the telegra-
pher’s equations describing electric wave propagation in cables are transformed through several
steps into a simple linear regression form. Then, Lasso (Least Absolute Shrinkage and Selection
Operator) regression is applied to process the voltage and current data collected at a single end of
the monitored cable. Numerical simulations show the potential of this method for fast estimation of
localized shunt conductance variations.

Keywords: cable insulator monitoring; distributed shunt conductance; sparse regression; Lasso

1. Introduction

Since the discovery of electricity, electric cables have become ubiquitous in human
constructions, from machines to buildings [1,2]. These cables have often been considered
reliable and are ignored by fault diagnosis systems. Today, the reliability of some cable
connections is becoming increasingly critical due to the importance of power supply and
telecommunication, and some research activities have emerged to investigate this issue,
such as [3–8]. Most of these studies concern the monitoring of cable impedance. In contrast,
the present paper is focused on distributed shunt conductance, which is a direct health
indicator of cable insulation [9]. There exist also other insulator monitoring methods relying
on fiber-optic sensors incorporated into cables [10], whereas the present study is only based
on electric voltage and current measurements made at one end of the monitored cable,
for wide applicability to most electric cables.

Playing an important role in cables, insulators are subject to different causes of degra-
dation and failure: temperature variations, environmental contamination, and electrical,
mechanical, and chemical stress. Currently, the average shunt conductance assessed from
direct current (DC) measurements is widely used in the industry for the evaluation of
cable insulation. This method is efficient for the monitoring of cable aging, resulting in

Machines 2024, 12, 50. https://doi.org/10.3390/machines12010050 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12010050
https://doi.org/10.3390/machines12010050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines12010050
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12010050?type=check_update&version=1


Machines 2024, 12, 50 2 of 14

degradation well spread over the whole length of a cable, but is not suitable for localized
failures, which would be diluted over a long cable when the average shunt conductance
is tested. It is thus important to develop methods for the detection and the diagnosis of
localized failures, which are typically caused by accidental events.

Compared to cable impedance, relatively few studies on shunt conductance monitor-
ing have been reported [11–15], and they often assume constant conductance per unit length
along the whole cable. Non-uniform shunt conductance has been considered in [13,15].
To estimate a large number of discretized shunt conductance values along a long cable with
sufficient accuracy (shunt conductance is typically at the order of 10−10 Siemens/meter),
large data sets have to be processed, requiring considerable computer memory and compu-
tation time. In order to reduce the number of unknowns to be estimated, this paper assumes
that the shunt conductance varies only at a few positions along the cable, in order to address
the case of localized failures. Of course, the positions of localized failures are unknown.
To efficiently solve such a particular parameter estimation problem, sparse regression
techniques will be applied [16–18]. To increase the numerical efficiency, sparse regression
will be used in association with some particular transformations of dynamic systems [19].
To our knowledge, this proposed solution is the only electrical measurement-based method
for the efficient detection, location, and quantification of localized insulator failures.

Insulation failure diagnosis by shunt conductance monitoring has the advantage of
being non-destructive, since it is essentially based on voltage and current measurements.
However, such measurements can only be made at one or two ends of a cable, whereas
localized failures may appear anywhere along the cable at unknown positions. This is the
main cause of difficulty in this approach. By analyzing electrical waves involving different
frequencies based on a mathematical model of wave propagation, it is possible to extract
information about localized failures from measurements made at the ends of a cable [1].
The particularity of the reported work is the automatic focus on localized shunt conductance
variations with the efficient application of sparse regression techniques.

The solution of embedding fiber-optic sensors (FOS) in between copper wires of high-
voltage phases or within insulator cross-linked polyethylene (XPLE) has been suggested in
the literature [9,10], and the FOS placement strategy targets the fine bending monitoring
of phases. The embedding of FOS within the XPLE or in between copper wires is tech-
nologically challenging due to the risk of breaking the sensors. This risk exists regardless
of the area of placement of the FOS (embedded along the central copper wire and/or
helically wound the same way as other copper wires). Indeed, extensive inter-copper-wire
sliding/friction can arise with a high failure probability and risk of breaking the FOS.
The option of embedding the FOS within thermoplastic materials is an alternative, al-
though it would lead to the underestimation of the magnitude of the thermal parameters of
the cables. Whether the error is constant or increasing, when shifting the positioning of the
FOS between the copper section and the edge of the insulator, this is a key question that
must be answered properly. It is worth noting that FOS embedding requires the special
design and fabrication of cables with built-in fiber-optic sensors, which are themselves
subject to possible failures. In contrast, the method proposed in this paper is based on
electrical measurements made from the cable ends, without requiring any embedded sensor
in the monitored cables.

