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Abstract: This paper presents a range control approach for implementing hard geofencing for
unmanned air vehicles (UAVs), and especially remotely piloted versions (RPVs), via a proposed
anticipatory range calculator. The approach employs turning circle intersection tests that anticipate
the fence perimeter on approach. This ensures the vehicle turns before penetrating the geofence and
remains inside the allowable operational airspace by accounting for the vehicles’ turning dynamics.
Allowance is made for general geozone shapes and locations, including those located at the problem-
atic poles and meridians where nonlinear angle mapping is dealt with, concave geozones, narrow
corners with acute internal angles, and transient turn dynamics. The algorithm is shown to prevent
any excursions using a high-fidelity simulation of a small remotely piloted vehicle. The algorithm
relies on a single tuning parameter which can be determined from the closed-loop rise time in the
aircraft’s roll command tracking.

Keywords: geofencing; unmanned aerial vehicle; motion planning; flight control

1. Introduction

Geofencing is an approach to automatically constrict the operating airspace of un-
manned air vehicles (UAVs). This terminology includes remotely piloted vehicles (RPVs)
and autonomous unmanned systems; both are colloquially referred to as ‘drones’. This has
become a particularly important concept in recent years following the rapid proliferation
of consumer-grade RPVs and the ignorance, or wilful defiance, of the rules of air law by
those who operate them.

In a broader sense, geofencing involves the positional management of any particular
object relative to a virtual barrier. It has applications in a variety of telematic areas including
location-based business services where information on individuals entering the fenced zone
can be collected/interacted with. For example, tracking vehicles in relation to geographical
areas and points of interest (POI) has monitoring, organizational, and customer service
applications for fleet management in transport and logistics services [1]. Geofencing
requires the position of the object to be known; thus, for aerospace applications, global
navigation satellite system (GNSS) data are predominately used. Other localizing methods,
such as radio frequency identification (RFID), are limited to a single degree of freedom,
and hence simpler, circular geofences. Indoor fencing is also possible using a sensor fusion
of optics inertial and altitude data [2]. Such a complimentary sensor approach is likely
to be necessary for guaranteeing containment for certification of larger vehicles and for
operations in GPS-denied environments [3].

A geofence may identify the area that the vehicle must operate within, or alternatively,
an area the vehicle must remain outside of. Employing geofences as ‘no-fly’ zones can have
applications to trajectory optimization and collision avoidance (see, for example, [4–6]).
The problem is still essentially a multiconstraint trajectory optimization problem. There
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is a wealth of existing research on path planning and trajectory optimization that is not
discussed here.

Work by Gurriet and Ciarletta [7] used quadratic programming techniques to deter-
mine the most appropriate modification to the vehicle’s velocity in a seamless manner
with the pilot’s original flight path in order to avoid entering certain areas, or ‘geozones’.
This would be quite attractive when navigating through fields of small obstacles for fully
autonomous vehicles, but it introduces an element of uncertainty for the pilot of RPVs with
large no-fly zones unless it is clear to them they have full or partial control of the vehicle.

Comprehensive geofencing solutions will play an important part in future traffic man-
agement in urban environments and in the provision of autonomous advanced air mobility
(AAM). There is much research ongoing on traffic planning [8–10], risk management [11]
and collision avoidance [12,13] in this area.

Following concerns of collisions between scheduled airport traffic and privately oper-
ated RPVs, geofencing has been established as a means to prevent private RPV flights in
areas such as airports, stadiums, government buildings and facilities, and other restricted
areas where security is a requirement or the risk of an in-air collision is sufficiently high.
These geofences can be set up to either contain the vehicle or define ‘no-fly’ zones. Many
civilian drone manufacturers now provide some form of geofencing functionality on their
products, though it may be relatively simple in operation. Geofencing can also provide
a useful failsafe capability for remote or semiautonomous operations in environments
where the loss of line-of-sight (LOS) may make it difficult to recover the vehicle, e.g., arctic
exploration or volcanic inspection. It may also be an effective technique in establishing
cut-down boundaries for the failsafe operation of experimental aircraft, those that wander
uncontrolled, or for creating emergency safety flight paths [14].

In the basic geofencing detection and control algorithms presented in the literature,
some form of point-in-polygon (PIP) test is conducted to determine if corrective flight
control is needed to bring the vehicle back into the allowable airspace. The process of
most simple geofencing algorithms for RPVs is illustrated in Algorithm 1. The desired
action (typically, for an RPV, this is a return to base (RTB) command) happens only when
the vehicle has crossed the geofence. The border to the geofence is usually a ’hard’ one,
and some due consideration needs to be given to the placement of the fences. For rotorcraft,
a ‘hard’ fence is normally acceptable due to the slower flight speeds and greater maneu-
verability. Sometimes, demarcated safety zones will be created to ensure excursions are
prevented before corrective control is engaged. However, zone inclusion tests will still be
used. If strict compliance is required, then a predictive system utilizing some form of con-
trol would be needed to anticipate the approach and act accordingly [15]. Zhang et al. [16]
used model predictive control in this way to create virtual ‘soft’ fences and develop a
‘braking’ controller for a quadcopter. The soft geozones were restricted to circular shapes
and scaled based on the UAVs’ speed. Cavanini et al. [17] proposed a similar solution
but again focusing on multirotor vehicles. For fixed-wing aircraft, this is a more challenging
problem, as the higher flight speeds, poorer maneuverability, and requirement to turn
means the vehicle will exceed the fence by some considerable distance before turning back
towards the allowable airspace. If the return command is instigated upon crossing the
fence then, depending on the current velocity and maximum turn rate, the additional range
of penetration can be considerable. Seiferth et al. [18] generate ‘safety zones’ within the
allowable airspace using Voronoi diagrams. The size of this safety zone is determined by
the vehicle’s allowable bank angle and airspeed, thus ensuring the vehicle turns before
crossing the geofence. This is also considered by Thiele et al. [19], who note that a turn
follows a varying curvature, which is often treated as a constant by assuming the roll
rate is instantaneous. In that paper only convex geozones were considered. Furthermore,
to prevent further egress, manual control should only be returned once the vehicle is inside
the geozone, but this return should be instigated by the pilot for safety. Stevens et al. [2,20]
propose that the geofencing system should be independent of the flight control system
of the UAV, as opposed to most current commercial systems that are integrated into the
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standard autopilot control loops. Such a system has already been developed and tested by
NASA [21]. This would provide improved redundancy and resilience to onboard hardware
and software failures, but it would be difficult to optimize overall system performance for
specific airframes and would require additional communication systems. Consideration
of vehicle performance constraints, namely turn performance, is necessary to provide im-
proved range management. Considering the effect wind has on the vehicles’ trajectory has
also led to strategies to scale the size of the ’soft’ boundaries around the geofence [22–24].

