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Abstract: Functional electrical stimulation (FES) has been proven to be a reliable rehabilitation tech-
nique that increases muscle strength, reduces spasms, and enhances neuroplasticity in the long term.
However, the available electrical stimulation systems on the market produce stimulation signals
with no personalized voltage–current amplitudes, which could lead to muscle fatigue or incomplete
enforced therapeutic motion. This work proposes an FES system aided by machine learning strategies
that could adjust the stimulating signal based on electromyography (EMG) information. The regula-
tion of the stimulated signal according to the patient’s therapeutic requirements is proposed. The
EMG signals were classified using Long Short-Term Memory (LSTM) and a least-squares boosting
ensemble model with an accuracy of 91.87% and 84.7%, respectively, when a set of 1200 signals
from six different patients were used. The classification outcomes were used as input to a second
regression machine learning algorithm that produced the adjusted electrostimulation signal required
by the user according to their own electrophysiological conditions. The output of the second network
served as input to a digitally processed electrostimulator that generated the necessary signal to be
injected into the extremity to be treated. The results were evaluated in both simulated and robotized
human hand scenarios. These evaluations demonstrated a two percent error when replicating the
required movement enforced by the collected EMG information.

Keywords: functional electrostimulation; LSTM classifier; human hand prosthesis

1. Introduction

The human hand is recognized as the main tool people use to interact with their
environment. Through it, people can communicate, innovate, create, and defend themselves
from external danger. Although hand function is taken for granted in everyday life, when
some pathologies affect the upper limb, the person who suffers them simultaneously
loses mobility and his or her independence and quality of life [1]. Since the hands send
somatosensory information and receive motor information through the nerves that make
up the peripheral nervous system, any alteration in them can affect their functionality [2].

The main pathologies/accidents that can affect the upper limb are stroke and nerve
damage. The former, which affects more than 800,000 people worldwide, is the main cause
of disability and the third leading cause of death in the world. This pathology consists
of a neurological explosion caused by the poor perfusion of blood vessels in the brain; it
includes two types: ischemic (85% of cases) and hemorrhagic (15% of cases) [3]. The most
prevalent type of stroke is ischemic, arising from a blockage in a blood vessel that causes
a lack of oxygen and nutrients. This blockage often stems from narrowed vessels due to
atherosclerosis, which are progressively obstructed. Consequently, neurons experience
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suffocation from reduced blood flow and are prone to necrosis. Hemorrhagic strokes occur
when pressure on the brain leads to the overloading of blood vessels. This type of stroke is
divided into intracerebral and subarachnoid hemorrhages. In the former, blood gathers
inside the brain; in the latter, it collects in the subarachnoid space. Around 90% of survivors
face some type of disability afterward, often experiencing limb weakness or paralysis [4].

The second kind of disability is nerve damage. Notice that somatosensory and motor
information is transmitted through the radial, ulnar, and median nerves, which arise from
the spinal column from C6 to C8. As mentioned above, these nerves’ lack of bony protection
makes them susceptible to damage and wear and tear, translating into a loss of sensation
and movement. The most common of these injuries are due to traffic accidents, violence,
sports, or falls. Globally, the incidence ranges from 10.4 to 83 in developed countries, with
53.9% of these cases affecting the cervical spine [5]. Most people who suffer this type of
injury are at a young and productive age [6]; therefore, when faced with this new disability,
they also face significant economic losses due to the cost and duration of rehabilitation, as
well as those caused by the disability itself.

Several strategies have been developed to face disability that involve technology, which
improves safety, efficiency, and even the time involved in the rehabilitation process [7]. One
of the most promising rehabilitation techniques is FES, which produces electric currents
that pass through electrodes to a muscle to make a specific movement [8,9]. This technique
is used to correct the execution of movements, improve muscle weakness, and promote a
habit by exercising neuroplasticity [10].

The electrical discharge propagates through the electrodes, which can be either cath-
odes or anodes. At the same time, they can be invasive or non-invasive. In the case of
invasive electrodes, the current reported in the literature is between 15 and 30 mA [11]. The
signal’s shape can be monophasic, consisting of a single polarity, or biphasic, ensuring that
the transmitted current can be removed from the tissue and subdivided into symmetrical
and asymmetrical currents. The former stimulates the muscle under the cathode and anode.
It seeks to undo the electrochemical reaction caused by the initial phase. Typically, a period
pause is located between the biphasic stimulations to ensure the proper propagation of
action potentials. With the asymmetrical current, the contractions happen only under the
cathode [12]. Moreover, before administering electrical stimulation, it is crucial to consider
the regular state of healthy patients. As the stimulation signal travels through the skin to
reach the muscle, its initial condition needs assessment. The skin may be in poor condition
with pressure injuries or irritation; moreover, the prolonged use of electrodes can also cause
irritation [13–15]. One may notice that selecting an effective electrical stimulation signal
depends on many factors. However, the most significant one relates to the patient’s therapy.
Usually, the suggested therapy includes the performance of specific extremity motions,
which could be aided by applying the electrostimulation strategy. Hence, the electrophysio-
logical activity in the proximal muscles can be used as triggering information to choose the
requested stimulation signal, which is indeed a scarcely explored operation strategy.

Electromyographic (EMG) signals represent the electrical activity of muscles. When
these signals are measured, they must be amplified and filtered. The gain is selected
based on the function and the desired amplification, while the signal noise is removed
with a proper arrangement of filters [16]. Once the EMG signals have been properly
obtained, they can be processed to determine muscle damage and therapy effectiveness.
Among these processing strategies, EMG signal automatic classification could be used to
determine the patient’s motion intention, which could then be used to define the adequate
electrostimulation signal.