This paper is organized as follows. Section 2 formulates the considered problem and
summarizes the proposed solution. Section 3 presents the perturbation analysis and space-
time discretization. Section 4 focuses on Kalman pre-filtering. Section 5 discusses Lasso
sparse estimation. Section 6 presents the numerical results. Finally, Section 7 concludes
the paper.

2. Problem Formulation and Solution Summary

In this section, the studied problem is first formulated, before a summary of the
proposed solution is presented.
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2.1. Cable Equations

In this work, electrical waves propagated in a cable are characterized by the well-
known telegrapher’s equations [1,20,21]. They can be derived either from Maxwell’s equa-
tions under appropriate assumptions or from the equivalent circuit of a cable, as illustrated
in Figure 1. See, e.g., [1,20]. Let t ≥ 0 be the time, x ∈ [a, b] ⊂ R be the cable longitudinal
coordinate, and V(t, x) and I(t, x) be the distributed voltage and current along the cable at
instant t and at position x; the telegrapher’s equations are

∂

∂z
V(t, x) + R(x)I(t, x) + L(x)

∂

∂t
I(t, x) = 0 (1a)

∂

∂z
I(t, x) + G(x)V(t, x) + C(x)

∂

∂t
V(t, x) = 0 (1b)

where R(x), L(x), C(x), and G(x) denote, respectively, the series resistance, inductance,
capacitance, and shunt conductance per unit length of the cable at the position x. The cable
left end (x = a) is connected to a source Vs(t) with impedance Rs and to an instrument so
that the current I(t, a) is measured. Then,

V(t, a) = Vs(t)− Rs I(t, a). (2)

At the other end (x = b) with a load of impedance RL, the boundary condition is

V(t, b) = RL I(t, b). (3)

or, alternatively, if it is open-circuited,

I(t, b) = 0. (4)

From the system point of view, the input is

u(t) = Vs(t), (5)

and the output is

y(t) = I(t, a). (6)

Figure 1. Equivalent circuit model of telegrapher’s equations.

In an electric cable with normal dielectric properties, the shunt conductance per unit
length is very low, typically at the order of 10−10 Siemens/meter. Gradual or sudden
increments in the shunt conductance may occur due to degradation or damage to the
dielectric properties of the insulator. The diagnostic method presented in this paper is
based solely on electrical measurements made at one end of a cable, since it is more difficult
to simultaneously measure at the two ends of a long cable, it is and not realistic to perform
measurements along the entire length of the cable. To ease the presentation, the instruments
are said to be connected at the left end of the cable where x = a, whereas the right end
corresponds to x = b.
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2.2. Shunt Conductance Estimation from Measurements

The method proposed in this paper for the monitoring of insulation damage con-
sists of estimating the distributed shunt conductance G(x) from electric voltage–current
measurements collected from one end of the cable only.

At first view, an obvious difficulty of this considered problem is due to the fact that,
in the telegrapher’s Equation (1), the voltage V(t, x) and the current I(t, x) are unknown,
except at the left end of the cable, where x = a. This is not the only difficulty, as summa-
rized below.

• The unknown G(x) distributed along the whole cable length is to be estimated from
measurements at one cable end.

• The measurements have very weak sensitivity to small variations of G(x).
• In the term G(x)V(t, x) of Equation (1), G(x) and V(t, x) are both unknown except at

the point x = a. This leads to a bilinear estimation problem.

2.3. Summary of the Proposed Method

After some transformations of the telegrapher’s equations, sparse estimation tech-
niques will be applied, in order to automatically focus the estimation of G(x) on cable
segments where the shunt conductance has deviated from its nominal value. The positions
of such segments are unknown.

The essential steps are summarized as follows.