Algorithm 1 Return to Base

Require: C: Database of n geopost positions (φi, λi) for i = 1, 2, . . . , n where n ≥ 3.
Require: p0 ← (φ0, λ0, h0): Base coordinates.
Require: p← (φ, λ, h) : Current geodetic coordinates.

1: PIP(p, C). ▷ Test for p ∈ C
2: if p ̸∈ C then
3: BLOCK ▷ Prevent switch to manual control
4: AUTO ▷ Switch to autopilot control
5: Compute ψ0(p, p0) ▷ Heading to base waypoint
6: ψC ← ψ0 ▷ Set heading command for base
7: else
8: RELEASE ▷ Allow switching to manual control

Despite the progress in the development and implementation of geofencing control
for rotary-wing UAVs [25,26], the problem for fixed-wing UAVs has received less attention,
and in total, geofencing remains an open problem [5]. The approach in this paper is similar
to the methods described above in that a prediction of the aircraft’s flight towards the
geofence is computed and includes the transient dynamics of the turn so that the allowable
flight region can be maximized while ensuring excursions do not occur. The work in
this paper focuses on a combined, general geofencing approach that provides predictive
monitoring and scaling of the soft geozone (or safety zone) based on the aircraft’s current
behavior, includes consideration of noninstantaneous turn dynamics, and can handle
arbitrary geozone shapes, including concave geozones with fences with acute internal
angles. Subsequently, this paper proposes an anticipatory range control algorithm for
proactive control override of the RPV or UAV before it crosses the geofence boundary.
It is derived using elementary geometry and takes into account the transient nature of
the turn dynamics. The approach in this paper is specifically developed for fixed-wing
UAVs; however, it can easily support rotorcraft or lighter-than-air RPVs and UAVs. The
approach in this paper is used for standard ‘fly-in’ geozones, and successful operation is
demonstrated using a high-fidelity six-degree-of-freedom simulation of a fixed-wing RPV
at the end of the paper. This method can easily be configured to operate with no-fly zones,
which can then be used to enable collision avoidance during encounters with irregularly
shaped obstacles.

2. Mathematical Framework
2.1. Geozones

Consider a line mapped to an orthodromic length around the surface of Earth between
two nodes, so-called ‘geonodes’, that can be located by geographical points on Earth. When
a number of these lines are connected, they form a closed polygon, defining an enclosed
area—a ‘geozone’. The perimeter of the geozone is referred to as the geofence. A minimum
of three nodes are required to specify a valid geozone, unless the desired zone is elliptical.
In this special case, a single node can specify the center of the geozone, and an equation
defines the lay of the geofence.

An altitude may be associated with the geozone to implement a flight ceiling (effec-
tively creating an aerodrome). Traditionally there is only one altitude limit set, especially
for simple localized flying. Considering full three-dimensional positional constraints is
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of increasing interest in urban environments and the expansion of urban air mobility sys-
tems [27,28]. Furthermore, the complexity of such environments would likely require more
orchestrated planning of the turning trajectories in three-dimensional space [24] and flight
corridor control [29,30].

2.2. Determining Geozone Inclusion: Point-in-Polygon (PIP) Algorithms

The geofencing problem can be thought of as a version of the PIP test. Given an
arbitrary polygon C with n vertices v1, v2, . . . , vn = v1, resulting in n− 1 edges, and a point
of interest p, the task is to determine whether p is enclosed by C. This is a fundamental
test in computer graphics (of particular interest in graphical user interface design) but has
applications in other fields requiring computational geometry, including robotics, acoustics,
and geoscience. A number of different algorithms have been developed to solve the PIP
problem and Haines [31] provides a concise summary of these. They can be broadly
categorized into two types: (1) those that perform an iterative examination of p (or some
representation of it) relative to each polygon vertex and (2) those that use preprocessing to
obtain a simpler representation of the polygon for faster intersection tests. The former types
are generally more flexible, while the latter benefit from reduced computational overhead
for large and fixed polygons. Substantially better computational speed is possible with
convex polygons due to their geometric properties.

The two most commonly used methods are subtly different forms of the first type
of PIP algorithm and are general enough to work for most complex convex polygons.
These so-called crossing test methods involve the identification of the number of crossings
made by the polygon over a reference axis (or ray). The earliest demonstration of this for
nonconvex polygons is commonly attributed to Shimrat in 1962 [32] (though his algorithm
was later corrected by Hacker [33]) and is often called the even–odd or parity rule. Given a
rectilinear line (or ray) starting from infinity and ending at p (alternatively, the ray may
start from p and extend to infinity, but the difference is trivial), if the line passes the edges
of the polygon an odd number of times, then p is located inside C, and conversely, outside
C if the edges are crossed an even number of times. This can be proved with the Jordan
Curve Theorem. This PIP algorithm is intuitively easy to understand though there are
problems with special cases such as self-intersecting polygons (where the Jordan Curve
Theorem is no longer valid), when p lies on the vertices or the edges, or when the ray is
parallel to one of the edges, as well as tolerances associated with numerical finite precision.
Various solutions have been proposed to address these issues [31] and involve the use of
strict additional modifications (or ‘rules’) to the base algorithm.