Automatic signal classification implies extracting features in each signal interval to
recognize the characteristic information of each extremity motion [17]. Different strategies
have been studied to classify EMG signals, such as Simple Logistic Regression, Artificial
Neural Networks (ANNs), Linear Discrimination Analysis, Naive Bayes, and K-nearest
neighbors. EMG classification by machine learning has been used for different purposes.
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Gonzalez et al. [18] developed a hand gesture recognition model where the EMG
signals were collected through the Myo Armband, which has eight channels and works
with a sampling frequency of 200 Hz. Then, the features were extracted and classified
according to the following gestures: fist, finger stretch, inward move, outward move, and
double tap. The classification was achieved through ANNs with three layers and a total
efficiency of 88.3%.

Ref. [19] also collected the EMG data through a Myo Armband; however, the authors
classified stronger movements as wrist pronation, supination, and elbow flexion and
extension. The data were classified through ANNs with an accuracy of 94% [19].

Gandolla et al. [20] developed a controller based on electromyographic signals for a
hand-assisted robotic device that detected movement intention. The authors measured the
following movements: pinching, grasping, and fist. The Porti device from Twente Medical
Systems was selected to collect the signals. It has five channels and works with a sampling
frequency of 2049 Hz. After the feature selection process, the data were preprocessed with
a third-order Butterworth bandpass filter of 5 to 10 Hz. Then, the authors used two ANNs,
and each trial was classified as input in the form of EMG signal portions corresponding to
the electromechanical delay—the pattern vector. The pattern vector was provided as input
to successive ANNs with one hidden layer [20]. This process demonstrated an accuracy of
76 ± 14%.

Espinoza et al. [21] compared decision trees and support vector machines for EMG
signals. Eight EMG sensors were used to study the following movements: cylindrical
grasp, tip grasp, hook grasp, open hand, palmar grasp, spherical grasp, lateral grasp, and
fist. Then, the data were classified through the Extended Associative Memories (EAMs)
method, which develops a relationship between the input (x) and an index µ of the class
to determine class movement. Through this method, the authors achieved an accuracy of
95.83% for these strong movements [21]. Moreover, ref. [22] collected and preprocessed
raw EMG signals with a cut-off frequency of 5 to 500 Hz. Then, the authors classified the
data with an ANN of the Long Short-Term Memory (LSTM) type; this network represented
the features of the signals in a score range and obtained an overall accuracy of 90.4% [22].
Due to this accuracy performance, we decided to develop an ANN of the LSTM type.

These results demonstrate the possibility of using an ANN as an efficient machine-
learning tool to classify EMG signals, supporting the choice of an ANN in this study as the
EMG classifier, which defines the signal to be electrostimulated. Nevertheless, most of the
previous studies considered the application of an ANN with a static topology, which could
neglect the time-dependent nature of EMG signals. This fact emphasizes the necessity of
devising automatic classification algorithms based on dynamic forms of ANNs that can
handle EMG signals more efficiently over time.

The motivation behind this research was multifold: enhancing rehabilitation, minimiz-
ing muscle fatigue, and enabling precision in treatment by FES. Overall, the ultimate goal
of this research was to provide a more efficient and personalized rehabilitation approach
for individuals with neurological injuries affecting their hand movements. Setting a base
for combining functional therapy with careful stimulation adjustment (based on the au-
tomatic classification of EMG signals) aims to help these individuals regain upper limb
mobility and improve their overall quality of life. The proposed automatic selection of FES
signals involves the application of a recurrent ANN to consider the temporal nature of the
processed information and the signals to be produced. The proposed methodology was
evaluated on a prototype of a prosthetic hand that performed the motion established by
the detected EMG signal. The device included a strategy that controlled the hand motion
to achieve the correct position only when the produced FES signal corresponded to the
expected motion defined by the classified EMG.

2. Methodology

The proposed methodology comprised the following sequence of processing stages
(Figure 1): (a) Initially, a dataset containing ten different human hand movements was
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employed, consisting of five combinations of movements and five distinct finger move-
ments. These signals were then processed by integrating signal processing, automatic
classification, bioinstrumentation, and the controlled regulation of the prosthesis prototype.
(b) Key features relevant to the application were extracted from these ten movements, six
subjects, two channels, and ten repetitions. (c) Subsequently, a neural network was utilized
to classify these movements based on the specific hand motion being executed. (d) The
neural network output a number from 1 to 10 corresponding to one of the ten movements
studied. (e) A set of trajectories required to replicate the movements of a healthy hand for
reference purposes was determined. (f) A digital processing board was used to regulate the
electronic function of the actual prosthetic device. (g) The Hiwonder UHand 2.0 device was
used as the prosthetic hand, which received control instructions from the digital processing
board. (h) A digital twin of the hand prosthesis was considered to evaluate the classification
and the control. (i) Based on the processed information, the trajectories corresponded to a
healthy movement. Because of this, they were used as reference coordinates. (j) To simulate
the effectiveness of the FES strategy, a numerically evaluated sickness motion was proposed
for the prosthetic hand using a non-tuned control form. (k) To assess the deviation from the
reference coordinates for a person with a medical condition, the coordinates representing
the affected individual were subtracted from the reference coordinates, resulting in an error
that should be related to the required control actions in the hand. (l) Using this information
differential, a second dynamic neural network calculated the decoded FES signal (m) that
acted on the prosthetic hand, as shown in stage (n).