• In (1b), the bilinear term G(x)V(t, x) is linearized by perturbation analysis.
• The partial differential equations are discretized in x and in t in order to approximate

the original infinite-dimensional system by a finite-dimensional discrete-time system.
• The Kalman filter is applied to pre-filter the voltage and current signals, assum-

ing that G(x) = G0 throughout the cable, for some nominal conductance value G0.
The effect of G(x) 6= G0 ignored by the Kalman filter then additively appears in the
Kalman innovation.

• Lasso regression is then applied to estimate the unknown G(x) by analyzing the
Kalman innovation sequence, under the assumption that G(x) deviates from its nomi-
nal value at some unknown positions.

3. Perturbation Analysis and Space-Time Discretization

This section summarizes the transformations of the telegrapher’s equations by pertur-
bation analysis and space-time discretization, leading to state-space equations in order to
apply Kalman pre-filtering followed by sparse regression.

Assume that, in system (1), the shunt conductance G(x) has deviated from the nominal
profile G0(x) in such a way that

G(x) = G0(x) + εG̃(x) (7)

with some unknown G̃(x) and 0 < ε << 1. Then, the perturbation analysis linearizes the
bilinear term G(x)V(t, x) and yields two fictive systems: the zero-order system character-
izing the nominal behavior corresponding to G(x) = G0(x), and the first-order system
describing the small deviation from the nominal behavior. See [15] for the details of the
perturbation analysis in the particular case of G0(x) = 0. See also the footnote at the bottom
of this page.
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The space variable x is then discretized, leading to discretized current ij(t) and volt-
age vj(t) as illustrated in Figure 1. These discretized variables are then collected in the
state vector

ξ(t) =



i0(t)
...

iN−1(t)
v1(t)

...
vN(t)


∈ R2N . (8)

The zero-order and first-order systems have, respectively, their state vectors denoted by
ξ0(t) and ξ1(t).

The continuous-time state-space equations for the zero-order system are

ξ̇0(t) = A0ξ0(t) + B0u0(t) (9a)

y0(t) = H0ξ0(t), (9b)

and, similarly, for the first-order system,

ξ̇1(t) = A1ξ1(t) + Ψ(t)θ (10a)

y1(t) = H1ξ1(t). (10b)

The input and output of the zero-order system are

u0(t) = Vs(t) (11a)

y0(t) = I0(t, a). (11b)

The matrices A0, B0, H0 and A1, B1, H1 are detailed in Appendix A at the end of this paper
(Usually, state-space equations are written with the notations A, B, C. Here, H0, H1 are
used instead of C0, C1 to avoid confusion with the capacitance notation in the (discretized)
telegrapher’s equations.). The term Ψ(t)θ is composed as

θ =

 G̃0
...

G̃N−1


Ψ(t) =

[
0N

−diag(u1(t))diag([1/C0, . . . , 1/CN−1])

]
,

in which G̃0, G̃1, . . . , G̃N−1 are discretized G̃(x), 0N is the N × N zero matrix, the input of
the first-order system is

u1(t) =
[

0N IN
]
ξ0(t), (12)

and diag(·) spans a vector to a diagonal matrix. The output of the first-order system is

y1(t) =
y(t)− y0(t)

ε
. (13)

The state ξ0(t) of the zero-order system is computed by solving the zero-order state
Equation (9). For the purpose of insulator monitoring, θ will be estimated from u1(t), y1(t),
A1, and H1. Notice that the state vector ξ1(t) of the first-order system is also unknown.

The continuous-time state-space Equation (10) is then discretized in time, with the
time stepsize τ:



Machines 2024, 12, 50 6 of 14

ξ1(k + 1) = Ad1ξ1(k) + Ψd(k)θ + w(k) (14a)

y1(k) = H1ξ1(k) + v(k) (14b)

where, for notational simplicity, ξ1(k) means ξ1(kτ), and, similarly, for other occurrences
of “(k)”,

Ad1 = eA1τ (15)

Ψd(k) = A−1
1 (eA1τ − I2N)Ψ(kτ), (16)

while w(k), v(k) are added for various modeling measurement errors. Note that the right-
hand side of (15) is expressed with the matrix exponential [22].

