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Abstract: Within planetary gear transmissions (PGTs), mode shapes and eigenfrequencies hold a
crucial significance in operational reliability and efficacy. Mode shapes explain the unique motion
patterns inherent in PGT systems. Conversely, eigenfrequencies describe the inherent frequencies at
which PGT systems undergo vibration or oscillation upon exposure to external forces or disruptions.
This research paper presents a comprehensive investigation into the dynamic behavior of a three-stage
PGT utilized in medium and heavy trucks. This study introduces the Rayleigh energy method
to assess system dynamics, revealing a bounded Rayleigh quotient related to the highest related
eigenvalue. Then, this study delves into eigenfrequencies and the mode shape behavior of the
adopted PGT model. The eigenfrequencies are identified as encompassing diverse vibrational modes
of central components and planet gears. Moreover, a multi-scale analysis of the adopted PGT model
is presented by deriving matrices for mass, bearing stiffness, and mesh stiffness. Comparisons with
the Rayleigh energy method demonstrate the new approach’s efficiency, exhibiting a low margin of
error in the determination of eigenfrequencies. This investigation also highlights the alignment of
identified mode shapes with the established literature, detailing the multi-scale approach’s minor
deviation in mode shape determination compared to the Rayleigh energy method.

Keywords: planetary gears; modal analysis; eigenfrequencies; Rayleigh energy method; Rayleigh
quotient; multi-scale method

1. Introduction

PGT systems are crucial components in various mechanical systems, including wind
turbines, automobiles, ships, aerospace, and other machinery, due to their compact con-
struction, which enables higher transmission ratios within a smaller space compared to
conventional gear systems. This compactness allows efficient space utilization and weight
reduction, which are crucial in applications with space constraints. Additionally, PGT
systems exhibit high efficiency due to multiple gear contacts distributing loads, resulting
in reduced wear and improved durability. Their ability to evenly distribute forces among
multiple gears contributes to a uniform load distribution, minimizing stress on individual
components and enhancing overall reliability [1]. However, these advantages come with
specific challenges. PGT systems demand precision in manufacturing and assembly due
to their complex arrangement, which can increase production complexity and costs. Dy-
namic imbalance, particularly notable in configurations with numerous planet gears, poses
challenges in achieving optimal performance.

Regarding the design of PGT systems, references [2–5] studied the multi-body dynamic
modeling and analysis of PGT systems. Liu et al. [6] studied the dynamic analysis and
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characterization of a spur gear PGT system featuring journal bearings subjected to the
influence of gravitational effects. Concli et al. [7] evaluated the validity of a planar lumped
parameter model with 18 Degrees of Freedom (DOF) for the estimation of the system
eigenfrequencies. A comprehensive dynamic model for a gear rotor bearing PGT system,
integrating lateral and torsional nonlinearities, which encompassed multiple DOF, was also
developed by [8–10].

Various modal analysis techniques are extensively employed to investigate the dy-
namic properties of a structure by extracting modal parameters in Mbarek et al. [11], where,
in their study, they offer a comparative analysis of an experimental modal analysis test
where an Operational Modal Analysis (OMA) test and an Order-based Modal Analysis
(OBMA) test are applied to a recirculating energy PGT system. Modal and response har-
monic analyses were conducted using ANSYS Workbench in reference [12] to explore
the behavior of structures under varying boundary conditions. Their analysis technique
provides insights into the eigenfrequencies and mode shape behavior of the structures, as
well as their dynamic responses when subjected to harmonic excitations. Xu and Dong [13]
investigated a heavy-duty PGT system using a 3D model utilized in trucks. The simulation
module is developed for modal analysis of the system by using the Finite Element Method
(FEM). Qian et al. [14] studied the inherent frequencies at which a PGT model system is
utilized in a coal shearer, along with its corresponding modes of vibration, which provides
crucial assistance in the formulation and supervision of the gear system’s design and
operation. A comparison between frequency amplitude curves corresponding to various
resonance modes, as well as an investigation into the impact of specific parameters on vi-
bration amplitude, is presented by Zhang et al. [15]. Finally, the precision of their analytical
solutions is assessed through numerical integration simulations.

Karray et al. [16] investigated the modal analysis and its characteristics of a two-stage
helical PGT system used in a bucket wheel excavator. Tatar et al. [17] studied a six DOF
model of a PGT rotor system using lumped parameter and FEM models, leading to the
deduction that in the case of spur gear configuration, the vibration modes encompass axial,
torsional, and lateral modes and those connected to each individual stage. In their work,
Zhang et al. [18] presented a FEM model of PGT housing, considering the main factors
affecting its dynamic characteristics through modal analysis. Kumar et al. [19] explored the
impact of material mechanical properties on the natural frequencies and mode shapes of
the PGT system within a heavy-duty vehicle gearbox. Both references [20,21] studied the
modal analysis of helical gears. Brassitos and Jalili [22] investigate the vibration properties
of planetary robotic PGT systems employing both the analytical method and FEM to extract
its natural frequencies and corresponding mode shape behavior.

Berntsen et al. [23] used the eigenfrequencies obtained from OMA as center frequen-
cies for the filter bands, and they proposed a method that defines which of the resonances
most improves the fault. Kumar and Patil [24] constructed a FEM based on a numer-
ical simulation method for a heavy-loaded vehicle truck PGT housing in order to find
eigenfrequencies and mode shapes, and they determined the mode shapes for different
transmission housing materials. In their paper, Ericson and Parker [25] analyzed the eigen-
frequeny patterns of a PGT system where they congregate these eigenfrequency patterns
into clusters characterized by similar frequencies. Each of these clusters encompassed a
rotational, translational, and planet mode eigenfrequency. Also, It was concluded that
these eigenfrequencies continue within their respective clusters even as system parameters
undergo changes. Lin and Parker [26] defined the principles governing eigenvalue veering
phenomena in PGT systems analytically. The interaction between neighboring eigenvalue
loci is estimated using perturbation analysis techniques. Guo and Parker [27] examine the
responsiveness of natural frequencies and vibration modes of a compound PGT system
to changes in inertia and stiffness parameters. The resonance frequency of the system is
determined in reference [28] by analyzing the lock-up oscillation data that occur at the
gear shifting. The compliance of the output shaft is computed by evaluating the system’s
resonance frequency. Reference [29] conducted a parameter analysis to investigate the
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influence of PGT design parameters on the overall modal behavior of PGT rotor systems.
A three-dimensional dynamic model of a PGT rotor system is utilized to perform modal
sensitivity analysis. The parameters examined include the number of planet gears, planet
mistuning, the mass of planet gears, and planet gear speed. It was found that these param-
eters exhibit diverse effects on both the natural frequencies and mode shapes of the system.
Stringer, Sheth, and Allaire [30] introduce a methodology for performing modal reduction
on a dynamic system with a geared rotor, considering the influence of general damping
and gyroscopic effects.

Based on the previous literature, this study investigates the dynamic behavior of
a three-stage PGT model system employed in medium and heavy trucks, employing a
lumped parameter model. Utilizing the Rayleigh energy method, the research examines
the system’s dynamics, showing a constrained Rayleigh quotient associated with the
highest eigenvalue, elucidating both natural frequencies and mode shape behavior. The
identification of 63 natural frequencies provides complex insights into the vibrational
characteristics of the PGT model system, encompassing a diverse spectrum of vibrational
modes exhibited by central components and planet gears. Comparative assessments
with the Rayleigh energy method show the multi-scale approach’s efficacy in capturing
resonant characteristics.

2. Non-Linear Dynamic Modeling of a Three-Stage Planetary Gear Transmission System

The research object of this paper is a PGT model system utilized in medium and
heavy-duty diesel trucks, its structure diagram is shown in Figure 1. The system has three
stages. In the first stage, the ring gear r1 is fixed to the gearbox housing, and each stage
includes a sun gear sj, a ring gear rj, a planet carrier Cj, and four planetary gears pnj where
n is the number of the planets n = 1, 2, . . . , N, four planets are carried in each stage where
N = 4. The planetary stage number is j = 1, 2, or 3. Power is applied on the first stage sun
gear s1. The first-stage carrier C1 is connected to the second-stage ring r2. In addition, the
second-stage carrier C2 is connected to the third-stage ring r3. The third-stage carrier C3
is connected to the output shaft. The PGT system employed in this study offers six-speed
speed ratios utilized for medium and heavy trucks and these speed ratios could be achieved
through adjustments to the fixed components. This investigation only focuses on a specific
speed ratio, where the first-stage ring is fixed by being coupled to the gearbox body, as
shown in Figure 1. The PGT model system parameters are provided in Table 1.

Table 1. Parameters of PGT model system.

Item Component

sj rj Cj pnj
Tooth Numbers (Z) 36 76 - 20

Mass (kg) 3.973 15.055 25.939 0.823
Moment of Inertia (kg·m2) 0.122 0.4995 0.3283 0.0009

Diametral pitch dj (mm) 144 304 224 80
Module (mm) 4

Pressure Angle (◦) αsjpnj, αrjpnj 20.2

Support Bearing Stiffness (N/m)
kxsj = kxrj = kxCj = kxpnj = 5 × 108

kysj = kyrj = kyCj = kypnj = 5 × 108

Torsional Bearing Stiffness (Nm/rad) kθsj = kθrj = kθCj = kθpnj = 1 × 108

Mean Meshing Stiffness for x, y, or θ coordinate directions (N/m)
ks1pn1 = ks2pn2 = ks3pn3 = 1.243 × 109;
kr1pn1 = kr2pn2 = kr3pn3 = 5.988 × 108

x-coordinate-direction Connection Stiffness (N/m) kxs1s2 = kxs2s3 = 2.28 × 109 kxC1r2 = kxC2r3 = 5.66 × 109

y-coordinate-direction Connection Stiffness (N/m) kys1s2 = kys2s3 = 2.28 × 109 kyC1r2 = kyC2r3 = 5.66 × 109

θ-coordinate-direction Connection Stiffness (Nm/rad) kθs1s2 = kθs2s3 = 7.25 × 106 kθC1r2 = kθC2r3 = 2.27 × 107
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Figure 1. Structure diagram of the adopted PGT model system.