Figure 1. Methodological sequence.

2.1. Database of Hand’s EMG Signals

The EMG signals used in this research were obtained from the database presented
by [23]. The authors measured ten different hand movements from six healthy men aged
between 20 and 25 years. The EMG signals were acquired through two channels and
were employed by the Delsys DE sensors. The first channel measured the signals from
the extensor carpi ulnaris and extensor digiti minimi muscles. In contrast, the second one
measured the signals from the flexor digitorum superficials and palmaris longus [23]. Ten
different movements were analyzed: five individual movements (thumb, index, middle,
ring, and little), and five combination movements (thumb–index, thumb–middle, thumb–
ring, thumb–little, and hand close). The acquired signals were processed with an amplifier
gain of 1000 and filtered using a bandpass with a bandwidth of 20 to 450 Hz and a notch
filter of 50 Hz to eliminate the interference. The result of measuring six people through
2 channels, performing ten movements ten times, was a matrix of 1200 signals.
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Feature Extraction and Selection

Once the signals were preprocessed, they were converted to the frequency domain
through the fast Fourier transformation. Since the result matrix was a series of complex
numbers, their spectrum and phases were extracted from the signals. After that, the
most common statistical characteristics in the literature were extracted through the follow-
ing Matlab commands: average (1), standard deviation (2), root mean square (3), shape
factor (4), peak value, signal to noise ratio crest factor (5), and signal to noise and distortion
ratio (6).

The average (X) was the summation of all the signal components divided by the total
number of signal components (N) (1).

X =
X1 + X2 + X3 + ... + Xn

n
(1)

X was used to obtain the standard deviation (S) as stipulated in Equation (2).

S =

√
∑(x − x)2

n − 1
(2)

The root mean square (RMS) was obtained by squaring each of the signal components,
then adding them together and later dividing by n (1200). Finally, the square root was
applied to the result (3).

RMS =

√
X2

1 + X2
2 + X2

3 + ... + X2
n

n
(3)

Shape f actor =
RMS

Average
(4)

The crest factor was obtained by dividing the maximum value of the signal by the RMS.

Crest f actor =
Peak
RMS

(5)

SNR =
PSignal

PNoise
(6)

After the feature extraction, the signal matrix was confirmed by a length of 1200 signals
(rows) and nine characteristics (columns), where the first characteristic was the movement
the signal referred to, and the following eight were the previous characteristics.

2.2. Automatic Classifier of EMG Signals

Because EMG signals lack a specific shape, the information they yield is interpreted
based on the amplitude of the signals. The smaller the amplitude, the more the muscle
is at rest; the more significant the amplitude, the more active the muscle. It is possible to
find patterns encompassing each muscle’s information through machine learning (ML)
techniques applied as classifiers, thus characterizing which movement is being executed.

One of these ML techniques is the ANN, a computational system inspired by biological
neurons [24]. ANNs have been demonstrated to successfully classify different kinds of
biopotentials due to their ability to establish complex relationships between inputs and
outputs. Other techniques have been tested for this task, such as the least-squares boosting
ensemble. This kind of ensemble uses voting techniques to provide better predictive
performance for regression problems. This work used these methods to classify the hand
movement EMG signals: Long Short-Term Memory (LSTM), a kind of dynamic ANN, and
a least-squares boosting ensemble.
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2.2.1. LSTM Used as Automatic EMG Classifier

After extracting and selecting the most pertinent characteristics of the EMG signals, a
recurrent neural network of the LSTM type, developed in Matlab, was used to classify the
signals according to the relative hand motions. The suggested LSTM worked as follows:
first, the ten movements were used as references in the neural network classes, where each
class contained 120 signals; 80% of them were randomly selected to train the network, and
the remaining were used to evaluate the proposed classification algorithm.

The LSTM mastered the dependencies between the periods of the input signals. It
used ten fully connected bidirectional recurrent neural network (RNN) layers that learned
bidirectional dependencies. The hidden layer had 500 units and 100 epochs per training
iteration; these values were found empirically to minimize the loss function by using a mini-
batch. Matlab based its LSTM on the work of [25], according to the topology suggested
in Figure 2. This LSTM includes weights for the hidden layer, the input weights (W),
the recurrent weights (R), and the bias (b). The hidden layer concatenates the matrices
as follows:

f

c
t-1

t-1

t

h

x

g i o

h

c t

t
t 1

t 1

Figure 2. Matlab LSTM graphic representation.

W =


Wi
W f
Wg
Wo

, R =


Ri
R f
Rg
Ro

, b =


bi
b f
bg
bo

 (7)

Here, i, f , g, and o determine the input gate, hidden gate, cell candidate, and output
gait, respectively. These gates are represented in the following equation:

gatet = σ
(
WgateXt + Rgateht−1 + bgate

)
(8)

Here, t is the time unit, ht is the hidden state (Equation (9)), X is the time series, and σ
is the sigmoidal function that determine the activation function:

ht = ot ⊙ σ(ct) (9)

where ⊙ is the vector product of the elements (Hadamard product) and cell state (ct).

ct = ft ⊙ ct−1 + it ⊙ gt (10)

The Matlab method was employed to classify the signals. Such a method tests the
gradient of the loss function and updates the weights. Softmax is used as an activation
function, which converts the sum of the weights into probabilities. Based on these prob-
abilities, the LSTM identifies the signal class that is represented with a number between
1 and 10.