The other commonly used crossing test is often referred to as the winding number test
and is only subtly different from the parity test in concept [34]. It involves determining the
direction and frequency of crossings over the ray when looping once along the edges of
C. The winding number test is of the same computational complexity as the parity test,
O(n), and both give the same result, except when C is self-intersecting, wherein the parity
algorithm will give an erroneous result. Thus, the winding number method is the safer
algorithm for arbitrary polygons. For the problem of the ray axis crossing an edge or vertex,
either modifying the placement of the ray [31] or using half-increments when summing
w [35] provide viable solutions. These algorithms also extend easily to three dimensions.

The concept of the winding number is also used with what is called the angle sum-
mation method. Given n− 1 vertices, let θi be the i-th angle that the polygon edge vivi+1
subtends with p. Then,

w =
1

2π

n−1

∑
i=1

θi =
1

2π

n−1

∑
i=1

acos
(
(vi − p) · (vi+1 − p)
|vi − p||vi+1 − p|

)
. (1)

Note that when p is located on one of the edges or vertices, (1) becomes undefined but
can be accommodated with programming logic. The angle summation method appeared
as early as 1974 when illustrated by Sutherland et al. [36]. This method is generally not
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favored due to the need to solve the time-consuming arccosine function for each vertex. It
is, however, backwards stable [37].

The second type of algorithms include ray–triangle intersection [38–40], constructive
solid geometry (CSG) representation [41,42], and wedge inclusion [43], among others.
These are generally faster than the first type of algorithm, especially for polygons with
a large number of vertices, as the initial preprocessing cost is amortized by the faster
intersection testing. However, these methods are dependent on available memory to
store the processed polygons. Perhaps the fastest but most memory-intensive method
involves the spatial discretization of the polygon into a grid, wherein each cell can be
readily categorized as fully inside, fully outside, or indeterminate. The intersection of p is
then quickly determined by a look-up grid. If p is located in an indeterminate cell, then
line segment intersection [44–46] can be used to determine its inclusivity.

The spherical nature of Earth means that the polygon C should be mapped to the
spherical surface of Earth. However, for small areas, a planar approximation of Earth’s
surface is often sufficient. The spherical nature of Earth’s surface also makes representing
lines or areas difficult over the poles and the antimeridian when using geodetic coordinates.
The latitudinal direction of movement over the poles is indeterminant unless the longitude
is taken into account (since the sign of the latitude remains constant—positive at the North
pole and negative at the South pole). However, the longitude will change abruptly by
±180◦. Similarly, across the antimeridian, the longitude jumps between ±180◦. It then
becomes convoluted to project the correct variation in geodetic position across the poles
or antimeridian onto a Cartesian coordinate space and, hence, makes the use of crossing
tests difficult for polygons located at such locations. In many applications, this problem is
rarely encountered, as the flight is relatively small-scale and, if away from these singularity
regions, allows the latitude, φ, and longitude, λ, to be approximated as planar coordinates
that can be used to determine the intersection of lines through Euclidean geometry (see
Pratyusha and Naida [47] for an example). However, this approach would present a
problem for search and rescue or survey missions, for example, at the poles and across
the antimeridian.

The problem is avoided by using the angle summation rule at a given point on the
spheroid surface, rather than using a crossing test. If ψi is the forward azimuth from p
to each geopost vi then (1) can be used, with θi exchanged for ψi. The suitability of this
approach, in terms of computational speed, will depend on the size of n. Additionally, this
approach will become undetermined for the case when p is coincident with the poles but
can be resolved with some conditional logic, since the intersection of these points with C
should be evident upon the construction of the polygon.

2.3. Anticipatory Range Controller

The proposed anticipatory range controller (ARC) algorithm is conceptually straight-
forward:

1. Compute the range to the geofence on the UAV’s current heading.
2. Taking into account additional distance covered due to the transient dynamics of the

vehicle (based on the current speed), if the distance of the vehicle or any of its turning
circles from the fence is less than this modified turn radius, then instruct the vehicle
to turn.

With reference to Figure 1, let (φ1, λ1) and (φ2, λ2) be the geodetic coordinates of two
points on a spherical Earth with radius R0. The angle that is subtended by the two lines
that extend from the origin through each point is σ. The orthodromic (i.e., great circle) arc
distance between the two points is then

s = R0σ. (2)

Given the irregularities in (nonspherical) Earth, more accurate values for the central angle,
σ, can be determined with a number of formulas that balance computational processing
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with accuracy and generality. Additionally, a vector-based approach is far simpler and less
convoluted than spherical trigonometry expressions, especially when having to deal with
polar singularities. Let the n-vectors, defined as

n̂ =

 cos φ cos λ
cos φ sin λ

sin φ

, (3)

for the two geodetic points be n̂1, n̂2, and the angle subtended by the two points is then

σ = atan2
(
||n̂1 × n̂2||, n̂1 · n̂2

)
. (4)

Here, × denotes the cross product and ||(·)|| the Euclidean norm. The operator · denotes
the dot product. The great circle plane that contains both n̂1 and n̂1 is then

ĉ12 = n̂1 × n̂2 (5)

or, in terms of the geodetic coordinates for point 1 and the azimuth from point 1 to point 2
(which is ψ),

ĉ12 =

 sin λ1 cos ψ− sin φ1 cos λ1 sin ψ
− cos λ1 cos ψ− sin φ1 sin λ1 sin ψ

cos φ1 sin ψ

. (6)

Figure 1. N-vectors and great circle plane of two geodetic points on the surface of a sphere.

At small distances, geodesics may not be required, and simple planar geometry could
be used. Solutions using calculations in a local tangent plane still give workable accuracies
for geozones of kilometers in size. However, this is a fundamentally limiting issue for a
general solution, so the algorithm is presented in spherical geometry. As mentioned before,
the use of vector algebra can be more compact and concise. A solution given in spherical
geometry is still prone to error at large distances due to the ellipsoidal nature of Earth,
but the error is less than a flat plane approximation.