Figure 2 represents the mathematical model of the adopted PGT system. The time-
varying mesh stiffness (TVMS) represented by Ksjpnj and Krjpnj, between sun–planet mesh
connection and ring–planet mesh connection, are both presented in Equation (39), respec-
tively. Bearing stiffness for sun gear, ring gear, planet carrier and planet gears along the x-
axis, y-axis, and torsional axis are represented by kxsj/kxrj/kxCj/kxpnj, kysj/kyrj/kyCj/kypnj,
and kθsj/kθrj/kθCj/kθpnj, respectively, where x, y, and θ signify small translational displace-
ments along the horizontal, vertical, and angular displacements around the coordinate
origin in their respective coordinate systems, as shown in Figure 2. The circumferential
orientation of each planet is represented by ψpnj, where ψpnj =

2π(n−1)
N .

Given that the number of teeth on the sun gear Zs and the ring gear Zr are integer
multiples of the number of the planets N, Zs

N = 9; Zr
N = 19. Hence, the relative phase angles

are set to null. This deliberate adjustment is employed to equalize the distribution of load
among the planets, ensuring balanced load sharing. Moreover, it results in the elimination
of net forces transmitted from the planet gears to their respective supports, as elucidated by
Parker [31]. This equilibrium in load distribution and force elimination within the system
shows the interdependent relationships between gear parameters and their resultant effects
on force transmission and distribution across PGT systems, as explained by Hu et al. [1].

The mathematical vibration model is described by Singiresu using the Lagrange
equation as shown in Equation (1) as depicted in [32]:

d
dt

(
∂T
∂

.
qj

)
− ∂T

∂qj
+ ∂U

∂qj
= Fpnj/aj

pnj/aj = (1, 2, 3, . . . , 3(N + 3))
(1)

where T signifies the kinetic energy, U represents the elastic potential energy function, q is
the generalized coordinate,

.
q is the generalized velocity of the q, and F is the generalized

force vector; a = (s, C, or r). The kinetic energy function T of the entire PGT model system
can be calculated from Equation (2):

T =
3

∑
j=1

(
Tsj + Trj + TCj

)
+

3

∑
j=1

4

∑
n=1

Tpnj (2)
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where Tsj, Trj, and TCj represent the kinetic energy functions of the jth-stage sun gear, ring
gear, and planet carrier, respectively. The kinetic energy function Tsj of the j-th-stage sun
gear can be mathematically expressed as follows:

Tsj =
1
2

msj
( .

xsj − emsjωsj sin
(
ωsjt + γsj

))2
+

1
2

msj

( .
ysj + emsjωsj cos

(
ωsjt + γsj

))2
+

1
2

Jsj

(
ωsjt +

.
θsj

)2
(3)

where ωaj and γaj represent the angular velocity and the relative phase angle respectively.
emaj signifies the installation eccentricity errors associated with the concerned gear. These
errors signify deviations from the ideal positioning during the assembly or installation
process. Ja and ma represents the second moment of inertia and mass, respectively, subscript
a denotes one of the components s, r, C, or pn.
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The kinetic energy function Trj of the j-th-stage ring gear can be mathematically
expressed as

Trj =
1
2

mrj
( .

xrj − emrjωrjsin
(
ωrjt + γrj

))2
+

1
2

mrj

( .
yrj + emrjωrjcos

(
ωrjt + γrj

))2
+

1
2

Jrj

(
ωrjt +

.
θrj

)2
(4)

The kinetic energy function TCj of the jth-stage carrier gear can be mathematically
expressed as

TCj =
1
2

mCj
( .
xCj − emCjωCj sin

(
ωCt + γCj

))2
+

1
2

mCj

( .
yCj + emCjωCj cos

(
ωCjt + γCj

))2
+

1
2

JCj

(
ωCjt +

.
θCj

)2
(5)

The kinetic energy function Tpnj of the nth planet of the jth stage can be mathematically
expressed as
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Tpnj =
1
2 mpnj

( .
xCj +

.
xpnjcos ψpnj − ωCjxpnjsin ψpnj −

.
ypnjsin ψpnj − ωCjypnjcos ψpnj

−empnjωpnj sin
(
ωpnjt + γpnj

))2

+ 1
2 mpnj

( .
yCj +

.
xpnjsin ψpnj + ωCjxpnjcos ψpnj +

.
ypnjcos ψpnj − ωCjypnjsin ψpnj

+empnjωpnj cos
(
ωpnjt + γpnj

))2
+ 1

2 Jpnj

(
ωCj +

.
θCj + ωpnj +

.
θpnj

)2

+ 1
2 mpnjrCj

(
ωCj +

.
θpnj

)2

(6)

In the previous equations,
.
xaj,

.
yaj, and

.
θaj are the translational and torsional direction

coordinates’ vibration velocities respectively, raj denotes the radius of the component a.
In this study, the connecting intermediate shaft, the connection between C1 and r2, and
the connection between C2 and r3 are simplified as springs with combined bending and
torsional elasticities, as mathematically depicted in Equation (7). Consequently, the total
elastic potential energy U of the PGT system encompasses both the elastic potential energy
of the bearings and PGT components Ub and PGT system connections Uc.

U = Ub + Uc (7)

The bearing elastic potential energy function Ub is identified as follows:

Ub =
3
∑

j=1

(
1
2 kxsjx2

sj +
1
2 kysjy2

sj +
1
2 kθsjθ

2
sj

)
+

3
∑

j=1

(
1
2 kxrjx2

rj +
1
2 kyrjy2

rj +
1
2 kθrjθ

2
rj

)
+

3
∑

j=1

(
1
2 kxCjx2

Cj +
1
2 kyCjy2

Cj +
1
2 kθCjθ

2
Cj

)
+

3
∑

j=1

N
∑

n=1

(
1
2 kxpnjx2

pnj +
1
2 kypnjy2

pnj +
1
2 kθpnjθ

2
pnj

) (8)

The elastic potential energy function Uc can be mathematically represented as

Uc =
1
2 kxC1r2(xC1 − xr2)

2 + 1
2 kyC1r2(yC1 − yr2)

2 + 1
2 kθC1r2(θC1 − θr2)

2 + 1
2 kxC2r3(xC2 − xr3)

2

+ 1
2 kyC2r3(yC2 − yr3)

2 + 1
2 kθC2r3(θC2 − θr3)

2 + 1
2 kxs2s3(xs2 − xs3)

2 + 1
2 kys2s3(ys2 − ys3)

2

+ 1
2 kθs2s3(θs2 − θs3)

2
(9)

where k∀C1r2, k∀C2r3, and k∀s2s3 represent the stiffness of the connecting shaft between the
mentioned components, and ∀ represents the coordinate system, where ∀ = x, y, or θ. In
order to employ the Rayleigh energy approach, the system, after solving Equations (1)–(9)
using the lumped parameter model as demonstrated in references [33–35], is transformed
into the matrix form where the PGT model system can be expressed as follows:

[M]
..
q + [K]q = [F]T (10)

From the previous equation, q represents the generalized coordinate expressed in Equa-
tion (11), while

..
q signifies the generalized acceleration. The matrices [F], [M], and [K] are

the generalized external forces, generalized mass, generalized stiffness matrices presented
in Equations (12), (13), and (15) respectively. Superscript T denotes to matrix transpose.

q =
[
xsj, ysj, θsj, xrj, yrj, θrj, xCj, yCj, θCj, xp1j, yp1j, θp1j, . . . , xp4j, yp4j, θp4j

]T, for j = 1, 2, and 3 (11)

[F] = zeros[63 × 1]


F(3, 1) = TI/p
F(6, 1) = TBrake
F(51, 3) = TO/P

(12)

where TI/p, TBrake, and TO/P denotes the input torque to the PGT system, brake forces
sybjected to r1, and TO/P represent the delivered torque from the PGT system. Equation (13)
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provides the total mass matrix formulation representing the entire PGT model system.
Within this formulation, Mj signifies the individual mass matrices of the first, second, and
third stages of the system, describing the specific mass properties attributed to each stage.

[M] = diag[M1, M2, M3] (13)

Considering the homogeneity of each stage within the PGT model system, the equa-
tions presented will focus on the jth stage. Equation (14) Reveals the components constitut-
ing the mass matrix terms, which are to be integrated into Equation (13).