4. Kalman Pre-Filtering

Let the covariance matrices of w(k), v(k) in (14) be denoted by Q and R, respectively.
The pre-filtering consists of applying the Kalman filter to (14) by setting the unknown
θ to zero, so that the term Ψd(k)θ is ignored. Of course, this Kalman filter ignoring the
term Ψd(k)θ produces biased results. The analysis of this bias will lead to a simple linear
regression equation for the estimation of θ, as presented below. Well-known results of
Kalman filtering can be found in [23–25].

The resulting Kalman filter is

ξ̂1(k + 1) = Ad1ξ̂1(k) + Ad1K(k)
[
y1(k)− H1ξ̂1(k)

]
(17)

where ξ̂1(k) is the state prediction (usually with the double index (k|k− 1) in the Kalman
filter literature), and K(k) is the Kalman gain computed as follows:

K(k) = P(k)HT
1 Σ−1(k) (18a)

P(k + 1) = Ad1(I2N − K(k)H1)P(k)AT
d1 + Q (18b)

Σ(k) = H1P(k)HT
1 + R (18c)

The variance of the measurement noise v(k) is based on the measurement instrument’s data
sheet, whereas the covariance of the modeling noise w(k) is used as a tuning parameter
chosen by experimental trials.

The innovation (prediction error) of the Kalman filter is computed as

e(k) = y1(k)− H1ξ̂1(k). (19)

If the assumption Ψd(k)θ = 0 made for Kalman pre-filtering was true, then the resulting
Kalman innovation (e0(k) in this particular case) would behave as a zero mean noise
sequence. However, Ψd(k)θ 6= 0 if the insulator conductance has deviated from the nominal
value. This discrepancy between the reality and the filter, which assumes Ψd(k)θ = 0,
implies a bias in the innovation e(k). More precisely, the biased Kalman innovation behaves
as follows.

Proposition 1. Let e0(k) be the zero mean Kalman innovation in the particular case Ψd(k)θ = 0
of system (14). The innovation e(k) corresponding to Ψd(k)θ 6= 0 is related to e0(k) by the
following equation:

e(k) = e0(k) + H1Γ(k)θ, (20)

where the matrix Γ(k) ∈ R2N×N is recursively defined as

Γ(0) = 0 (21a)

Γ(k + 1) = Ad1(I2N − K(k)H1)Γ(k) + Ψd(k). (21b)
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A similar result regarding the updated filter error was presented in [19], in a case where the
Kalman innovation does not exist because of the involvement of unknown inputs. In what follows,
direct proof of (20) and (21) is presented.

Proof. Let us start the proof by deriving the state estimation error dynamics. The state
estimation error will be denoted by

ξ̃1(k) = ξ1(k)− ξ̂1(k). (22)

It then follows from (14) and (17) that

y1(k)− H1ξ̂1(k) = H1ξ̃1(k) + v(k), (23)

and

ξ̃1(k + 1) = Ad1ξ̃1(k) + Ψd(k)θ + w(k)− Ad1K(k)
[
H1ξ̃1(k) + v(k)

]
. (24)

Then, the last result is rearranged as

ξ̃1(k + 1) = Ad1(I2N − K(k)H1)ξ̃1(k) + w(k)− Ad1K(k)v(k) + Ψd(k)θ. (25)

Applying this recursion from k = 0 to the current value of k, we have

ξ̃1(k) = Φ(k|0)ξ̃1(0) +
k−1

∑
j=0

Φ(k|j + 1)(w(j)− Ad1K(j)v(j))

+
k−1

∑
j=0

Φ(k|j + 1)Ψd(j)θ (26)

with the state transition matrix Φ(i|j) defined, for i > j ≥ 0, as

Φ(i|j) , Ad1(I2N − K(i− 1)H1)Ad1(I2N − K(i− 2)H1) · · ·
· · · Ad1(I2N − K(j)H1), (27)

and, for i = j, as

Φ(j|j) , I2N . (28)

Gathering (19), (23), and (26) yields

e(k) = H1Φ(k|0)ξ̃1(0) + H1

k−1

∑
j=0

Φ(k|j + 1)(w(j)− Ad1K(j)v(j))