3. The ARC Algorithm for Flight within a Polygonal Geozone

Most uses of UAV geofencing are to keep the vehicle operating inside a specified
geozone. While it is quite straightforward to determine the inclusion of a point within
a circular geozone (namely if the distance of the point from the origin of the zone is
less than or equal to the circular radius), it is more difficult to determine the range from
an arbitrary point p and heading ψ to the geofence compared with the polygonal case.
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In contrast, the polygonal case is more straightforward, and since it is more general, it is
dealt with exclusively.

3.1. Determining the Range to the Geofence

Let p denote the current position of the vehicle, comprising the current geodetic
location of the vehicle, p = (φ, λ, h), and having a heading, ψ. Its n-vector is then n̂p. For
all i = 1, . . . , n− 1 geoposts having known coordinates vi = (φi, λi, hi) and, hence, known
n-vectors, n̂i, the distance between any post and the vehicle, si, can be obtained via (2).
The forward azimuth to each post from the vehicle is

ψi = sgn
(
ĉpi × ĉpN · n̂p

)
· acos

(
ĉpi · ĉpN

|ĉpi||ĉpN |

)
, (7)

where ĉpi = n̂p × n̂i and ĉpN = n̂p × n̂N . n̂N is the n-vector for the datum—the north-
ern pole: n̂N = [0, 0, 1]T. The term sgn

(
ĉpi × ĉpN · n̂

)
is used to determine the direction

of the angle with respect to the datum. However, since the inverse cosine function be-
comes ill-conditioned at small distances and for ψi at 0 or π, it is preferable to use the
alternative formulation:

ψi = atan2
[
sgn(ĉpi × ĉpN · n̂p) · |ĉpi × ĉpN |, ĉpi · ĉpN

]
. (8)

If ∆ψi = ψi − ψ, then the smaller the value of ∆ψi, the closer the bearing of the
vehicle is to that post. ∆ψi = 0 indicates the vehicle is bearing directly towards post i, and
computing the distance to the fence is trivial since both points are known. Provided that
∆ψi ∈ [0, 2π), for all i, then the fence edge that the vehicle is bearing to is deducible from
when ∆ψi+1 − ∆ψi > π. If the geozone is convex, then there should only be one such edge
detectable. Otherwise, multiple edges could satisfy this condition.

In order to determine the range of the vehicle to the geofence on its current heading
the location of the two posts on either side of the current heading is required. Then,
the intersection of the two great circle planes (one given by the position and heading of
the vehicle, the other the plane containing both geoposts) will give the location of a point
on the geofence the vehicle is heading towards. If ĉbc defines the great circle containing
the two geoposts, vb and vc, that straddle the vehicle’s heading, and ĉp+ defines the
great circle containing the point where it intersects ĉbc and the current position of the
vehicle, p, then two possible antipodal intersection points exist: n̂+1 = ĉp+ × ĉbc and
n̂+2 = −n̂+1 = ĉbc × ĉp+. Which of these is the correct intersection for the geofence
can be deduced by considering the angle between the heading and intersection n-vectors.
With reference to Figure 2, if |γ| < π/2, then the heading vector, n̂ψ, points immediately
towards n̂+1. This amounts to n̂ψ · n̂+1 > 0. Conversely, n̂ψ · n̂+1 < 0 (or n̂ψ · n̂+2 > 0)
indicates n̂ψ is pointing immediately towards n̂+2. Therefore, the intersection vector can be
written as

n̂+ = sgn
(

n̂ψ · n̂+1

)
· ĉp+ × ĉbc = sgn

(
ĉp+ × n̂p · n̂+1

)
· ĉp+ × ĉbc. (9)

Then, the range to the geofence, s+, is the distance from n̂p to n̂+, solved with (2). For the
case of a concave geozone, where multiple fence edge intersections exist, s is calculated for
each intersecting point, i.e.,

s+ = R0 · atan2
(
||n̂p × n̂+||, n̂p · n̂+

)
,

and the smallest value determines the range to the nearest fence edge.
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Figure 2. Intersection of great circles defining the fence edge currently being approached, ĉbc, and the
intersection of the fence and vehicle trajectory, ĉp+.

3.2. Calculating Minimum Turn Distance

Once s+ is known, it can be compared with the minimum turn distance, smin. Figure 3
illustrates the computation of smin. Let θ′ ∈ (−π, π] and θ ∈ [0, π/2] be the angle the
vehicle is bearing towards the point n̂+ (or v+), relative to the geofence edge (i.e., θ′ is with
respect to the edge segment vbv+ (or vbvc), while θ is the smallest magnitude of the two
possible values with respect to vbvc). If the vehicle is bearing perpendicularly towards
the fence (i.e., θ = 90 deg), then smin is simply r, the minimum turn radius of the vehicle.
For any other angle of θ, the minimum turn distance required can be reduced depending
on the angle to which the vehicle is heading toward the geofence. Then, by assuming the
resulting vertices of the spherical triangle can be treated as coplanar (a simplification not
too erroneous since from this range to the fence the triangles are quite small),

smin =
x1

sin θ
=

r(1− cos θ)

sin θ
= r(csc θ − cot θ). (10)

The angle θ′, and hence θ, can be obtained using (8) where, in this case, the datum plane
is ĉbc with intersecting plane ĉp+ and focal point n̂+. If s+ ≤ smin, the vehicle must begin
turning to avoid crossing the geofence. Since the turn radius is affected by the airspeed
using its current value, V, provides the current minimum turn radius for the vehicle:

r =
V2

g tan ϕmax
= GV2. (11)

Here, ϕmax is fixed at a value, limited by the characteristics of the vehicle, leaving r simply
proportional to the square of the airspeed through the constant G.

In practice, (11) will not be sufficient to prevent the vehicle from crossing the geofence,
as it fails to account for the initial dynamics of the vehicle on starting a turn. Therefore, the
value of smin, taking into account the turn dynamics, is calculated via

smin = GV2(cscθ − cotθ) + st, (12)

with st being an additional term to cover the distance required for the transient behavior
on initiating a turn (i.e., the rise time delay). The transience will be dictated by the
maneuverability of the specific vehicle and the heading flight controller and so must be
tailored for each vehicle. Determining a suitable value for st is discussed later in Section 4.3.
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Figure 3. Geometry for computing smin based on the minimum turn radius r and the approach
angle θ′.