Mj =



Msj
Mrj

MCj MCjp1j MCjp2j MCjp3j MCjp4j
Mp1jCj Mp1j
Mp2jCj Mp2j
Mp3jCj Mp3j
Mp4jCj Mp4j


Msj = diag

[
msj msj Jsj

]
Mrj = diag

[
mrj mrj Jrj

]
MCj = diag

[
mCj +

4
∑

n=1
mpnj mCj +

4
∑

n=1
mpnj JCj +

4
∑

n=1
Jpnj + r2

Cj

4
∑

n=1
mpnj

]
Mpnj = diag

[
mpnj mpnj Jpnj

]
MCjpnj =

mpnj cosψnj −mpnj sinψpnj 0
mpnj sinψnj mpnj cosψpnj 0

0 0 Jpnj


MCjpnj = MpnjCj

(14)

Equation (15) displays the mathematical terms constituting the stiffness matrix. The
unknowns of Equation (15) are shown in Appendix A.

[K] =

K1 0 0
0 K2 0
0 0 K3

+

K11 K12 K13
K21 K22 K23
K31 K32 K33

 (15)

3. Rayleigh Energy Method

The principle of the conservation of energy for vibrating systems can be stated in
Equation (16).

T1 + U1 = T2 + U2 = Ti + Ui (16)

where T is the kinetic energy, and U is the potential energy of an ith DOF discrete system;
for the present investigation, i = [1, 2, . . . , 63]. The kinetic and potential energies can be
expressed in Equations (17) and (18) respectively.

Ti =
1
2

∂

∂t

{
→.
q i

T

[M]
→.
q i

}
(17)

Ui =
1
2

{
→
q i

T
[K]

→
q i

}
(18)

where
→
q i represents the motion vector encompassing translational and rotational directions

for each mode defined in Equation (19). The term
→.
q i denotes the generalized velocity vector

of
→
q i, while [M] and [K] stand for the generalized mass and stiffness matrices, respectively.

→
q i ∈

[→
Q1,

→
Q2,

→
Q3, . . . ,

→
Qi

]
(19)
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The vector
→
q i(t) is defined as a time-dependent function of vector of amplitudes

→
Qi. In order to determine the natural frequencies, a harmonic motion is assumed for the
generalized coordinate

→
q i, as presented in Equation (20).

→
q i(t) =

→
Qi cos(ωnt) (20)

where ωn represents the natural frequency of vibration. By substituting Equation (20) into
both Equations (17) and (18), the kinetic and potential energies can then be expressed as a
function of natural frequency, as depicted in Equations (21) and (22) respectively.

Ti =
1
2

→
Q

T

i [M]
→
Qiω

2
ni (21)

Ui =
1
2

→
Q

T

i [K]
→
Qi (22)

Given the PGT system’s conservativeness, the equality between the maximum kinetic
energy and the maximum potential energy can be inferred from Equation (23):

Tmax = Umax (23)

Upon substitution of both Equations (21) and (22) into Equation (23), the eigen fre-
quencies of the system can be obtained in Equation (24):

ω2
ni =

→
Q

T

i [K]
→
Qi

→
Q

T

i [M]
→
Qi

(24)

The expression on the right-hand side of Equation (24) represents the Rayleigh quotient,

mathematically denoted R
(→

Qi

)
.

3.1. Properties of Rayleigh’s Quotient

R
(→

Q
)

has a static value in the vicinity of any eigenvector
→
Qi. To demonstrate this,

the arbitrary vector
→
Q can be expressed in terms of the normal modes of summation of

eigenvectors
→
Qi as follows:

→
Q = c1

→
Q1 + c2

→
Q2 + c3

→
Q3 + · · ·+ ci

→
Qi (25)

where ci denotes the coefficient of the mode shape
→
Qi. Then, by substituting from Equation (25)

into Equations (21) and (22), Equations (26) and (27) are obtained.

→
Q

T
[M]

→
Qω2

ni = c2
1

→
Q

T

1 [M]
→
Q1 + c2

2

→
Q

T

2 [M]
→
Q2 + · · ·+ c2

i

→
Q

T

i [M]
→
Qi (26)

→
Q

T
[K]

→
Q = c2

1

→
Q

T

1 [K]
→
Q1 + c2

2

→
Q

T

2 [K]
→
Q2 + · · ·+ c2

i

→
Q

T

i [K]
→
Qi (27)

From Equations (23), (26), and (27) then by considering the orthogonality property, it

becomes apparent that cicj
→
Q

T

i [M]
→
Q

T

j and cicj
→
Q

T

i [K]
→
Qj will equate to zero for i ̸= j.

ω2
ni

→
Q

T

i [M]
→
Qi =

→
Q

T

i [K]
→
Qi (28)

From both Equations (24) and (28), the Rayleigh quotient can be mathematically
expressed as follows:
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R
(→

Q
)
=

c2
1ω2

n1

→
Q

T

1 [M]
→
Q1 + c2

2ω2
n2

→
Q

T

2 [M]
→
Q2 + · · ·+ c2

i ω2
ni

→
Q

T

i [M]
→
Qi

c2
1

→
Q

T

1 [K]
→
Q1 + c2

2

→
Q

T

2 [K]
→
Q2 + · · ·+ c2

i

→
Q

T

i [K]
→
Qi

(29)

When the normal modes are subjected to normalization, then Equation (29) transforms
into Equation (30), depicting the altered expression of the Rayleigh quotient.

R
(→

Q
)
=

c2
1ω2

n1 + c2
2ω2

n2 + · · ·+ c2
i ω2

ni
c2

1 + c2
2 + · · ·+ c2

i
(30)

If
→
Q varies slightly from the eigenvector

→
Qi, then the coefficient cj will notably ex-

ceed the remaining coefficients of ci. Consequently, Equation (30) can be reformulated
mathematically as follows:

R
(→

Q
)
=

c2
j ω2

nj + c2
j ∑63

i=1

(
ci
cj

)2
ω2

ni

c2
j + c2

j ∑63
i=1

(
ci
cj

)2 (31)

Given that
(

ci
cj

)
is an infinitesimal value, then by considering

(
ci
cj

)
= ε, where ε ≪ 1

represents an extremely small numerical value for all (i ̸= j). Consequently, Equation (31)
can be formulated as

R
(→

Q
)
= ω2

nj

(
1 + ε2

)
(32)

Equation (32) indicates that if the arbitrary vector
→
Q slightly differs from the eigenvec-

tor
→
Qi by a small quantity of the first order, then the Rayleigh quotient R

(→
Q
)

differs from

the eigenvalue ω2
nj by a small quantity of the second order. This signifies that Rayleigh’s

quotient exhibits a stationary value in the neighborhood of an eigenvector. This value

is petite in the vicinity of the fundamental mode
→
Q1. In order to investigate this further,

consider setting j = 1 in Equation (31) and refer to Equation (32). Then, Equation (33)
is concluded.

R
(→

Q
)
=

c2
1ω2

n1+c2
1∑63

i=2

(
ci
c1

)2
ω2

ni

c2
1+c2

1∑63
i=2

(
ci
c1

)2 =
ω2

n1
1+∑63

i=2 εi
2 +

∑63
i=2 εi

2ω2
ni

1+∑63
i=2 εi

2

∼= ω2
n1 +

63
∑

i=2
εi

2(ω2
ni − ω2

n1)

(33)

In view of the fact that ω2
n1 > ω2

1, then Equation (33) leads to Equation (34). This
proves that the Rayleigh quotient is never lower than the first eigenvalue, which establishes
a clear boundary. By advancing in a comparable approach, Equation (34) can demonstrate
that the Rayleigh quotient is in no way higher than the highest eigenvalue. Thus, the
Rayleigh quotient defines both an upper bound of ω2

1 and a lower bound of ω2
n1.

ω2
1 < R1

(→
Q
)
< ω2

n1 (34)

3.2. System Mode Shapes

In this study, the system mode shapes have been thoroughly investigated, encom-
passing various vibrational modes of the central components and planet gears within the
adopted PGT model system. The following investigation illustrates the most distincit five
vibration modes of the adopted PGT model obtained based on the characteristics of the

vibration shape. The mode shape vector represented as
→
Qaj will be used to allocate each

individual vibrational mode.



Machines 2024, 12, 48 10 of 30

3.2.1. Central Components’ Pure Torsional Vibrational Mode

In this mode shape vector, the vibrational behavior of all central gears are primarily
dominated by torsional vibrations with minor translational vibrations. Through the analysis
of the mode shape vector, it is evident that the main vibrational motion of the central gears
is torsional in nature and can be described as follows:

→
Qsj = [0 0 θs1, 0 0 −θs2, 0 0 θs3]
→
Qrj = [0 0 θr1, 0 0 −θr2, 0 0 θr3]
→
QCj = [0 0 θC1, 0 0 −θC2, 0 0 θC3]
→
Qpn1 =

[
0 0 θp11, 0 0 θp21, 0 0 θp31, 0 0 θp41

]
→
Qpn2 =

[
0 0 − θp12, 0 0 −θp22, 0 0 − θp32, 0 0 −θp42

]
→
Qpn3 =

[
0 0 θp13, 0 0 θp23, 0 0 θp33, 0 0 θp43

]
The distribution of gears within the PGT model system during the pure torsional

vibrational mode of the central components is depicted in Figure 3.
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3.2.2. Central Components’ Pure Translational Vibrational Mode

The analysis of this mode shape vector reveals that the PGT central gears exhibit sig-
nificant translational motion along both x-coordinate and y-coordinate directions, as shown
in Figure 4. These translational motions have implications on the PGT system dynamic
response, affecting its overall displacement and response to external forces. Furthermore, a
minor component of rotational vibration in the θ-coordinate direction is observed in the
mode shape vector. θ-coordinate vibrations are less obvious compared to translational vi-
brations. Hence, torsional vibrations will be disregarded in the mode shape vector analysis,
the mode shape vector analysis can be presented as follows:

→
Qsj = [xs1 ys1 0,−xs2 − ys2 0, xs3 ys3 0 ]
→
Qrj = [xr1 yr1 0,−xr2 − yr2 0, xr3 yr3 0 ]
→
QCj = [xC1 yC1 0,−xC2 − yC2 0, xC3 yC3 0 ]
→
Qpn1 =

[
xp11 yp11 0, xp21 yp21 0,−xp31 −yp31 0 ,−xp41 −yp41 0

]
→
Qpn2 =

[
−xp12,−yp12, 0, xp22, yp22, 0, xp32, yp32, 0 ,−xp42,−yp42, 0

]
→
Qpn3 =

[
xp13, yp13, 0,−xp23,−yp23, 0,−xp33,−yp33, 0 , xp43, yp43, 0

]
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The distribution of gears within the adopted PGT model system during the pure
translational vibrational mode of the central components is depicted in Figure 4.