2.2.2. Least-Squares Boosting Ensemble

The least-squares boosting ensemble introduces a new learner per ensemble to adapt
to the gradient between the first output and the predictions made by previously developed
learners. Then, K-fold cross-validation is used to validate the classification results [26]. This
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validation method randomly subdivides the original sample into K sub-samples. One of
these is used for validation, and the remaining for training. The most common K value
reported in the literature is 5, which indicates that 80% of the samples are used for training
and the remaining for testing [27].

ANOVA (analysis of variance) was the technique applied for feature selection; it
examines experimental information when diverse factors are measured across different
situations and contrasts the average of different datasets. This information is obtained from
k different populations, Yij is the ith observation from the ith population, µi is the mean of
the population, and εij corresponds to the random variation between Yij and µi [28].

Yij = µi + εij; j = 1, .., nii = 1, .., nk (11)

εij has a normal distribution with a zero mean and variance (σ2). The static test (F)
evaluates the hypothesis of equal variance with a F(ni − 1) distribution.

F =
S2

1
S2

2
(12)

Here, Si2 represents the unbiased estimator of variance for the ith group [29]. The
null hypothesis of the ANOVA algorithm is that the compared means have to be equal to
each other.

2.3. Human Hand Design in CAD

A simulated version of the hand prosthesis prototype was considered to evaluate
the relation between the classifier and the controlled motion enforced by the simulated
FES. The mechanical design followed the dimensions of the UHand 2.0 prosthesis, an
open-source bionic somatosensory robot compatible with diverse digital processing boards.
The design is shown on the right side of Figure 3. The dimensions were assessed manually
using a vernier caliper. In order to simplify the design and measurement process for the
hand, it was broken down into distinct components, including the finger (Figure 3a), thumb
(Figure 3b), and palm (Figure 3c). The finger and thumb sections were further divided into
three phalanges each.

a

b

c

Figure 3. On the (left) side is the digital design, and on the (right) is the real UHand 2.0. Adapted
from [28].

This design was created in SolidworksTM (2022) and then exported to Matlab through
SimmechanicsTM (2022b), which transferred the model to Simulink/MatlabTM (2022a) to
perform a virtual evaluation of the designed hand prototype.
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2.4. Automatic Control for the Prosthetic Hand

Once the design of the prosthetic hand was implemented in SimulinkTM, an automatic
controller was proposed to reduce the deviation of the angular position at each articulation
with respect to the desired trajectory. Two different controllers were compared: the first
was a traditional Proportional–Integral–Derivative (PID) controller, and the second was a
Proportional–Derivative (PD) controller complemented with a Super-Twisting sliding-mode
algorithm, which estimated the tracking error derivative online to avoid the imprecision
and inaccuracy introduced by the usual numerical differentiation methods such as Euler
and its derivative methods.

2.4.1. Proportional, Integrative, and Derivative Controller (PID)

The selected PID controller introduced the output signal depending on the tracking
error for each of the articulations considered in the prosthetic hand. Simulink has its own
PID controller, which is based on Equation (13).

uk(s) =

(
Kk

P +
Kk

i
s

+
Kk

ds
Tf s + 1

)
Uk(s) (13)

In Equation (13): KP represents the proportional gain, Ki is the integrative gain, Kd
corresponds to the derivative gain, and Tf is the time of a first-order derivative filter. The
input of the controller (Uk(s)) is the k-th input in the respective joint of the proposed
hand device. This study considered a class of distributed PID form, which simplified its
application but could create a kind of interdependence that introduced transient vibrations
in the joint’s motion. Moreover, the calculus of derivatives based on the traditional Euler
approximation of derivatives can significantly decrease controller performance related to
the tracking quality. Hence, Super-Twisting was introduced, a class of second-order sliding-
mode algorithms that can work as robust and exact differentiators or even as non-linear
Proportional–Integral controllers.

2.4.2. Proportional and Derivative (PD) and Super-Twisting Controller

The controller, aided by the sliding-mode algorithm, comprised two sections: a PD
controller complemented by a Super-Twisting controller. The former is known for its
speed control and ability to reduce oscillations. This controller was supplemented with
Super-Twisting due to its efficiency in handling disturbances.

In the PD controller, the original trajectory signal was subtracted from the trajectory
input of the joint and then amplified by a proportional gain (Kp). On the other hand, the
trajectory signal was derived, and the velocity of the revolution was subtracted and also
amplified by a derivative gain (Kd) (8). Both results were added and exported to the original
diagram to be the hand torque. The proposed controller u is defined as follows:

u(t) = Kpe(t) + Kd
d
dt

e(t) + ua(s(t)) (14)

The Super-Twisting output (ua) is defined by Equation (14), where e(t) is the tracking
error between the reference and the joint signal of the simulated hand prosthesis. The
Super-Twisting controller ua is defined by the following equation:

ua(s) = −K1 · |s|2 · sign(s) + v (15)

Here, K1 represents the first gain, which multiplies the sliding surface (s ∈ R), defined
as the combination of the tracking error and its derivative, that is s = d

dt e(t) + Ωe(t), where
Ω is a positive constant. Then, the evolution (v) is described as follows:

v̇ = −K2sign(s) (16)
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The second gain (K2) was obtained to increase the efficiency of the controller, measured
in terms of the tracking error quality.

2.5. FES Design Based on Digital Arbitrary Signal Generator

Although FES has been studied for several years, the signal’s amplitude is still am-
biguous, especially depending on the level of the patient’s motion, which could not be
complete due to the sickness condition [15,30–32]. We considered a fundamental signal
proposed as a reference signal satisfying a biphasic shape with a sawtooth shape of 30 Hz
and a pulse width of 100 µs [15,30–32]. At the same time, the trajectories of the simulated
hand were obtained and used as the trajectory of reference.