3.3. Determining the Direction of Turn

Ideally, the turn should be made away from the fence such that its heading rotates
through the closest matching orientation of the fence: the port turn in Figure 3, for example.
The turn is initiated by overriding manual control with an automatic heading controller.
This heading could be set to match the orientation of the fence, but this tends to result in
the vehicle ‘scraping’ the geofence and causing a small excursion. A more effective solution
is to set a heading command that instructs a constant turn in the desired direction for as
long as s+ ≤ smin: ψC = ψ + kπ/2, where k is a signed integer having the value −1 or 1 to
instruct the desire direction of turn (port or starboard, respectively). The value of k can be
determined by considering the sign of θ′: k = −sgn(θ′).

3.4. Acute Internal Angles

The approach so far is satisfactory when all of the internal angles of the geofence are
reflex or obtuse. A problem arises when the angle between two fences is acute. In this
scenario, as illustrated in Figure 4, ∠b < π/2 such that the vehicle will be driven towards
the vertex of the two fences at post b and eventually penetrate the fence. Furthermore, if the
turn is initiated when s+ ≤ smin, then the vehicle will be unable to complete a full turn, as
the turning circle c1 extends out of the geozone. In order to avoid this event, consideration
of the two fences on either side of the one currently being approached is needed, along
with the minimum turning circle. If the vehicle approaches an acute vertex, it must initiate
a turn sufficiently soon enough to not lead to an excursion (turning circle c2 in Figure 4).

The strategy to achieve this is to investigate the minimum turning circles on either side
of the vehicle’s current position and heading. The centers of the port (left) and starboard
(right) turning circles (n̂l and n̂r, respectively) are determined by considering the radius of
the circle, along with the extra ground distance required for the initial transient behavior.
This radius is r′ = r + st (turning circle c3 in Figure 4). The n-vectors of the turning circle
centers are then obtained through vector summation:

n̂l =
R0n̂p + r′ ĉp+

||R0n̂p + r′ ĉp+||
, n̂r =

R0n̂p − r′ ĉp+

||R0n̂p − r′ ĉp+||
, (13)

We then seek the perpendicular distances of these turning circle centers from the approach-
ing geofence and, importantly, the two adjacent fences. If one turning circle extends past
the fence, then the aircraft must be prevented from turning in that direction. If the second
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turning then circle reaches the fence while the first is still beyond the fence boundary, then
the aircraft must be instructed to turn.

c1 c2

c3

Figure 4. Scenario involving an acute fence corner at vb.

The approaching geofence sits on the great circle ĉbc, so let the two adjacent fences be
identified by the great circle planes ĉab and ĉcd. The minimum (perpendicular) distance
from a point n̂ to a great circle plane ĉ is

s′ = R0

∣∣∣∣ asin
(

n̂ · ĉ
||ĉ||

)∣∣∣∣ (14)

Depending on the orientation of ĉ the computed value is either positive or negative (indicat-
ing the hemisphere that n̂ is located in). Since this is not needed, the absolute value of the
angle is taken. Equation (14) is evaluated for the three fences, for both turning circle centers.
These distances are then compared to r′ to determine which turning circles have penetrated
the great circles corresponding to each fence. This is the first test (i) for determining the
turning circle intersection.

Since these great circles extend beyond the actual length of each fence edge, the location
of this penetration must be determined, as it is possible for the turning circle to overlap
a great circle but still be inside the geozone. This is performed by examining the angle
of the perpendicular distance from each j = 1, . . . , 3 fence edge (i.e., a great circle that
intersects perpendicularly the great circle of the fence), αĉj , to the angles of the two posts
comprising each fence (αvj and αvj+1). These angles are relative to the vehicle’s trajectory
along ĉp+, having their apex at the turning circle centers. If the angle of the great circle
from the turning center to the fence is between the angles of both posts, then the turning
circle center (and, hence, the vehicle) is adjacent to that fence. This is the second test (ii).
The angles of the posts should be unwrapped to avoid computational wrapping errors.

If a turning circle center has a distance to a plane less than r′ (test i), and if the fence
posts straddle the turning circle center (test ii), then it may be concluded the turning circle
has intersected that fence edge. Figure 5 illustrates computing s′j, αĉj , and αvj for j = 1
(in this case the fence vavb) for the port (left) turning circle. Similar computations are also
made for the other two fences. In this scenario, the starboard turning circle has already
extended past the geofence, so k = −1, and it remains to determine if the port turning circle
has reached the geofence. It can be seen that scd,l > r′ and that αĉcd < αvc < αvd , so neither
criteria is satisfied against the fence vcvd. αvb < αĉbc < αvc , but db,l > r′, so the port turning
circle has not penetrated the fence vbvc. However, αva < αĉab < αvb and s′ab,l ≤ r′, so the
turning circle has reached the fence vavb, and so the vehicle is required to turn to a heading
ψC = ψ− π/4.
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It is possible that condition (ii) not be satisfied despite the turning circle clearly
intersecting with the fence (Figure 6). In this example, condition (i) is satisfied for both
fences but not condition (ii). The fact that condition (i) is satisfied for two connected fences
is indication enough that the turning circle intersects the fence. A further test can be used
to account for such cases, (iii), checking the distance from each turning circle center to each
post, i.e., evaluating to see if sc,r < r′

Figure 5. Illustration of evaluating tests (i) and (ii) for j = 1 (in this case the fence vavb) for the port
(left) turning circle.

Figure 6. Illustration of evaluation test (iii).