3.2.3. First-Stage Planet Gear Vibrational Mode

In the mode vector, the vibrational amplitudes of both translational and torsional
components for the central components of the second and third stages are negligible.
Moreover, the vibrations observed in the first-stage sun gear, ring gear, and planet carrier
are relatively minor compared to the vibrations experienced by the planet gears of the same
stage. The analysis of the mode shape indicates that the dominant vibrational motion is
primarily confined to the planet gears of the first stage. This behavior signifies that the
planet gears are more sensitive to vibrational excitations compared to other components of
the PGT model system.

The negligible vibrations of the central components in the second and third stages
further contribute to the PGT system overall stability and reliable operation. This simplifi-
cation simplifies the modeling process and can lead to significant computational savings
as follows:

→
Qsj =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qrj =

[
0 0 0, 0 0 0, 0 0 0

]
→
QCj =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qpn1 =

[
−xp11 − yp11 − θp11, xp21yp21θp21,−xp31−yp31 − θp31, xp41yp41θp41

]
→
Qpn2 =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qpn3 =

[
0 0 0, 0 0 0, 0 0 0

]
The distribution of gears within the adopted PGT model system during the first-stage

planet gear vibrational mode is depicted in Figure 5.

3.2.4. Second-Stage Planet Gear Vibrational Mode

In this mode vector, the translational and torsional vibrations of the central components
of the first and third stages are negligible. In the second stage, the sun gear, ring gear, and
planet carrier experience minor vibrations, but these vibrations are considerably lower in
amplitude when compared to the vibrations observed in the planet gears within the same
stage. This phenomenon can be explained by the lack of consideration for the vibrations
present within these shafts, where the vibrations triggered by these components are not
included in the analysis. Consequently, gear s1 and gear r3 are not externally affected by any
source of vibrations, leading to their negligible vibrational amplitudes in the mode vector.
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The dominance of the second-stage planet gears in terms of vibrational amplitude can
be attributed to the interactions and load-sharing mechanisms within the PGT model sys-
tem. The planet gears in the second stage are crucial in transmitting torque and absorbing
load, making them more prone to vibrations compared to other components.

→
Qsj =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qrj =

[
0 0 0, 0 0 0, 0 0 0

]
→
QCj =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qpn1 =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qpn2 =

[
−xp12 −yp12 −θp12,−xp22 − yp22 − θp22, xp32 yp32 θp32 , xp42 yp42 θp42

]
→
Qpn3 =

[
0 0 0, 0 0 0, 0 0 0

]
The distribution of gears within the adopted PGT model system during the second-stage
planet gear vibrational mode is depicted in Figure 6.

Machines 2024, 12, x FOR PEER REVIEW 12 of 32 
 

 

  
First stage Second stage Third stage 

Figure 5. Component allocations of the first-stage planet gear vibrational mode. 

3.2.4. Second-stage Planet Gear Vibrational Mode 
In this mode vector, the translational and torsional vibrations of the central 

components of the first and third stages are negligible. In the second stage, the sun gear, 
ring gear, and planet carrier experience minor vibrations, but these vibrations are 
considerably lower in amplitude when compared to the vibrations observed in the planet 
gears within the same stage. This phenomenon can be explained by the lack of 
consideration for the vibrations present within these shafts, where the vibrations triggered 
by these components are not included in the analysis. Consequently, gear 𝑠  and gear 𝑟  
are not externally affected by any source of vibrations, leading to their negligible 
vibrational amplitudes in the mode vector. 

The dominance of the second-stage planet gears in terms of vibrational amplitude 
can be attributed to the interactions and load-sharing mechanisms within the PGT model 
system. The planet gears in the second stage are crucial in transmitting torque and 
absorbing load, making them more prone to vibrations compared to other components.  

⎩⎪⎪⎪
⎨⎪⎪
⎪⎧�⃗� = [0 0 0, 0 0 0, 0 0 0]                                                                               �⃗� = [0 0 0, 0 0 0, 0 0 0]                                                                               �⃗� = [0 0 0, 0 0 0, 0 0 0]                                                                               �⃗� = [0 0 0, 0 0 0, 0 0 0]                                                                            �⃗� = −𝑥  −𝑦  −𝜃 , −𝑥  − 𝑦  − 𝜃 , 𝑥  𝑦  𝜃  , 𝑥  𝑦  𝜃�⃗� = [0 0 0, 0 0 0, 0 0 0]                                                                            

 

The distribution of gears within the adopted PGT model system during the second-stage planet 
gear vibrational mode is depicted in Figure 6.  

  
First stage Second stage Third stage 

Figure 6. Component allocations of the second-stage planet gear vibrational mode. Figure 6. Component allocations of the second-stage planet gear vibrational mode.

3.2.5. Third-Stage Planet Gear Vibrational Mode

In the mode vector, the translational and torsional vibrations of the central components
in the first and second stages are negligible. For the third stage, the planet gears vibrations
cannot be neglected, where
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→
Qsj =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qrj =

[
0 0 0, 0 0 0, 0 0 0

]
→
QCj =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qpn1 =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qpn2 =

[
0 0 0, 0 0 0, 0 0 0

]
→
Qpn3 =

[
−xp13 − yp13 − θp13, xp23 yp23 θp23,−xp33 − yp33 − θp33 , xp43 yp43 θp43

]
The distribution of gears within the adopted PGT model system during the third-stage

planet gears vibrational mode is depicted in Figure 7.
 

 

 
 

 1 

 1 
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Figure 1 Components allocations of the first stage planet gears vibrational mode 2 
Figure 7. Component allocations of the third-stage planet gear vibrational mode.

4. Multi-Scale Analysis of Lateral-Torsion-Coupling Dynamics of Planetary
Gear Transmission

This paper provides a comparison between both the Rayleigh energy method and the
multiscale approach for calculating eigenfrequencies and determining the mode shapes.
In order to acquire the multi-scale analysis of lateral-torsion-coupling dynamics of PGT
model system, the following analysis will take place. Equation (35) elucidates the differ-
ential equation governing dynamics inherent in the PGT model system. This equation
encapsulates the complex relationship between lateral and torsional movements.[

M(q,t)j

] ..
q +

[
Kb(q,t)j

]
q +

[
Km(q,t)j

]
q = [F] (35)

where
[
M(q,t)j

]
corresponds to the mass matrix encapsulating the adopted PGT model

system mass distribution across its components, as presented in Appendix B.
[
Kb(q,t)j

]
refers

to the bearing stiffness matrix. Additionally,
[
Km(q,t)j

]
stands for the TVMS matrix. Both[

Kb(q,t)j

]
and

[
Km(q,t)j

]
represent the stiffness characteristics within the PGT components

and interconnections over time, as detailed in Appendix B. [F] denotes the force exerted on
each DOF presented in Equation (12). Vector q is composed of the displacement of each
component of the system, as expressed in Equation (11). Then, the periodic change in the
TVMS can be obtained from Equation (36).

Ksjpnj(t) = ksjpnj +
∞
∑

l=1
k̂l

sjpnje
jlwt + c.c

Krjpnj(t) = krjpnj +
∞
∑

l=1
k̂l

rjpnje
jlwt + c.c

(36)
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where ksjpnj and krjpnj are the mean meshing stiffness of both external–external mesh and
external–internal mesh connections of the PGT model presented in Table 1, respectively.
Both k̂l

sjpnj and k̂l
rjpnj represent the lth order Fourier coefficients of the TVMS. c.c stands for

the corresponding conjugate plurals. Fourier expansions are expressed for k̂l
sjpnj and k̂l

rjpnj
in Equation (37).  k̂l

sjpnj =
=
k sjpnj

sin(lπssj)
π2ss l2 sin

(
lπ
(
csj − ssj

))
e−iωlTm

k̂l
rjpnj =

=
k rjpnj

sin(lπsrj)
π2srj l2 sin

(
lπ
(
crj − srj

))
e−iωlTm

(37)

In the preceding two equations, csj and crj represent the overlap degrees.
=
k sjpnj

and
=
k rjpnj are the peak-to-peak values of sun–planet meshing stiffness and ring–planet

meshing stiffness, respectively. ssj and srj represent the degree of coincidence, as shown
in Figure 8. Tm is the meshing period. To justify this, the sun–planet mesh stiffness and
ring–planet mesh stiffness of the PGT model are then expressed in the form of Fourier
series by assuming Equations (38). 

dl
sjpnj =

k̂l
sjpnj

∆ksjpnj

dl
rjpnj =

k̂l
rjpnj

∆krjpnj

(38)

where ∆ is an infinitesimal parameter. By substituting both Equation (38) into Equation (36),
TVMS between sun–planet mesh and ring–planet mesh connections can be found in
Equation (39), respectively.