Since FES must work only if the patient cannot complete the required motion, it was
necessary to emulate such conditions, leading to what we refer to as sick patient motion or
SPM. To obtain the SPM, the gain of the proportional part of either of the chosen controllers
for the hand’s prosthesis was reduced (Ksick) to 10% of the gain (Kre f erence) used when the
hand could complete the requested motion, or HPM. Then, the FES’ oriented error ∆FES
was calculated using the reference and sick movement coordinates for each movement:

∆FES = HPM − FES (17)

Here, the amplitude of FES satisfies SPM ≤ FES ≤ HPM. The proportional elec-
trostimulation signal corresponding to the error obtained previously (17) was proposed
to satisfy a linear form (Equation (18)) with respect to the i-th component of vector ∆FES,
namely ∆FES,i. The slope and ordinate variables mi and bi were determined with the
following equation, where SMax,i is the maximum value of the error and SMin,i is the
minimum error.

Yi = m∆FES,i + bi, Yi ∈ [VMin,i, VMax,i], ∆FES,i ∈ [SMin,i, SMax,i] (18)

Notice that this model could be more complex. Nevertheless, for this study, such
an invertible model was sufficient. Notice that this model was used as an artificial data
generator for training the LSTM to estimate the signal the FES must apply. Hence, the
error ∆FES,i became the input of the designed LSTM. We considered M numerical artificial
data generation experiments producing a set of ∆j

FES, j ∈ [1, M] and their corresponding

output vectors Y j. A subset of 80%. of the pairs ∆j
FES, Y j was used for training, and the

remaining 20% were used for testing. After that, a regression layer was formed by 15 classes
(1 class per finger joint), and 100 hidden units were created. The output of the LSTM, the
stimulation signal, was converted into a pulse-width modulation (PWM) with a maximum
number of variable steps of 1000 and a voltage amplitude of 2 V. This signal generated by
Matlab was exported to a 16-bit digital processing board through an RS-232 protocol-based
communication port.

The PWM signal was transformed back to its original shape through a Butterworth
low-pass filter of the second order (Figure 4). This signal could be applied directly to the
human hand muscles or to the considered prosthesis to perform the complemented motion.
The filter was designed with a resistance of 10 kΩ and using Equation (19), where C is the
capacitor, f is the frequency, and R is the resistance.

C =
1

2π f R
(19)

The literature average cutoff frequency (30 Hz) was employed. The values of the
capacitors were calculated as C1 = 1.414C and C2 = 0.7071C.
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Figure 4. Low- pass filter.

2.5.1. Strategy to Assess the FES on the Simulated Hand

Noticing that the simulated hand prosthesis was not a direct model that represented
the relationship between the FES electrical signal and the biomechanical motion, this study
considered an alternative to express the connection between them.

This strategy used the evolution of error (∆FES) between the reference or literature
stimulation signal HPMj and the output of the second LSTM FESj for each of the iterations
j. To consider the deviation between the healthy and the LSTM signals, the mean error
Hi for each joint of the simulated human hand was obtained using the following set
of expressions:

Hi =
N

∑
j=1

(
∆j

FES,i

)2
(20)

In addition, the difference between the individual gains for the i-th joint KHPM, i
and KSPM,i was obtained, where the symbol Ki

HPM refers to the controller gain considered
for the simulation of the healthy patient, while KSPM, i is the gain used for processing the
simulation when the sick patient was evaluated. This differential, ai = KHPM,i − KSPM,i,
represents how much gain the sick simulated hand needed to be adjusted according to the
following expression:

Given the electrophysiological evidence that a sarcomere presents a saturated reaction
to the electrical stimulus (justified by the restricted motion performed by the muscle
despite the amplitude of the electrical stimulation). One manner in which to represent
such a saturated condition is using a sigmoid function evaluated on the estimation of Hi,
as follows:

∆Kp,i =
ai

1 + e(−ci(Hi−Nvsin f
i ))

(21)

This function has an inflex point proportional to the mean error (NvsIn f
i = Hi

2 ) and
the constants bi and ci to control its shape. Then, it was demonstrated that Equation (21)
obtained the modification to the proportional control gain ∆Kp,i, and it was added to
correct the proportional gain of the simulated hand. Hence, depending on the estimation
error of the LSTM, the gains were adjusted, yielding a closer condition to a healthy or
sick patient. This numerical methodology substituted for the necessity of estimating the
electro-bio-mechanical model of the simulated hand. Notice that the gain modification
strategy could also be applied to the other gains in the controllers considered in this study.

2.5.2. Strategy to Assess the FES on the Prototype of the Prosthesis Hand

In a similar manner to the one considered in the previous subsection, an alternative
strategy was used to evaluate the effectiveness of the LSTM classifier for EMG and the
associated FES information when the generated signal was applied to the prototype of
the prosthetic hand. A series of trajectories was computed to facilitate motion in response
to a compromised hand condition. Upon receiving the pre-established FES, the hand
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had to execute movements in alignment with the reference trajectories, provided that
the stimulation signal aligned with the accurately classified EMG signal. However, as
the classifier for EMG signals had an accuracy of 91.87%, it could produce imprecise
classification. Hence, the strategy considered the assessment of the stimulation error,
defined as

S f = Sr − Sc (22)

The vector variable S f represents the stimulation error corresponding to the generation
of the FES signal for all the articulations in the prototype, Sr is the vector of the intended
movement stimulation signal, and the vector Sc is the stimulation signal estimated with the
application of the LSTM classifier. Notice that this deviation can be calculated considering
the validation strategy proposed in this study.