The final criterion is then (i) and (ii) or (iii) for any j. This criterion needs to be assessed
and satisfied for each fence and for each turning circle to establish whether that turning
circle has left the geozone. If the criteria are satisfied for any one fence, then the turning
circle is considered to have penetrated the geofence. When the first turning circle has
achieved this, k (the parameter used to indicate the direction of the turn) can be set and
held, ensuring any new heading commands given to the vehicle turn it about the opposite
turning circle. This approach to determining k replaces the previous one. If the same
turning circle no longer satisfies the two criteria, then k can be set to zero. If, while k ̸= 0,
the criteria for the other turning circle is met, then the vehicle heading is set to turn the
vehicle. As before, a simple way to ensure the vehicle turns to a sufficient amount to avoid
the geofence is to set a heading command of ψC = ψ + kπ/2 (i.e., always turn an additional
90 degrees to the current heading), where the sign of k will ensure the turn is in the correct
direction to avoid the vehicle crossing the geofence.
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In the case illustrated in Figure 5, the distance to the approaching fence s+ > smin,
despite the fact the turn should be initiated to avoid an excursion. Hence, both approaches
in Sections 3.2 and 3.4 should be evaluated. If approaching the geofence vbvc = v2v3 with
sufficient clearance on either side, the criterion s′2 = s′bc ≤ r′ on the last turning circle inside
the geozone amounts to a similar criterion as s+ ≤ smin. The main difference is that the
transient turn dynamics is now incorporated into the turning radius (r′ is used instead of r),
whereas in the approach in Section 3.2, the transient turn dynamics are incorporated in the
computation of smin. Of course, if the geofence corners are closely packed together and are
particularly acute, an excursion may be unavoidable due to the maneuvering limitations
of the vehicle. A judicious design of the geozone would therefore be sensible to avoid
problematic corners.

3.5. Manual Control

The heading autopilot remains active until the current value of s+ exceeds the current
value of smin and at least one turning circle is located inside the geozone. As it is potentially
dangerous to return manual control to a pilot without warning, an intermediary flight
controller retains control of the vehicle (in straight and level flight) until the system is
instructed by the pilot to hand control back. During this time, the ARC is still functional
and runs the same as in manual mode. It will only allow manual control to be handed back
when s+ > smin or s′j > r′ and αĉj /∈ [αvj , αvj+1 ] and sj > r′ for at least one turning circle for
all j fences and j + 1 posts around the intersection point.

3.6. Excursions

Provided the turn dynamics have been accounted for, the vehicle should not penetrate
the geofence at any point when the ARC is active. In the event that it does, a sensible
action is to set the heading command to be the base coordinates, as per a normal RTB
algorithm. The aircraft will then navigate towards the designated point inside the geozone
until it re-enters. For convex geozones, this will suffice, since the base is typically located
in the central region of the geozone and the heading towards that point will result in a
turn away from the geofence. However, this can be problematic in concave geozones, as
illustrated in Figure 7. Turning and flying towards the base coordinate would result in an
extended excursion. Some consideration of the local shape of the geozone therefore needs
to be incorporated. This is performed by creating a local base coordinate, or anchor point,
to orientate the vehicle to instead of the main base coordinates.

Consider the scenario in Figure 7, where the vehicle at pA has left the geozone. The clos-
est post is given by the n-vector, (n̂2)A, determined by the smallest value of si. The posts
on either side of this are given by (n̂1)A and (n̂3)A, and the three vertices form a spherical
triangle. A point inside this triangle will serve as a useful point to orient that vehicle
towards in the event of crossing the fence. The lengths of all three sides are known, so the
centroid is easily computed:

n̂℧ =
n̂1 + n̂2 + n̂3

||n̂1 + n̂2 + n̂3||
. (15)

The geodetic coordinates of this point, if required, are

φ℧ = atan2
(

n̂z,
√

n̂2
x + n̂2

y

)
, λ℧ = atan2

(
n̂y, n̂x

)
.

The heading angle to the anchor point, ψ℧, can then computed using (8)

ψ℧ = atan2
[
sgn(ĉp℧ × ĉpN · n̂℧) · |ĉp℧ × ĉpN |, ĉp℧ · ĉpN

]
. (16)

It is worth noting that this approach has no penalty when approaching obtuse or acute
fence corners and will work in most cases. This will result in the vehicle returning to the
geozone more quickly than if it were to fly towards the base location, denoted by □ in
Figure 7. However, it can be seen that this approach will not work when the internal angle,
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ϑ, is reflexive, such as in the case of example B in Figure 7. The closest post to the vehicle
pB is (n̂2)B, which has a reflex internal angle ϑB. As a result, the spherical triangle formed
from the three nearest posts and, hence, the anchor point ℧B is outside the geozone. This
can be easily solved by rotating ψ℧ by 180 degrees for such cases (the resulting trajectory is
shown by the dotted line in Figure 7).

The vehicle’s inclusion in the geozone can be determined with any of the PIP tech-
niques discussed in Section 2.2. However, since the forward azimuth angles from p to all v
are calculated in order to determine the intersecting fence edge, the same data can be used
to obtain the winding number through the angle summation method. Hence,

w =
1

2π

n−1

∑
i=1

(
ψi+1 − ψi

)
, (17)

and the condition for activating the RETURN algorithm is w = 0. Computational inac-
curacies for small distances between p and v may mean the computed value of w should
be rounded to ensure logical operators work as intended. The ARC algorithm described
above is succinctly given in Algorithms 2–6.

Algorithm 2 Anticipatory range controller

Require: g : Gravitational acceleration
Require: R : Radius of Earth. ▷ R0 or, more generally, R
Require: C : Database of n geopost positions vi ← (φi, λi) for i = 1, 2, . . . , n.
Require: n̂N : N-vector for datum (North). ▷ [0, 0, 1]T

Require: v0 ← (φ0, λ0, h0) : User-specified base coordinates.
Require: ϕmax : Maximum bank angle.
Require: tc : Transient effect on turn distance.
Require: p← (φ, λ, h) : Current geodetic coordinates.
Require: ψ : Current heading.
Require: V : Current speed. ▷ Ideally ground speed
Output: ψC

1: Compute n̂p(φ, λ); n̂0(φ0, λ0).
2: Compute ĉpN(n̂p, n̂N); ĉp0(n̂p, n̂0).
3: for all i do
4: Compute n̂i(φi, λi).
5: Compute ĉpi(n̂p, n̂i). ▷ (5)
6: Compute ψi(ĉpi, ĉpN , n̂p). ▷ (8)
7: ∆ψi ← ψi − ψ.
8: w← 1