Ksjpnj(t) = ksjpnj + ∆ksjpnj
∞
∑

l=1

(
dl

sjpnj

)
+ c.c

Krjpnj(t) = krjpnj + ∆krjpnj
∞
∑

l=1

(
dl

rjpnj

)
+ c.c

(39)
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By substituting both Equations (39) into Appendix B, then, Equation (40) is found:[
M(q,t)j

] ..
q +

{[
Kb(q,t)j

]
q +

N

∑
n=1

([
Kmsjpnj(q,t)j

](
1 + ∆Q̂s

)
+
[
Kmrjpnj(q,t)j

](
1 + ∆Q̂r

))
q

}
= [F] (40)
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Both expressions Q̂s = ∑∞
l=1 dl

sjpnje
jlωt and Q̂r = ∑∞

l=1 dl
rjpnje

jlωt define the respec-
tive modal deformations for the sun–planet mesh and ring–planet mesh connections,
respectively.

[
Kmsjpnj(q,t)j

]
and

[
Kmrjpnj(q,t)j

]
denotes the mesh stiffness of the connection

between sun-planet mesh and ring-planet mesh respectively where they are the constitution
matricies of

[
Km(q,t)j

]
and their detailed formulations are provided in Appendix B.

Upon converting Equation (40) from cartesian coordinates to modal coordinates and
by considering q = Zθ, Equation (41) emerges as a result. This transformation allows for
the representation of gear meshing characteristics in a modal domain, facilitating a more
comprehensive analysis of the PGT model system dynamic behavior and responses.

[
M(θ,t)j

] ..
θ = −

{
Gbθ+

N

∑
n=1

{
Gsn
(
1 + ∆Q̂sθ

)
+ Grn

(
1 + ∆Q̂rθ

)}
θ

}
+ f (41)

where Gb = ZT
[
Kb(q,t)j

]
Z, Gsn = ZT

[
Kmsjpnj(q,t)j

]
Z, Grn = ZT

[
Kmrjpnj(q,t)j

]
Z, and f = ZT[F].

Furthermore, the periodic vibration frequency of the system can be expanded as a power
series of a small amount ∆, as provided in Equation (42).

ω(t) = ω0(t) + ω1(∆t) + ω2

(
∆2t
)
+ ω3

(
∆3t
)
+ · · ·+ ∞ (42)

By introducing a series of time scales T0, T1, . . . T∞, then the system qth-order response
can be approximated, as depicted in Equation (43). This methodology enables the PGT
model system behavior to be analyzed across different time frames, allowing for a com-
prehensive understanding of its responses and dynamics at varying temporal intervals.
These time scales refer to different frequencies within the adopted PGT model system. For
eigenfrequency analysis, different modes of vibration or eigenfrequencies occur at different
temporal scales, representing the PGT system dynamic behaviour.

θ(t) = θ0(T0, T1, . . .) + θ1∆(T0, T1, . . .) + θ2∆(T0, T1, . . .) + θ3∆(T0, T1, . . .) + . . . θii∆(To, T1, . . . Tii) + . . . ∞ (43)

The analysis now is focused on the first-order approximation solution of the system of
the system, requiring the addition of only two time scales. Equation (44) represents the qth
order of the modal response solution of the system, capturing the system’s behavior and
response in relation to its modal characteristics within this approximation.

θq(T0, T1) = θq1(T0, T1) + ∆θq2(T0, T1) (44)

Hence, the vibration potential energy and vibration kinetic energy between the same
vibration order are transferred. By substituting Equations (43) and (44) into Equation (41),
Equation (45) can be concluded.

..
θq + ∆λq

.
θq+ω2

qθq = −
3(N+3)

∑
w=1

N

∑
n=1

{
∆GsnqwQ̂sθ + ∆GsnqwQ̂rθ

}
θw + fq (45)

where Gsnqw and Gsnqw are elements of the qth row and wth column of matrices Gsn and
Grn, respectively. λq is the order harmonic amplitude and initial phase. Both expressions
Q̂sθ and Q̂rθ are provided in the following Equations (46) and (47) respectively:

Q̂sθ =
∞

∑
l=0

dl
sejlω(t) + θs + c.c (46)

Q̂rθ =
∞

∑
l=0

dl
rejlω(t) + θr + c.c (47)
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Then, the partial derivative operator of the multi-scale method is defined in
Equations (48) and (49) as follows:

d
dt

=
∞

∑
ii=0

dTii
dt

∂

∂Tii
=

∞

∑
ii=0

∆ii ∂

∂Tii
=

∞

∑
ii=0

∆iiDii (48)

d2

dt2 =
∞

∑
ii=0

∆iiDii

{
∞

∑
jj=0

∆jjDjj

}
= D2

0 + 2∆D0D1 + ∆2
(

D2
1 + 2D0D2

)
+ · · · (49)

In the previous two equations, ii and jj are being used as counters. By substituting
Equations (44), (48), and (49) into Equation (45), then comparing the same power of ∆ the
subsequent partial differential Equation (50) can be achieved:

D2
0θq0 + ω2

qθq0 = fq

D2
0θq1 + ω2

qθq1 + 2D0D1θq0 +
3(N+3)

∑
w=1

N
∑

n=1

{
∆GsnqwQ̂sθ + ∆GsnqwQ̂rθ

}
θwo = 0

(50)

By considering the main resonance as the analysis object, Equation (51) can be introduced.

θq0(t0, t1) = Aq(t1)ejωqt0 +
fq

ω2
q
+ c.c (51)

The frequency relationship of the main resonance can be expressed as ωq = ωi + ∆σ,
where σ is a small misalignment offset parameter, assuming ωq is not an integer multiple
of ωi. Then, Equation (52) can be concluded. θi0(t0, t1) = Ai(t1)ej(ωi−∆σ)t0 + fi

ω2
i
+ c.c

θi0(t0, t1) = Ai(t1)ejωit0 ej∆σt0 + fi
ω2

i
+ c.c

(52)

As evidenced by both equations expressed in (52), the primary resonant reaction of the
system aligns with an excitation characterized by a corresponding period. Moreover, the
magnitude of this primary resonant response is influenced by simultaneous disturbance
frequencies within the PGT model system, resulting in a modulatory relationship with the
primary excitation frequency. Building upon the preceding analysis and recognizing that
the PGT system meshing frequency holds greater potential for exciting system resonance,
the investigation into the principal resonance phenomenon of the system is conducted on
the foundation of the PGT system meshing excitation.

The term Ai(t1) in Equation (52) represents the meshing frequency that affects the
vibration response of the system. With the intention of further characterizing the influence
of the meshing phenomenon on the vibration response of the system, the expression Ai(t1)
can be expanded mathematically, as shown in Equation (53).

Ai(t1) =
ai(t)

2
ejβi(t1) (53)

By substituting Equations (50) and (51) into Equation (49) and considering the condi-
tion of eliminating the infinite terms, Equation (54) can be derived for the i-th order mode.

2jωiD1 Ai(t1) + jωiλi Ai(t1) +
N

∑
n=1

Ai(t1)
(
∆GsnqwQ̂s + ∆GrnqwQ̂r

)
= 0 (54)
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By substituting Equation (53) into both Equations (52) and after simplification,
Equation (55) is achieved.

θi0(t0, t1) = ai(t)cos{ωit0 − (∆σt0 − βit1)}+
fi

ω2
i

(55)

Upon delving into the first-order harmonic assessment, the i-th order modal vibration
response introduces the first-order ordinary differential equations, as demonstrated in
Equation (56). These equations encapsulate the determination of the amplitude ai(t1) and
phase of γi(t1) = σt0 − βit1 where βi is an infinesmal parameter for the ith-order modal
vibration response. ∣∣∣∣→Qi

∣∣∣∣sin(γi) = −
(

aiωiD1 +
aiωiλi

2

)
(56)

Upon additional elaborating on Equation (56); then Equation (57) is acquired in mode

shapes
→
Qi. This derived equation offers insights into the system mode shape dynamics

described by
→
Qi.

→
Qi =

3(N+3)
∑

w=1

N
∑

n=1

fw
ω2

w

(
Gsnqwθ

(i)
s + Grnqwθ

(i)
r

)
+

3(N+3)
∑

w=1

N
∑

n=1

aiGsnqw
2

(
θ
(i−1)
s + θ

(i+1)
s

)
+

3(N+3)
∑

w=1

N
∑

n=1

aiGsnqw
2

(
θ
(i−1)
r + θ

(i+1)
r

) (57)

By taking into consideration the arithmetic expression ω = ωi + ∆σ for σ parameter
then, Equation (58) is attained.