In view of the operative range for the UHand being [Fmin, Fmax] for all the articulations,
there was a need to adjust the value of all components in S f to match this admissible
range. Such an adjustment implies that if the i-th component of S f ,i is zero, then an action
corresponding to Fmin must be performed on the prototype, while if this component reaches
its maximum value SM

f ,i, then it should produce the maximum action in the hand, that is
Fmax. Given the operative conditions for the hand, including its own internal electronic
control, the following relationship can be used:

Fi − Fmin
Fmax − Fmin

=
S f ,i

SM
f ,i

(23)

Notice that this expression permits the estimation of the value of Fi, which is the
command that must be sent to the UHand. Furthermore, λ defines the relationship between
the hand’s voltage (VUHand = 12 V for this particular prototype) and the stimulation signal
voltage (VStim = 2 V), that is, λ = VStim

VUHand
. After this generation scheme, the new trajectories

that must be injected into the physical hand are defined by

Uhandtr,i = Healtytr,i − λ ∗ Fi (24)

Here, Uhandtr,i is the instruction used to stimulate the i-th articulation of the hand,
while Healtytr,i are the trajectories corresponding to the case when a healthy patient is
moving the hand. Notice that this strategy induces the requested motion on all articulations
in the hand if the classifier based on the LSTM operates effectively. Otherwise, the prototype
moves to a different position, confirming this strategy’s applicability.

2.6. Validation

To prove the efficiency of the regression LSTM, a Pareto analysis was carried out.
The study proposed by [33] defines a Pareto diagram as a graph where various data
classifications are organized in descending order to qualify their behavior. This method
states that the error must be below 0.02. To validate that the identification error for the
estimated FES signal was below that value, the loss of the signal (SignalLoss) at the output
of the LSTM (RMSE) was obtained as follows:

Ej
1 =

(
RMSEj − SignalLossj

)2
(25)

Here, j is the iteration corresponding to the signal produced by the FES system. Then,
the value for each iteration was determined with the following equation: E2 = N−1 ∑N

j=1 Ej
1.

3. Results

The results are presented in terms of the classifiers results, the controller’s effectiveness,
and the FES operation for both the simulation and experimental evaluation in SimulinkTM

and with the prototype of the human hand.
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3.1. Classifiers
3.1.1. LSTM

As shown in Figure 5, the first classification task based on LSTM presented, during its
first 300 iterations, an exponential accuracy growth from 0 to almost 100 percent. Overall, it
achieved a total accuracy of 91.87%, meaning that from the total database of 1200 signals,
approximately 1102 were classified correctly. This result is competitive with the studies
considered as references herein.
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Figure 5. Accuracy performance for the LSTM classifier of EMG signals that converged asymptotically
to a value of 91.87%.

A comparison of the true class and the predicted class was estimated through a
confusion matrix (Figure 6). This matrix confirmed that almost all individual motions of
the hand’s fingers were classified effectively. It was arduous for the LSTM to differentiate
between the individual movement of the annular and index fingers. On the other hand,
the neural network did not present any problems classifying combination movements. All
these results seem to justify the application of the LSTM with the proposed topology to
handle the selection of EMG signals in order to define the expected motion in the hand.
From these results, this study evaluated the proposed controllers when regulating the
operation of both the simulated and the experimental articulated hand.

Figure 6. Confusion matrix related to the classification problem tackled by the LSTM over the set of
EMG signals. Blue represents the correctly classified classes, and orange represents the misclassified
classes. The more intense color means a larger number of times was obtained for the classification
task; thus, a solid blue means a larger number of correct classifications, and an intense orange means
a bigger number of errors. The faint colors represent the opposite.
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3.1.2. Least-Squares Boosting

K-fold cross-validation was employed to test the least-squares boosting performance.
Figure 7 compares true and predicted classes. From left to right, the classes are: hand closed
(HC), index finger (TI), thumb and little finger (TL), thumb and middle finger (TM), and
thumb and ring finger (TR).

79.0%1

6

7

8

10

1 6 7 8

PPV

T
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Predicted Class

FDR
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2.5% 2.6% 97.4%

79.0% 80.2% 78.7% 88.4%

21.0% 19.8% 21.3% 11.6%

10

97.4%

2.6%

Figure 7. Confusion matrix of the least-squares boosting ensemble. The columns of the matrix belong
to (1) HC, (2) TI, (3) TL, (4) TM, and (5) TR. Adapted from [28]. Blue represents the classes that were
correctly classified, and pink represents the classes that were misclassified.

This method achieved an overall accuracy of 84.7%. However, it was only effective
with the combination of movements. The thumb and ring finger (TR) presented the greatest
accuracy of the five measured classes. This result demotivated the application of the
boosting algorithm, confirming the applicability of LSTM as an efficient classifier for EMG
signals using the evaluated features proposed in this study. Moreover, the confusion
matrix analysis confirmed that some particular classes were classified accurately below the
permissible values for the class of application considered in this study.