2π ∑n−1
i=1 (ψi+1 − ψi) ▷ Test for p ∈ C (17)

9: if w ≥ 1 then ▷ p ∈ C
10: FENCE ▷ Algorithm 3
11: INTERSECT ▷ Algorithm 4
12: TURN ▷ Algorithm 5
13: else ▷ p ̸∈ C
14: BLOCK
15: AUTO
16: RETURN ▷ Algorithm 6
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Algorithm 3 FENCE: Determine fence intersection

1: for all i do |∆ψi+1 − ∆ψi|
2: for all |∆ψi+1 − ∆ψi| > π do
3: b← i; c← i + 1.
4: Compute ĉbc(n̂a, n̂b).
5: Compute ĉp+(p, ψ). ▷ (6)
6: Compute n̂+1(ĉp+, ĉab).
7: Compute n̂+(ĉp+, ĉab, n̂+1). ▷ (9)
8: Compute s+(R, n̂p, n̂+). ▷ (2)–(4)

9: find i for min s+.
10: s+ ← min(s+).
11: a← i(min(s+))− 1. ▷ Wrapping on a if needed
12: b← i(min(s+)).
13: c← i(min(s+)) + 1.
14: d← i(min(s+)) + 2 ▷ Wrapping on d if needed
15: ĉbc ← ĉbc(min(s+)); ĉp+ ← ĉp+(min(s+)); n̂+ ← n̂+(min(s+)).

Algorithm 4 INTERSECT: Determine intersection of turning circles

1: Compute r′(V, g, ϕmax, tc)
2: Compute n̂l(R, n̂p, r′, ĉp+); n̂r(R, n̂p, r′, ĉp+). ▷ (13)
3: Compute ĉab(n̂a, n̂b); ĉcd(n̂c, n̂d)
4: n← {n̂a; n̂b; n̂c; n̂d}.
5: c← {ĉab; ĉbc; ĉcd}.
6: for all j do ▷ j = 1, . . . , 3 fences
7: Compute s′j,l(R, n̂l , ĉj); s′j,r(R, n̂r, ĉj) ▷ (14)
8: Compute αĉj,l (cj × n̂l , ĉp+, n̂l); αĉj,r (cj × n̂r, ĉp+, n̂r). ▷ (8)

9: for all j + 1 do
10: Compute sj,l(nj, n̂l , R); sj,r(nj, n̂r, R). ▷ (2)
11: Compute αvj,l (nj × n̂l , ĉp+, n̂l); αvj,r (nj × n̂r, ĉp+, n̂r).

12: if k = 0 then
13: for all j do
14: if αvj,l < αĉj,l < αvj+1,l and s′j,l ≤ r′ or sj,l ≤ r′ or sj+1,l ≤ r′ then
15: k← 1; ▷ Only turn starboard
16: BREAK
17: else if αvj,r < αĉj,r < αvj+1,r and s′j,r ≤ r′ or sj,r ≤ r′ or sj+1,r ≤ r′ then
18: k← −1; ▷ Only turn port
19: BREAK
20: else
21: k← 0
22: if k ̸= 0 then
23: if αvj,l ≮ αĉj,l ≮ αvj+1,l or s′j,l ̸≤ r′ and sj,l ̸≤ r′ and sj+1,l ̸≤ r′ for all j then
24: k← −1;
25: if αvj,r ≮ αĉj,r ≮ αvj+1,r or s′j,r ≤ r′ and sj,r ̸≤ r′ and sj+1,r ̸≤ r′ for all j then
26: k← 0; ▷ Reset k
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Algorithm 5 TURN: Test the turn criteria

1: Compute θ′(ĉp+, ĉab, n̂+). ▷ (8)
2: if |θ′| > π/2 then
3: θ ← |π − |θ′||,
4: else θ ← |θ′|.
5: Compute smin(g, ϕmax, V, θ, V, tc) ▷ (11) and (12)
6: if s+ ≤ smin then
7: BLOCK ▷ Prevent switching to manual control
8: ψC ← ψ + kπ/2.
9: else if k ̸= 0 then

10: if αvj,l < αĉj,l < αvj+1,l and s′j,l ≤ r′ or sj,l ≤ r′ or sj+1,l ≤ r′ for any j then
11: if αvj,r < αĉj,r < αvj+1,r and s′j,r ≤ r′ or sj,r ≤ r′ or sj+1,r ≤ r′ for any j then
12: BLOCK
13: AUTO
14: ψC ← ψ + kπ/2.
15: else
16: RELEASE ▷ Allow switching to manual control
17: ψC ← ψ. ▷ Carry on heading until manual control
18: else
19: RELEASE
20: ψC ← ψ.
21: else
22: RELEASE
23: ψC ← ψ.

Figure 7. Illustration of computing the anchor point ℧.
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Algorithm 6 RETURN: Set the anchor point for return

1: for all i do
2: Compute si(n̂p, n̂i, R) ▷ (2)

3: find i for min s.
4: a← i− 1; b← i; c← i + 1. ▷ Wrapping on a and c if needed
5: Compute n̂℧(n̂a, n̂b, n̂c) ▷ (15)
6: Compute ĉp℧(n̂p, n̂℧)
7: Compute ψ℧(ĉp℧, ĉpN , n̂p)
8: Compute ĉba(n̂b, n̂a); ĉbc(n̂b, n̂c).
9: Compute ϑ(ĉba, ĉbc, n̂b)

10: if ϑ > π then
11: ψ℧ ← ψ℧ + π.
12: ψC ← ψ℧

4. Simulation

The ARC algorithm discussed in the previous sections is demonstrated in a simu-
lated environment written in MATLAB/Simulink. Figure 8 outlines the structure of the
simulation model. The vehicle model is generated from aerodynamic stability and con-
trol derivatives that compute the aerodynamic forces and moments acting on the vehicle.
A propulsion subsystem models a combustion engine with a propeller. Inputs to these are
the control surface deflections and throttle inputs. The forces and moments from both the
aerodynamic and propulsion models are combined to determine the forces and moments
acting about the c.g., which is used to solve the equations of motion. The motion states are
used to further influence the aerodynamics, propulsion, and atmospheric model (for air
density). Motion states are fed into the flight controller for the flight control system (FCS)
as well as the ARC. For these specific simulations, a fixed-step Runge–Kutta integration
solver is used with a time-step of 0.01 s.