ωni = ωi +
1

2aiωi

{
3(N+3)

∑
w=1

N
∑

n=1

ai∆Gsnqw
2

(
θ
(i−1)
s + θ

(i+1)
s

)
+ 1

2

3(N+3)
∑

w=1

N
∑

n=1

ai∆Grnqw
2

(
θ
(i−1)
r + θ

(i+1)
r

)
+2

3(N+3)
∑

w=1

N
∑

n=1

∆ f w
ω2

w

(
Gsnqwθ

(i)
s + Grnqwθ

(i)
r

)
+

(3(N+3)
∑

w=1

N
∑

n=1

∆ fw
ω2

w

(
Gsnqw + Grnqw

))2

−
(
aiω

2
i
)0.5


(58)

4.1. System Natural Frequency

By comparing both of the eigenfrequencies obtained from both the Rayleigh energy ap-
proach obtained in Equation (24) and the multi-scale approach from Equation (58), Figure 9
is plotted, which presents a comprehensive comparative analysis between them. The focal
point of this investigation is the precision in detecting the eigenfrequencies ωni by the multi-
scale method. Upon particular examination of the obtained results, it becomes evident that
the proposed method exhibits an error margin of approximately 2.5% deviation from the
Rayleigh energy method in accurately identifying the eigenfrequencies. This inconsistency
highlights the efficacy and potential of the multi-scale method in enhancing the precision
of angular frequency detection when compared to the Rayleigh energy method.

Figure 9 shows the allocation of the 63 eigenfrequencies in correlation with the DOF.

The x-axis represents the eigenfrequency number
→
Qi, mirroring the corresponding number

of DOF. Each point along the x-axis correlates to a distinct mode shape, linking it to the
rotational speed at which the particular eigenfrequency occurs. This presentation offers a
comprehensive mapping of eigenfrequencies to the adopted PGT system’s DOF, providing
insights into specific mode shapes and their association with rotational speeds.



Machines 2024, 12, 48 18 of 30
Machines 2024, 12, x FOR PEER REVIEW 18 of 32 
 

 

 

 

 
Figure 9. Comparison between eigenfrequency allocation using both approaches: Rayleigh energy 
and multi-scale. 

4.2. Mode Shapes 

Figure 9. Comparison between eigenfrequency allocation using both approaches: Rayleigh energy
and multi-scale.

4.2. Mode Shapes

Figure 10 illustrates the torsional vibration vectors of the central components, depicting
the pure torsional vibrational mode present in each stage. By referring to Section 3.2.1, the
analysis of this mode shape vector extends to identify significant torsional motion along
the θ-coordinate direction in the PGT central gears. Further analysis shows the presence of
torsional vibrations within planet gears as well. The analysis of the mode shapes reveals
that gears occupying similar positions within their respective stages share nearly identical
vibrational patterns. This phenomenon is evident across the stages, indicating a consistent
and repetitive vibrational behavior among gears within the same stage as follows:
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θp11 ≈ θp21 ≈ θ31 ≈ θp41 ≈ −θp12 ≈ −θp22 ≈ −θp32 ≈ −θp42 ≈ θp13 ≈ θp23 ≈ θp33 ≈ θp43
θs1 ≈ −θs2
θr1 ≈ −θr2 ≈ θr3
θC3 ≈ −θC2  
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Figure 10. Mode shape vector for central components’ pure torsional vibrational mode. (a), (b), and
(c) referes to first, second, and third stages respectively.
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Figure 11 display the vibration vectors of the central components for the pure transla-
tional vibrational mode in each stage. By referring to Section 3.2.2, the analysis of this mode
shape vector extends to reveal substantial translational motion along both the x-coordinate
and y-coordinate directions in the PGT central gears. In this mode shape, it cannot be
guaranteed that the displacement of the central parts of the jth stage is equal in magnitude
to j ± 1 stage. However, certain patterns in the displacements can be observed among
stages. Specifically, it is observed that the displacements of the first and third stages are
in the same direction, indicating a coherent behavior between these stages. In contrast,
the displacement of the second stage is 180◦ out of phase with the first and third stages,
signifying an opposite vibrational response.

Furthermore, based on the analysis of the presented mode shape, it can be concluded
that the mode shape of the planet gears within the same stage but positioned 180 degrees
apart exhibit a remarkable similarity in magnitude while being opposite in direction.
The examination of the mode shape of the planet gears within the same stage reveals a
symmetrical vibrational pattern. Specifically, when comparing the mode shapes of two
planet gears positioned 180 degrees apart from each other within the same stage, their
magnitudes are approximately equivalent. However, the direction of their vibrational
motion is opposite as follows:

For the first stage, 
xp11 ≈ −xp31
yp11 ≈ −yp31
xp21 ≈ −xp41
yp21 ≈ −y41

For the second stage, 
xp32 ≈ −xp12
yp32 ≈ −yp12
xp22 ≈ −x42
yp22 ≈ −yp42

For the third stage, 
xp43 ≈ −xp23
yp43 ≈ −yp23
xp13 ≈ −xp33
yp13 ≈ −yp33

Figure 12 demonstrate the mode shape behavior specific to the first stage planetary
gear vibrational mode. Figure 12 exclusively showcase significant vibrations within the
first stage while omitting other stages due to their minimal vibration levels, ensuring clarity
in presentation. Furthermore, by referring to Section 3.2.3 and based on the analysis of
the presented mode shape, it can be concluded that the mode shape of the planet gears
within the first stage but positioned 180 degrees apart exhibit a remarkable similarity in
magnitude and direction as follows:

For p11 and p31:


−xp11 ≈ −xp31
−yp11 ≈ −yp31
−θp11 ≈ −θp31

and for p21 and p41:


xp21 ≈ xp41
yp21 ≈ yp41
θp21 ≈ θp41

Figure 13 demonstrate the mode shape behavior specific to the second stage planetary
gear vibrational modes, respectively. Figure 13 exclusively showcase significant vibrations
within the second stage while omitting other first and third due to their minimal vibration
levels, ensuring clarity in presentation. Furthermore, by referring to Section 3.2.4 and based
on the analysis of the presented mode shape, the following can be observed:

xp32 ≈ −xp12 ≈ −xp22 ≈ xp42
yp32 ≈ −yp12 ≈ −yp22 ≈ yp42
θp32 ≈ −θp12 ≈ −θp22 ≈ θp42
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Figure 14 demonstrate the mode shape behavior specific to the third stage planetary
gear vibrational modes. Figure 14 exclusively showcase significant vibrations within the
third stage while omitting other stages due to their minimal vibration levels, ensuring
clarity in presentation. Furthermore, by referring to Section 3.2.5 and based on the analysis
of the presented mode shape, the following can be observed:

xp23 ≈ xp43 ≈ −xp13 ≈ −xp33
yp23 ≈ yp43 ≈ −yp13 ≈ −yp33

θp23 ≈ θp43 ≈ −θp13 ≈ −θp33

Figures 10–14 provide a comprehensive comparative analysis between the established
Rayleigh energy approach and the recently introduced multi-scale approach, specifically fo-
cusing on the entirety of mode shape vectors. This investigation is aimed at understanding
the inconsistencies in performance between the two approaches across various modes of
vibration. The error magnitudes, expressed as percentages, stand at 5.1%, 3.1%, 6.2%, 6.8%,
and 10.05% for the pure torsional vibrational mode, pure translational vibrational mode
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with central components, first-stage planet gear vibrational mode, second-stage planet
gear vibrational mode, and third-stage planet gear vibrational mode, respectively. These
quantified inconsistencies provide valuable insights into the effectiveness of the multi-scale
approach in capturing the complex characteristics of different vibrational modes.
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5. Conclusions

This paper starts with establishing the lumped parameter model of a three-stage PGT
utilized in medium and heavy trucks by introducing the potential and kinetic energies
inherent in the system. Subsequently, it delves into the theory of the Rayleigh energy
method, a robust tool for assessing the dynamic behavior of the system by deriving matrices
for mass, bearing stiffness, and mesh stiffness. Afterward, the Rayleigh quotient for the PGT
model system was derived, and it was proved that the Rayleigh quotient is bounded by the
highest eigenvalue, shedding light on the PGT model system inherent natural frequencies
and mode shapes.

Furthermore, this investigation proceeds to discuss the natural frequencies of the
entire system, revealing a total of 63 eigenfrequencies, offering a comprehensive analysis
that elucidates the vibrational characteristics of the PGT model system. Examining the
adopted PGT model mode shapes, this study encompasses diverse vibrational modes of
both central components and planet gears.

Additionally, this paper presents the multi-scale analysis for the adopted PGT model
system. This study rigorously compares the multi-scale analysis approach with the well-
established Rayleigh energy method to evaluate its efficiency and reliability in capturing
the complex resonant characteristics and mode shape vectors inherent in the system’s
behavior. This study’s conclusions present significant findings as follows:

1. The identified mode shapes align with those found in T.M. and R.G. Parker [25], en-
compassing whole system torsional and translational vibrational modes, torsional and
translational vibrational modes of central components, and torsional and translational
planet modes.

2. The multi-scale approach demonstrates a margin of error in the amplitude of approxi-
mately 2.5% in accurately determining eigenfrequencies compared to the Rayleigh
energy method.