3.2. Evaluation of the Proposed Controllers for the Hand’s Articulations

As mentioned, three different controllers were compared (PID, PD, and POD aided
with Super-Twisting). The PID controller implemented in Simulink was used as a bench-
mark for evaluating the suggested controllers, considering the quality indicators such as
motion oscillations and tracking accuracy. Figure 8 shows that during the first 0.5 s, several
oscillations on the performed motion for all the articulations (evaluated through the norm
of the vector corresponding to the tracking error) appeared with a magnitude beyond
the permissible value for the automatic design of FES signals. Even though it achieved
hand control after 0.7 s (observed as the convergence of the norm of the tracking error to a
region with a maximum magnitude of 1 × 10−4), those oscillations could be interpreted
as erratic hand movements that could induce the non-controlled stimulation of the hand
by the electrical activity. Notice that we selected to present the aggregated evaluation of
the controller quality through the norm of the tracking error considering the number of
articulations. Nevertheless, the behavior observed here was replicated at each articulation
of the hand (simulated or experimental).
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Figure 8. PID result.

The Proportional (red), Derivative (blue), Proportional–Derivative (orange), and con-
trol aided with Super-Twisting (green) were compared among themselves and to the
benchmark. As shown in Figure 9, neither the Proportional nor the Derivative were com-
petitive because of their convergence time (0.235 s) and the oscillation presented at the
beginning of the simulation concerning the evaluation of the norm of the tracking error.
However, when both of them worked together, their oscillations were reduced five times,
and at the same time, they converged faster (0.076 s). This result coincides with the expected
result for a class of state feedback control design, but it was not able to reject the effect of
some perturbations or non-modeled sections, as illustrated in the controller comparison.
Notice here the oscillations observed in the steady state and the slower convergence, at
least when compared to the mixed strategy that used the Super-Twisting algorithm to
complement the state feedback form. Such a condition confirms the results proposed by
some authors presenting this class of non-linear PID controller.

Figure 9. Proportional, Derivative, PD, and ST results.
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Although the PD controller displayed oscillations with lower magnitude, the inclusion
of the Super-Twisting method exhibited an error amplitude three times smaller at the initial
phase of the simulation than the PD outcome (Figure 10). When both controllers worked
together, they reduced the initial spike and the oscillation that entails a natural hand
movement. The non-linear PID form appears to be a reliable control form for Lagrangian
systems such as the prototype (virtual and experimental) considered in this study.

Figure 10. PD vs. Super-Twisting result.

When the results of the PD and Super-Twisting method are compared with the tracking
outcomes of the PID controller, the effective tracking of the reference trajectories, the
oscillations with smaller amplitudes, and the faster convergence motivate the application
of the suggested controller. Although both the PID controller and the PD with Super-
Twisting method controlled the hand movement, the latter converged faster and with less
error amplitude, manifesting as a natural and fine movement when considering both the
observational analysis of the virtual representation of the hand and the motions exhibited
by the experimental device.

3.3. FES System Driven by the LSTM Classifier

The output of the second recurrent neural network adjusted the stimulation signal
to compensate for the trajectory errors, as expected for a closed-loop FES design. The
signals were designed to stimulate the 15 joints of the hand, one movement at a time.
Figure 11 shows one of the signals with an amplitude adapted to the patient’s necessities.
The amplitude of this signal was regulated according to the detected motion depending on
the EMG signal that the proposed LSTM classified.

The signal loss (Figure 12) was subtracted from the output signal to obtain the Pareto
value. This estimation permitted the validation of the application of the LSTM over the en-
tire set of EMG signals and the related expected motion. Such analysis achieved a holistic as-
sessment of the LSTM’s performance as a classifier and the related controlled motion for the
considered prototypes of hand prostheses under simulation and experimental conditions.
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Figure 11. RMSE of the LSTM for trajectories.
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Figure 12. Loss of the LSTM for trajectories.

The stimulation signal transformed into a PWM form with a gain of 1000, a maximum
charge of 10, 2 V of voltage amplitude, and two charge compensations appears in Figure 13.
After that, the signal was exported physically through a digital processing board (Arduino),
and it was converted back to its original shape through the low-pass filter that was designed
previously. This filter reshaped the signal with a cutoff frequency of 30 Hz, obtaining the
required signal to stimulate the hands, considering the action of the LSTM classifier and
the effective regulation of the reference trajectories.

Figure 13. Teeth shape signal obtained with the PWM-based signal generator.
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Considering the FES Equation (21), the modification of the proportional gain ∆Kp
needed by prototype of the hand prosthesis to enforce the articulation motion according
to the reference trajectories is shown in Figure 14. After ∆Kp,i was added to the gain that
defined the motion of a sick patient (using the simulation strategy), the simulated hand
reproduced the muscle reaction as the reference hand would, illustrating the application of
the proposed assessment strategy.
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Figure 14. Muscle reaction.

3.4. Muscle Reaction to Stimulation

Figures 15 and 16 show the results of the simulation corresponding to a sick patient
who needed the application of the FES and the corrected motion considering the application
of the corrected gain evaluated at the same time (0.25 s). In the simulation corresponding
to the sick patient, the movements were slow and erratic, while in the second case, with the
application of the FES signal, the movements were executed naturally, without delays, and
showing oscillation with a small amplitude. These numerical results depict the suggested
strategy’s benefits, which allowed us to assess the operation of the entire design considered
in this study.

Figure 15. Sick gain.
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Figure 16. Corrected gain.

3.5. Movement Results

Once the UHand 2.0 is correctly connected, it receives the electrostimulation coordi-
nates calculated previously. Once it receives the coordinates, the hand can replicate the ten
different movements shown in Figure 17 (https://youtube.com/shorts/mjPnZ26WkN4
(accessed on 13 December 2023)) and Figure 18. With the aim of evidencing the con-
trolled motion of the prosthesis prototype, this study produced the following videographic
outcome, located at https://youtu.be/M5alalNNf7A (accessed on 13 December 2023),
which shows how the prototype was mobilized with the implementation of the proposed
controller, the assessment strategy, and the corresponding articulation motions.