+ H1

k−1

∑
j=0

Φ(k|j + 1)Ψd(j)θ + v(k). (29)

The notation e0(k) was introduced directly before (20) for the particular case Ψd(j)θ = 0.
In (29), it corresponds to e(k) when Ψd(j)θ = 0. Then,

e0(k) = H1Φ(k|0)ξ̃1(0) + H1

k−1

∑
j=0

Φ(k|j + 1)(w(j)− Ad1K(j)v(j)) + v(k) (30)
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and, by combining (29) and (30),

e(k) = e0(k) + H1

k−1

∑
j=0

Φ(k|j + 1)Ψd(j)θ. (31)

Following the iterations defined in (21), it is straightforward to check, with the notation
Φ(i|j) defined in (27) and (28), that

Γ(k) =
k−1

∑
j=0

Φ(k|j + 1)Ψd(j), (32)

and (31) becomes

e(k) = e0(k) + H1Γ(k)θ, (33)

which is exactly (20). This result is thus proven.

In the linear regression (20), the innovation e(k) is computed through Kalman pre-
filtering, H1 is a known matrix, Γ(k) is obtained from (21), and e0(k) is a noise term (a zero
mean Kalman innovation). In principle, it is possible to estimate the unknown parameter
vector θ with the classical least squares method [26–30] based on (20).

However, in the linear regression Equation (20), the vector θ contains a large num-
ber of unknowns, which correspond to the shunt conductance discretized along a cable.
The estimation of all these unknowns would require a huge amount of data in order to
achieve sufficient accuracy for the very small conductance values, typically at the order of
10−10 Siemens/meter. To avoid this difficulty, sparse regression will be applied in the next
section in order to automatically focus the estimation on the discretized shunt conductance
values that deviate from the nominal conductance value.

5. Sparse Estimation by Lasso

From a data set collected at discrete time instants k = 1, 2, . . . , N, a matrix X and
a vector y are built as

X =


H1Γ(1)
H1Γ(2)

...
H1Γ(N)

, y =


e(1)
e(2)

...
e(N)

 (34)

where H1Γ(k) and e(k) are as in (20). Then, according to (20),

y = Xθ + e0 (35)

with the error vector

e0 =


e0(1)
e0(2)

...
e0(N)

. (36)

Based on the linear regression equation (35), sparse regression algorithms can be
applied for the estimation of θ by assuming that θ has a small number of non-zero val-
ues. The Lasso algorithm is given in [17,18]. Other algorithms could also be applied—
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for instance, stability selection [31], the Danzig selector [32], orthogonal pursuit [33], and
CoSaMP [34]. The resulting Lasso estimation is

θ̂ = arg min
θ

(
1

2N
‖Xθ − y‖2

2 + λ‖θ‖1

)
(37)

with ‖ · ‖1 and ‖ · ‖2 denoting the l1 norm and l2 norm, and λ > 0 being a weighting
parameter determined by cross-validation [16] (section 5.1).

6. Numerical Simulation Results

A cable of 800 m is numerically simulated, with R = 1 mΩ/m, L = 0.1 µH/m,
C = 5 pF/m. The nominal shunt conductance value G0 = 10−10 Siemens/m. At some small
segments of the cable, the conductance has the abnormal conductance value
G = 2× 10−9 Siemens/m. The simulations are based on the well-known telegrapher’s
equations [1].

For the voltage and current data collected at one end of the simulated cable, the sam-
pling period is 10 ns. Each simulation is made for the duration of 20 ms, yielding
2,000,000 sampled data points. White Gaussian noise is added to the sampled data such
that the signal-to-noise rate is 80 dB.

The right end of the cable is open-circuited. At the left end, a multi-sinusoidal voltage
is injected and the resulting current signal is measured. The voltage and current signals
are then processed with the method presented in this paper to estimate the conductance
profile G(x).

In the simulation result displayed in Figure 2, the blue line represents simulated con-
ductance profile G(x), and the red dotted line represents the estimated conductance profile,
both in Siemens/m. Notice that the vertical axis (ordinate) is at the scale of 10−9. In this
example, the Lasso regression has correctly detected most positions where the conductance
deviates from the nominal value. The estimation error is less than 0.5× 10−9 Siemens/m.