3. The error magnitudes, expressed as percentages, stand at 5.1%, 3.1%, 6.2%, 6.8%, and
10.05%, highlighting deviations in the determination of the pure torsional vibrational
mode, pure translational vibrational mode with central components, first-stage planet



Machines 2024, 12, 48 24 of 30

gear vibrational mode, second-stage planet gear vibrational mode, and third-stage
planet gear vibrational mode, respectively.
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Appendix A

In all the following equations i = 1, . . . , 4 and j = 1, 2, 3

Kj =



Ksj Ksjrj KsjCj Ksjp1j Ksjp2j Ksjp3j Ksjp4j
Krjsj Krj KrjCj Krjp1j Krjp2j Krjp3j Krjp4j
KCjsj KrjCj KCj KCjp1j KCjp2j KCjp3j KCjp4j
Kp1jsj Krjp1j KCjp1j Kp1j 0 0 0
Kp2jsj Krjp2j KCjp2j 0 Kp2j 0 0
Kp3jsj Krjp3j KCjp3j 0 0 Kp3j 0
Kp4jsj Krjp4j KCjp4j 0 0 0 Kp4j



where,


Ksjrj = Krjsj

KsjCj = KCjsj
Ksjp1j = Kp1jsj
Ksjp2j = Kp2jsj
Ksjp3j = Kp3jsj

,


Ksjp4j = Kp4jsj
KrjCj = KCjrj
Krjp1j = Kp1jrj
Krjp2j = Kp2jrj
Krjp3j = Kp3jrj

, and


Krjp4j = Kp4jrj
KCjp1j = Kp1jCj
KCjp2j = Kp2jCj
KCjp3j = Kp3jCj
KCjp4j = Kp4jCj

Ksj =




kxsj+

N
∑

n=1
Ksjpnj sin

(
ψnj + αsjpnj

)2

 symm−
N
∑

n=1
Ksjpnj sin

(
ψnj + αsjpnj

)
cos
(
ψnj + αsjpnj

)



kysj+

N
∑

n=1
Ksjpnjcos

(
ψnj + αsjpnj

)2


rsj

N
∑

n=1
Ksjpnjsin

(
ψnj + αsjpnj

)
−rsj

N
∑

n=1
Ksjpnjcos

(
ψnj + αsjpnj

) 
r2

sjkθsj+

r2
sj

4
∑

n=1
Ksjpnj
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KCj =


N
∑

n=1
Ksjpnj sin

(
ψnj + αsjpnj

)2
+ kxCj

+
N
∑

n=1
Krjpnj sin

(
ψnj − αrjpnj

)2

 symm

−


N
∑

n=1
Ksjpnjsin

(
ψnj + αsjpnj

)
cos
(
ψnj + αsjpnj

)
+

N
∑

n=1
Krjpnjsin

(
ψnj − αrjpnj

)
cos
(
ψnj − αrjpnj

)



N
∑

n=1
Ksjpnj cos

(
ψnj + αsjpnj

)2
+

N
∑

n=1
Krjpnj cos

(
ψnj − αrjpnj

)2
+ kyCj




rsj
N
∑

n=1
Ksjpnj sin

(
ψnj + αsjpnj

)
−rrj

N
∑

n=1
Krjpnj sin

(
ψnj − αrjpnj

)



−rsj

N
∑

n=1
Ksjpnjcos

(
ψnj + αsjpnj

)
+rrj

N
∑

n=1
Krjpnjcos

(
ψnj − αrjpnj

)



r2

sj

N
∑

n=1
Ksjpnj

+r2
rj

N
∑

n=1
Krjpnj

+r2
sjkθCj





Krj =




kxrj+

N
∑

n=1
Krjpnj sin

(
ψnj − αrjpnj

)2

 symm

−


N
∑

n=1
Krjpnj sin

(
ψnj − αrjpnj

)
cos
(
ψnj − αrjpnj

)



kyrj+

N
∑

n=1
Krjpnjcos

(
ψnj − αrjpnj

)2


rrj

N
∑

n=1
Krjpnjsin

(
ψnj − αrjpnj

)
−rrj

N
∑

n=1
Krjpnjcos

(
ψnj − αrjpnj

)
r2

rj

 kθrj+
N
∑

n=1
Krjpnj





Kpnj =



{
Ksjpnjsin α2

sjpnj + kxpnj

+Krjpnjsin α2
rjpnj

}
symm{

Krjpnjsin αrjpnjcos αrjpnj
−Ksjpnjsin αsjpnjcos αrjpnj

} {
Ksjpnjcos α2

sjpnj + kypnj

+Krjpnjcos α2
rjpnj

}

rpnj

(
Ksjpnjsin αsjpnj
−Krjpnjsin αrjpnj

)
rpnj

(
Krjpnjcos αrjpnj
−Ksjpnjcos αsjpnj

)
r2

pnj

 kθpnj+
N
∑

n=1

(
Ksjpnj + Krjpnj

)



KsjCj =


−

N
∑

n=1
Ksjpnjsin

(
ψnj + αsjpnj

)2 symm

N
∑

n=1

{
Ksjpnjsin

(
ψnj + αsjpnj

)
cos
(
ψnj + αsjpnj

) }
−

N
∑

n=1
Ksjpnjcos

(
ψnj + αsjpnj

)2

−r2
sj

N
∑

n=1
Ksjpnjsin

(
ψnj + αsjpnj

)
r2

sj

N
∑

n=1
Ksjpnjcos

(
ψnj + αsjpnj

)
−r2

sj

N
∑

n=1
Ksjpnj



Ksjrj =

0 symm
0 0
0 0 0



Ksjpnj = Ksjpnj


−
{

sin αsjpnj
sin
(
ψnj + αsjpnj

)} {
cos αsjpnj

sin
(
ψnj + αsjpnj

)} −rpnjsin
(
ψnj + αsjpnj

)
{

sin αsjpnj
cos
(
ψnj + αsjpnj

)} −
{

cos αsjpnj
cos
(
ψnj + αsjpnj

)} rpnjcos
(
ψnj + αsjpnj

)
−rsjsin αsjpnj rsjcos αsjpnj −rsjrpnj
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KrjCj =



−
N
∑

n=1
Krjpnjsin

(
ψnj − αrjpnj

)2


N
∑

n=1
Krjpnjsin

(
ψnj − αrjpnj

)
cos
(
ψnj − αrjpnj

)
 rrj

N
∑

n=1
Krjpnjsin

(
ψnj − αrjpnj

)


N
∑

n=1
Krjpnjsin

(
ψnj − αrjpnj

)
cos
(
ψnj − αrjpnj

)
 −

N
∑

n=1
Krjpnjcos

(
ψnj − αrjpnj

)2 −rrj
N
∑

n=1
Krjpnjcos

(
ψnj − αrjpnj

)
−rrj

N
∑

n=1
Krjpnjsin

(
ψnj − αrjpnj

)
rrj

N
∑

n=1
Krjpnjcos

(
ψnj − αrjpnj

)
rrj

N
∑

n=1
Krjpnj



Krjpnj = Krjpnj


{

sin αrjpnj
sin
(
ψnj − αrjpnj

)} {
cos αrjpnj

sin
(
ψnj − αrjpnj

)} −rpnjsin
(
ψnj − αrjpnj

)
−
{

sin αrjpnj
cos
(
ψnj − αrjpnj

)} −
{

cos αrjpnj
cos
(
ψnj − αrjpnj

)} rpnjcos
(
ψnj − αrjpnj

)
rrjsin αrjpnj rrjcos αrjpnj rrjrpnj


KCjpnj =

{
Ksjpnjsin αsjpnj sin

(
ψnj + αsjpnj

)
−Krjpnjsin αrjpnj sin

(
ψnj − αrjpnj

)} {
−Ksjpnjcos αsjpnjsin

(
ψnj + αsjpnj

)
−Krjpnjcos αrjpnjsin

(
ψnj − αrjpnj

)} rpnj

{
Ksjpnjsin

(
ψnj + αsjpnj

)
+Krjpnjsin

(
ψnj − αrjpnj

)}{
Krjpnjsin αrjpnj cos

(
ψnj − αrjpnj

)
−Ksjpnjsin αsjpnjcos

(
ψnj + αsjpnj

)} {
Ksjpnjcos αsjpnjcos

(
ψnj + αsjpnj

)
+Krjpnjcos αrjpnjcos

(
ψnj − αrjpnj

)} rpnj

{
Ksjpnjcos

(
ψnj + αsjpnj

)
+Krjpnjcos

(
ψnj − αrjpnj

)}{
rsjKsjpnjsin αsjpnj
+rrjKrjpnjsin αrjpnj

} {
rrjKrjpnjcos αrjpnj
−rsjKsjpnjcos αsjpnj

}
rpnj

(
rsjKsjpnj − rrjKrjpnj

)


K11 = diag

[
kxs1s2, kys1s2, kθs1s2, 0, 0, 0, kxC1r2, kyC1r2, kθC1r2, 0, 0, 0, kxs1s3, kys1s3, kθs1s3, 0, 0, 0, 0, 0, 0

]
K22 = diag

[
kxs1s2, kys1s2, kθs1s2, kxC1r2, kyC1r2, kθC1r2, kxC2r3, kyC2r3, kθC2r3, kxs2s3, kys2s3, kθs2s3, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
K33 = diag

[
0, 0, 0, 0, 0, 0, 0, 0, kxC2r3, kyC2r3, kθC2r3, kxs2s3, kys2s3, kθs2s3, kxs1s3, kys1s3, kθs1s3, 0, 0, 0, 0

]

K12 = K21 = zeros[21 × 21]



K12(1, 1) = kxs1s2
K12(2, 2) = kys1s2
K12(3, 3) = kθs1s2
K12(7, 4) = kxC1r2
K12(8, 5) = kyC1r2
K12(9, 6) = kθC1r2

K13 = K31 = zeros[21 × 21]


K13(15, 15) = kxs1s3
K13(16, 16) = kys1s3
K13(17, 17) = kθs1s3

K23 = K32 = zeros[21 × 21]



K23(8, 8) = kxs2s3
K23(9, 9) = kys2s3

K23(10, 10) = kθs2s3
K23(14, 11) = kxC2r3
K23(15, 12) = kyC2r3
K23(16, 13) = kθC2r3