Figure 17. UHand combination of movements.

Figure 18. UHand individual movements.

https://youtube.com/shorts/mjPnZ26WkN4
https://youtu.be/M5alalNNf7A
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4. Discussion

EFS has proven to be a valuable tool in the rehabilitation of patients with motor
disabilities. Despite its well-established advantages and a history of use since the 1950s,
its effectiveness is still contingent upon patient responses (including movement, pain, or
relief) and the expertise of medical specialists.

Numerous studies have delved into the application of this technology for rehabilitation
devices. However, there remains a gap in the exploration of critical factors, such as
regulating the speed of desired movements and the force applied by muscles during action.
To harness this technology for such devices, it is essential to consider key elements of
the motor system, including the intended movement, the muscles involved, the type of
stimulation signal, and the signal amplitude.

In this study, these parameters were considered to develop a system capable of simu-
lating a human hand with a specific level of motor disability and providing appropriate
stimulation for the system to replicate the movements of a healthy hand. A database of
hand electromyography (EMG) signals was utilized to classify the user’s intended move-
ments. In this phase, the effectiveness of the EMG signal classifier highlighted in this
research represents a significant advancement compared to several previous studies. The
achieved efficiency of 91.87% surpasses the performance of the classifiers presented in
Table 1. While the result might seem slightly lower than the classification reported by [19]
(94%), a deeper analysis reveals crucial distinctions.

Table 1. Comparison of classifiers.

Author Method Movement Accuracy
González Gavilánez [18] ANNs Fist, finger stretch, 88.3%

inward move,
outward move,

and a double tap.
Gandolla [20] ANNs Pinching, grasping, 76 ± 14%

and fist.
Sattar [19] ANNs Pronation, 94%

supination, and elbow
flexion and extension.

Espinoza [21] Extended Cylindrical grasp, tip 95.83%
Associative grasp, hook grasp,
Memories open hand, palmar grasp,

(EAMs) spherical grasp, lateral
grasp, and fist.

Suppiah [22] LSTM Major hand movements. 90.4%

The study by [19] achieved a higher classification accuracy of 94% by focusing on
robust movements involving coordinated finger actions. In contrast, the classifier presented
in this work showcases a unique capability: the analysis of combined and individual
finger movements. Sattar et al. [19] concentrated on assessing strong, combined finger
movements, which allowed for a higher accuracy due to the stronger input signals of their
analysis. On the other hand, the classifier introduced in this research offers a broader scope,
accommodating not only coordinated movements but also individual finger actions. This
broader analysis widens the applicability and versatility of the classifier, enabling it to
recognize and classify a more comprehensive range of movements.

Therefore, while the accuracy of the classifier might appear marginally lower when
compared directly to [19], its ability to analyze and categorize both combined and individual
finger movements represents promise for applications in rehabilitation, as it accommodates
a broader spectrum of hand movements.

Up to this point, it was possible to emulate the hand movement on the Uhand by
applying PD and Super-Twisting controllers in combination with the classifier. This strat-
egy permits the evaluation of the proposed classifier on prototypes of human hands in
virtual and physical forms of this device. Moreover, the selected strategies to validate
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the application of the emulated EFM seem to offer alternative options to evaluate more
complex forms of our proposed classifier.

5. Conclusions

Analyzing the proposed methodology’s results, it can be concluded that they are
favorable for personalizing FES. Firstly, the initial LSTM-type neural network achieved
an efficiency of 91.87%, not only surpassing the average reported in the literature but also
outperforming that reported for intricate movements, such as individual finger movements.
Similarly, comparing the LSTM classifier and the assembly revealed consistent efficiency
across all movements for the former. In contrast, the assembly reported an efficiency of
84.7% only for combined movements.

In assessing the proposed controllers, it is evident that the Proportional–Derivative
(PD) controller excelled in managing the velocity component. When paired with the Super-
Twisting controller, it converged toward zero more rapidly and with reduced amplitude
oscillations. Consequently, the simulation of the human hand displayed fine and natural
motion. Notably, the use of the PID controller provided by Simulink was dismissed due to
its longer convergence period and abrupt oscillations, potentially leading to erratic move-
ments despite ultimately reaching zero. Movements were evaluated after the execution of
the movement class, and a precise controller was obtained. This study found that both the
simulated and physical hands executed the ten movements in a manner consistent with
natural human hand movements.

Based on the outcomes of the initial classification network, the trajectories corre-
sponding to the reference motion were identified. Simultaneously, a model representing a
diseased hand was devised by subtracting the previously determined reference coordinates.
Using this error vector, the precise stimulation signal required for the individual to replicate
the reference model’s movement was obtained. Subsequently, the neural network was
assessed under the Pareto model, yielding an error of less than 0.02. This result ensures the
efficiency of the signal provided by the second network.

Upon acquiring the stimulation signal, we simulated the responses of both the physical
and simulated hands to the provided stimulus. During the simulation, it was observed that
the simulated hand approximated the reference hand’s movement. While the movement
was not a replica (given that it simulated a hand in rehabilitation), similar behavior was
observed in the physical hand.

For future endeavors, a third neural network should be designed to offer feedback.
This network would consider the individual’s initial movement, the reference movement,
and the resultant movement following stimulation by the system. Its purpose would be to
enhance patient safety, monitor real-time system movements, identify potential trajectory
changes, and rectify them before they manifest.
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