In another simulation result shown in Figure 3, the algorithm has over-detected
the conductance at more positions. Nevertheless, the estimation error remains below
0.5× 10−9 Siemens/m.

To evaluate the statistical properties of this estimation method, the simulation is
then repeated 100 times with different random noise realizations, and the conductance
profile G(x) is estimated for each of these simulations. The results are summarized in
Figure 4: the blue line gives the simulated conductance profile G(x), the red line shows the
estimated conductance profile averaged over 100 simulations, and the pink area indicates
the uncertainty of the estimated profile corresponding to the standard deviation around
the estimated mean profile. The root mean squared error (RMSE) and mean absolute
percentage error (MAPE) of these results are presented in Table 1.

These results show that the distributed conductance estimation error is generally below
0.5× 10−9 Siemens/m. The accuracy of the estimation method based on the processing
of 2,000,000 sampled data points appears sufficient to detect and characterize localized
conductance variations at the order of 1× 10−9 Siemens/m. To our knowledge, this is the
first reported method for distributed shunt conductance estimation automatically focusing on
localized conductance variations at unknown positions. It provides an electrical measurement-
based method for the efficient detection, location, and quantification of localized insulator
failures. Despite the very small conductance values and the resulting weak sensitivity
of electric measurements made at one end of a cable, the automatic focus on localized
conductance variations makes possible the monitoring of localized insulator damage by
processing sensor data with a computational time of about 10 s on a notebook computer.
This computational efficiency is due to the transformations of the telegrapher’s equations
to a linear regression form, from Equation (1) to Equation (20).
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Table 1. Root mean squared error (RMSE) and mean absolute percentage error (MAPE) of the
results of shunt conductance estimation based on 100 realizations. The unit of RMSE is nano (10−9)

Siemens/meter. MAPE is a percentage (×100%).

Segment 1 2 3 4 5 6 7 8

RMSE 0.0591 0.0434 0.0353 0.0337 0.0326 0.0250 0.0332 0.0307

MAPE 0.4293 0.3952 0.3169 0.2830 0.3244 0.2125 0.2595 0.3563

Segment 9 10 11 12 13 14 15 16

RMSE 0.0226 0.0323 0.0299 0.0291 0.0312 0.0343 0.0245 0.0247

MAPE 0.2406 0.2530 0.2008 0.2165 0.2527 0.3020 0.2423 0.2362

Segment 17 18 19 20 21 22 23 24

RMSE 0.0232 0.0320 0.0164 0.0335 0.0223 0.0261 0.0242 0.0370

MAPE 0.1945 0.2650 0.1850 0.2842 0.2291 0.2382 0.1422 0.1558

Segment 25 26 27 28 29 30 31 32

RMSE 0.1439 0.0756 0.0248 0.0291 0.0126 0.0817 0.2964 0.2424

MAPE 0.0575 0.0417 0.0927 0.3088 0.1417 0.2447 0.1106 0.0756

Segment 33 34 35 36 37 38 39 40

RMSE 0.3428 0.1524 0.0032 0.0648 0.0158 0.1011 0.0619 0.1235

MAPE 0.1205 0.3259 0.1631 0.3305 0.1812 0.3852 0.3733 0.4640

0 100 200 300 400 500 600 700 800

x (m)

0

0.5

1

1.5

2

2.5
10-9

Simulated G(x)
Mean of estimated G(x)

Figure 2. Result 1 of shunt conductance profile estimation in one simulation. Abscissa: position
along the cable in meters. Ordinate: shunt conductance G(x) in Siemens/meter. Blue line: simulated
conductance profile G(x), red dotted line: estimated conductance profile.
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Figure 3. Result 2 of shunt conductance profile estimation in one simulation. Abscissa: position
along the cable in meters. Ordinate: shunt conductance G(x) in Siemens/meter. Blue line: simulated
conductance profile G(x), red dotted line: estimated conductance profile.
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Figure 4. Results of shunt conductance profile estimation based on 100 simulations. Abscissa: position
along the cable in meters. Ordinate: shunt conductance G(x) in Siemens/meter. Blue line: simulated
conductance profile G(x), red line: estimated conductance profile averaged over 100 simulations,
pink area: uncertainty of the estimated profile corresponding to the standard deviation around the
estimated average profile.