Ks1s2 = diag
[
−kxs1s2 −kys1s2 −kθs1s2 0 0 0

]
Ks2s3 = diag

[
0 0 0 −kxs2s3 −kys2s3 −kθs2s3

]
KC1r2 = diag

[
−kxC1r2 −kyC1r2 −kθC1r2 0 0 0

]
KC2r3 = diag

[
0 0 0 −kxC2r3 −kyC2r3 −kθC2r3

]
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Appendix B

[
M(q,t)j

]
=



Msj
Mrj

MCj MCjp1j MCjp2j MCjp3j MCjp4j
Mp1jCj Mp1j
Mp2jCj Mp2j
Mp3jCj Mp3j
Mp4jCj Mp4j



Msj =

msj 0 0
0 msj 0
0 0 Jsj



Mrj =

mrj 0 0
0 mrj 0
0 0 Jrj



MCj = diag
[

mCj +
4
∑

n=1
mpnj mCj +

4
∑

n=1
mpnj JCj +

4
∑

n=1
Jpnj + r2

Cj

4
∑

n=1
mpnj

]

Mpnj =

mpnj 0 0
0 mpnj 0
0 0 Jpnj



MpnjCj =

mpnjcos ψpnj −mpnjsin ψpnj 0
mpnjsin ψpnj mpnjcos ψpnj 0

0 0 Jpnj


where MpnCj = MCpnj

[
Kb(q,t)j

]
= diag

[
kxsj, kysj, kθsj, kxrj, kyrj, kθrj, kxCj, kyCj, kθCj, kxpnj, kypnj, kθpnj

]

[
Km(q,t)j

]
=

[
Kmsjpnj(q,t)j 0

0 Kmrjpnj(q,t)j

]

Kmsjpnj(q,t)j =



ksij ksij/c ksij/p1ij ksij/p2ij ksij/p3ij ksij/p4ij
kc/sij kscij ksij/cp1ij ksij/cp2ij ksij/cp3ij ksij/cp4ij

kp1ij/sij kcp1ij/sij ksijp1ij
kp2ij/sij kcp2ij/sij ksijp2ij
kp3ij/sij kcp3ij/sij ksijp3ij
kp4ij/sij kcp4ij/sij ksijp4ij
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ksij =



N
∑

n=1
Ksjpnjsin

(
ψpnj + αsjpnj

)2 symm

−
N
∑

n=1
Ksjpnj

{
sin
(
ψpnj + αsjpnj

)
cos
(
ψpnj + αsjpnj

)} N
∑

n=1
Ksjpnjcos

(
ψpnj + αsjpnj

)2

rsj
N
∑

n=1
Ksjpnjsin

(
ψpnj + αsjpnj

)
−rsj

N
∑

n=1
Ksjpnjcos

(
ψpnj + αsjpnj

)
r2

sj

N
∑

n=1
Ksjpnj



kscji =



N
∑

n=1
Ksjpnjsin

(
ψpnj + αsjpnj

)2 symm

−
N
∑

n=1
Ksjpnj

{
sin
(
ψpnj + αsjpnj

)
cos
(
ψpnj + αsjpnj

)} N
∑

n=1
Ksjpnjcos

(
ψpnj + αsjpnj

)2

rsj
N
∑

n=1
Ksjpnjsin

(
ψpnj + αsjpnj

)
−rsj

N
∑

n=1
Ksjpnjcos

(
ψpnj + αsjpnj

)
r2

sj

N
∑

n=1
Ksjpnj



ksijpnij = Ksjpnj

 sin α2
sjpnj

sin αsjpnjcos αsjpnj cos α2
sjpnj

rpnjsin αsjpnj −rpnjcos αsjpnj r2
pnj



kc/sij =


−

N
∑

n=1
Ksjpnjsin

(
ψpnj + αsjpnj

)2 symm

N
∑

n=1
Ksjpnj

{
sin
(
ψpnj + αsjpnj

)
cos
(
ψpnj + αsjpnj

)} −
N
∑

n=1
Ksjpnjcos

(
ψpnj + αsjpnj

)2

rsj
N
∑

n=1
Ksjpnjsin

(
ψpnj + αsjpnj

)
rsj

N
∑

n=1
Ksjpnjcos

(
ψpnj + αsjpnj

)
−r2

sj

N
∑

n=1
Ksjpnj



kpnij/sji = Ksjpnj

−sin αsjpnjsin
(
ψpnj + αsjpnj

)
cos αsjpnjsin

(
ψpnj + αsjpnj

)
−rpnjsin

(
ψpnj + αsjpnj

)
sin αsjpnjcos

(
ψpnj + αsjpnj

)
−cos αsjpnjcos

(
ψpnj + αsjpnj

)
rpnjcos

(
ψpnj + αsjpnj

)
−rsjsin αsjpnj rsjcos αsjpnj −rsjrpnj



kcpnij/sij = Ksjpnj

 sin αsjpnjsin
(
ψpnj + αsjpnj

)
−cos αsjpnjsin

(
ψpnj + αsjpnj

)
rpnjsin

(
ψpnj + αsjpnj

)
− sinαsjpnjcos

(
ψpnj + αsjpnj

)
cos αsjpnjcos

(
ψpnj + αsjpnj

)
−rpnjcos

(
ψpnj + αsjpnj

)
rsjsin αsjpnj −rsjcos αsjpnj rsjrpnj


where


kcpnij/sij = ksij/cpnij

kcij/sij = ksij/cij
kpnij/sij = ksij/pnij

Kmrjpnj(q,t)j =



krij krij/c krij/p1ij krij/p2ij krij/p3ij krij/p4ij
kc/rij kcrij krij/cp1ij krij/cp2ij krij/cp3ij krij/cp4ij

kp1ij/rij kcp1ij/rij krijp1ij
kp2ij/rij kcp2ij/rij krijp2ij
kp3ij/rij kcp3ij/rij krijp3ij
kp4ij/rij kcp4ij/rij krijp4ij
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krij =



N
∑

n=1
Krjpnjsin

(
ψpnj − αrjpnj

)2 symm

−
N
∑

n=1
Krjpnj

{
sin
(
ψpnj − αrjpnj

)
cos
(
ψpnj − αrjpnj

)} N
∑

n=1
Krjpnjcos

(
ψpnj − αrjpnj

)2

rrj
N
∑

n=1
Krjpnjsin

(
ψpnj − αrjpnj

)
−rrj

N
∑

n=1
Krjpnjcos

(
ψpnj − αrjpnj

)
r2

rj

N
∑

n=1
Krjpnj



kcrij =



N
∑

n=1
Krjpnjsin

(
ψpnj − αrjpnj

)2 symm

−
N
∑

n=1
Krjpnj

{
sin
(
ψpnj − αrjpnj

)
cos
(
ψpnj − αrjpnj

)} N
∑

n=1
Krjpnjcos

(
ψpnj − αrjpnj

)2

−rrj
N
∑

n=1
Krjpnjsin

(
ψpnj − αrjpnj

)
rrj

N
∑

n=1
Krjpnjcos

(
ψpnj − αrjpnj

)
r2

rj

N
∑

n=1
Krjpnj



krijpnij = Krjpnj

 sin α2
rjpnj

sin αrjpnjcos αrjpnj cos α2
rjpnj

−rpnjsin αrjpnj −rpnj cosαrjpnj r2
pnj



kc/rij =


−

N
∑

n=1
Krjpnjsin

(
ψpnj − αrjpnj

)2 N
∑

n=1
Krjpnj

{
sin
(
ψpnj − αrjpnj

)
cos
(
ψpnj − αrjpnj

)} rrj
N
∑

n=1
Krjpnjsin

(
ψpnj − αrjpnj

)
N
∑

n=1
Krjpnj

{
sin
(
ψpnj − αrjpnj

)
cos
(
ψpnj − αrjpnj

)} N
∑

n=1
Krjpnjcos

(
ψpnj − αrjpnj

)2 −rrj
N
∑

n=1
Krjpnjcos

(
ψpnj − αrjpnj

)
−rrj

N
∑

n=1
Krjpnjsin

(
ψpnj − αrjpnj

)
rrj

N
∑

n=1
Krjpnjcos

(
ψpnj − αrjpnj

)
−r2

rj

N
∑

n=1
Krjpnj



kpn/rij = Krjpnj

 sin αrjpnjsin
(
ψpnj − αrjpnj

)
cos αrjpnjsin

(
ψpnj − αrjpnj

)
−rpnjsin

(
ψpnj − αrjpnj

)
−sin αrjpnjcos

(
ψpnj − αrjpnj

)
−cos αrjpnjcos

(
ψpnj − αrjpnj

)
rpnjcos

(
ψpnj − αrjpnj

)
rrjsin αrjpnj rrjcos αrjpnj −rrjrpnj



kcpn/rij = Krjpnj

−sin αrjpnjsin
(
ψpnj − αrjpnj

)
−cos αrjpnjsin

(
ψpnj − αrjpnj

)
rpnsin

(
ψpnj − αrjpnj

)
sin αrjpnjcos

(
ψpnj − αrjpnj

)
cos αrjpnjcos

(
ψpnj − αrjpnj

)
−rpncos

(
ψpnj − αrjpnj

)
rrjsin αrjpnj rrjcos αrjpnj rrrpnj


where


kcpn/rji = krji/cpn

kc/rji = krji/c
kpn/rji = krji/pn
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