7. Conclusions

The shunt conductance directly reflects the insulator quality of a cable, since it is
proportional to the leakage current in the insulator. Good cables have a very small nominal
conductance value. Even if it is locally multiplied by a factor of 10, the effects of the varia-
tion on the cable may be barely perceptible from electrical measurements. Nevertheless,
the spatially localized growth of G(x) can reveal inadvertent cable degradation, as an
early sign of failure. The proposed method of this paper offers direct information about
localized damage that should attract the attention of cable operators. In addition, by peri-
odically estimating G(x), the temporal evolution of G(x) provides important information
for damage prognosis.

The diagnosis of localized insulator damage has been investigated in the reported work.
Numerical simulations have shown the potential for future developments, particularly
the ability of sparse regression to automatically focus on localized variations in the shunt
conductance profile. Based on this exploratory numerical study, the encouraging results
will open the door to experimental validation. In the near future, we plan to evaluate
the performance of other sparse regression techniques applied to the considered problem.
We will also work on different types of cables.
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Appendix A. Telegrapher’s Equations Space Discretization

The telegrapher’s equations (1) approximated by the circuit in Figure 1 correspond to
the discretization of (1) in x, with the size of the discretization step

∆ = (b− a)/N (A1)



Machines 2024, 12, 50 12 of 14

and (The positions x0, x1, . . . , xN are at the nodes v0, v1, . . . , vN in Figure 1).

xj = a + j∆ (A2)

Rj = R(xj+ 1
2
) (A3)

Gj = G(xj) (A4)

Lj = L(xj+ 1
2
) (A5)

Cj = C(xj) (A6)

vj(t) = V(t, xj) (A7)

ij(t) = I(t, xj+ 1
2
) (A8)

∂

∂z
V(t, x)

∣∣∣∣
x=x

j+ 1
2

≈
vj+1(t)− vj(t)

∆
(A9)

∂

∂z
I(t, x)

∣∣∣∣
x=xj+1

≈
ij+1(t)− ij(t)

∆
. (A10)

Define the state vector for the discretized telegrapher equations

ξ(t) =



i0(t)
...

iN−1(t)
v1(t)

...
vN(t)


∈ R2N . (A11)

Similarly, the state vectors of the zero-order and first-order systems are, respectively,
denoted by ξ0(t) and ξ1(t). Then, the state-space equations of the zero-order and first-order
systems are

ξ̇0(t) = A0ξ0(t) + B0u0(t) (A12a)

y0(t) = H0ξ0(t) (A12b)

and

ξ̇1(t) = A1ξ1(t) + B1u1(t) (A13a)

y1(t) = H1ξ1(t) (A13b)

where the matrices

A0 =

[
Ā1,1 Ā1,2
Ā2,1 Ā2,2(0)

]
(A14)

A1 =

[
Ā1,1 Ā1,2
Ā2,1 Ā2,2(1)

]
(A15)
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with (the unspecified entries are zeros)

Ā1,1 =


−
(

R0
L0

+ Rs
∆L0

)
− R1

L1
. . .
− RN−1

LN−1

 (A16)

Ā1,2 =
1
∆


− 1

L0
1
L1

− 1
L1

. . . . . .
1

LN−1
− 1

LN−1

 (A17)

Ā2,1 =
1
∆


1

C0
− 1

C0
1

C1
− 1

C1
. . . . . .

1
CN−1

 (A18)

Ā2,2(0) =


−G0

C0

−G1
C1

. . .

−
(

GN−1
CN−1

+ 1
RL∆CN−1

)

 (A19)

Ā2,2(1) =


0

. . .
0
− 1

RL∆CN−1

 (A20)

and

B0 =


1

∆L0
0
...
0

 (A21)

B1 =



0 · · · · · · 0
0 · · · · · · 0
...

...
0 · · · · · · 0
− G̃0

C0

− G̃1
C1

. . .

− G̃N−1
CN−1


(A22)

H0 = H1 =
[
1 0 · · · 0

]
, (A23)

where 0N and IN are the N × N zero and identity matrices.
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