The output from the vehicle model provides the three state variables necessary for
the ARC algorithm: the vehicle heading ψ, the ground speed Vg, and the current geodetic
position, p. The ARC algorithm outputs the control mode flag (BLOCK or RELEASE) and
the heading command ψC. When the mode flag is set to AUTO, the manual commands
are bypassed and a flight control algorithm (comprising Proportional–Integral–Derivative
(PID) controllers in this simulation) in the FCS provides control surface deflections for the
vehicle. In AUTO mode, the pilot is unable to disengage this control loop. When the mode
flag is set to RELEASE, the PID controllers are still in control of the vehicle but the pilot
is able to disengage them and regain manual control. Although the heading command in
RELEASE mode is set to the same as the current heading, the other controllers in the FCS
ensure the vehicle wings remain level and at a steady pitch angle in the hold state.

Forces and
moments

Propulsion

Aerodynamics

Mass and
inertia

Equations
of

motionActuators

ARC

Pilot
controls

FCS

MODE

VEHICLE MODEL

AUTO BLOCK

RELEASE

MANUAL

AUTO

FLIGHT CONTROLLER

AUTO/MANUAL

Atmosphere

Figure 8. Diagram of the simulation model.
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4.1. Vehicle Model

The vehicle model represents a small, 4 kg remotely operated vehicle with a high wing
trainer-like configuration and conventional control surfaces. The model was developed to
represent a modified off-the-shelf radio-controlled scale model aircraft of the type shown
in Figure 9. A set of nonlinear, decoupled six-degrees-of-freedom rigid-body equations of
motion was then derived from the vehicle’s geometric, inertial, and performance data [48].
An explanation for the symbols used in the following equations is given in Table 1

Table 1. Nomenclature of symbols used in the aircraft simulation.

Symbol Description

X, Y, Z Forces in the axial, lateral, and normal directions, respectfully.
L, M, N Moments about the x, y, and z axes, respectfully.
m Aircraft’s mass
I Aircraft’s inertia tensor.
V Velocity vector in the body reference frame, V = [Vx, Vy, Vz]T.
pE Position vector in the ECEF reference frame, pE = [px, py, pz]T.
ω Angular velocity vector in the body reference frame, ω = [ωx, ωy, ωz]T.
Rb/E Transformation matrix to transform angular velocities from ECEF to body

reference frame.

Figure 9. Scale model aircraft of a Piper Cub J-3.

The propulsion system is modeled after a four-stroke internal combustion engine,
implemented as a database containing the engine power as functions of throttle setting
and engine speed for a single-piston internal combustion engine. The power produced
by the engine is used to calculate the engine torque that drives a fixed-pitch propeller in
producing the thrust.

The combined aerodynamic and propulsive forces and moments are used in the
solution of the equations of motion in the typical way to obtain the acceleration, speed,
and position of the body center. In order to avoid the singularities at the poles, it is
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necessary to formulate these equations with respect to the Earth-Centered, Earth-Fixed
(ECEF) coordinate system:

F =

 X
Y
Z

 = m
[
V̇−V× (ω+ Rb/EωE) + Rb/E(ωE × (ωE × pE))

]
,

M =

 L
M
N

 = Iω̇+ω× (Iω).


(18)

In (18), V is the vector of orthogonal velocities at the body center, along each of the
three body axes, and ω are the three angular velocities about these axes. The aircraft’s
mass is represented by m, I is its inertia tensor, and pE is the aircraft’s position in the
ECEF coordinates. The angular rate of the earth is given by ωE = [0, 0, ωE]

T, where
ωE = 7.292115× 10−5 rad/s. The matrix Rb/E is the rotation matrix from the ECEF axes to
the body axes, defined by the vehicle’s orientation in quaternion form.

4.2. Geodetic Position

After solving for V̇ from (18), the ECEF location is given by

pE =
∫

RE/bV dt =
∫

RT
b/EV dt. (19)

The geodetic latitude, φ, is then calculated using Bowring’s method [49], which involves
iterative solutions (though in practice very few are needed to obtain a sufficiently high
accuracy) to the following equations:

φi = atan2

 pz +
ε2(1− f )

1− ε2 RE sin3 βi−1√
p2

x + p2
y − ε2RE cos3 βi−1

, for i = 1, . . . , k, (20)

where

β0 = atan2

 pz

(1− f )
√

p2
x + p2

y

, then βi = atan2
(
(1− f ) sin φi

cos φi

)
,

Here, RE is the equatorial radius, and f is Earth’s flattening ( f ≈ 0.00335). The geodetic
longitude is given by

λ = atan
(

py

px

)
. (21)

To complete the geodetic triad, the altitude of the vehicle is

h =
√

p2
x + p2

y cos φ + [pz + ε2RN sin φ]− RN , (22)

where RN is the vertical prime radius of curvature.

4.3. Vehicle Turn Dynamics

For this particular aircraft, when control of the vehicle is removed from the pilot, PID
(Proportional–Integral–Derivative) controllers control the altitude, airspeed, and heading
of the vehicle through control of the throttle, elevator δe, and ailerons δa, respectively.
A sideslip regulator uses the rudder, δr, to eliminate sideslip during turns. In the case of the
heading control, an inner loop roll controller is fed commands from the outer loop heading
controller. Actuator limits are imposed, and antiwindup algorithms are subsequently
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used on the integrator feedback tracks, though the actuators did not reach their limits in
the simulations.

The dynamics of the vehicle and flight controller during a turn are shown in Figure 10.
The roll response is reasonably modeled with a first-order response with a time constant, τ,
of 0.8 s (the dashed trace in the top subplot). The time to reach 99% of the maximum bank
angle is then

lim
ϕ→0.99ϕmax

t = tc = lim
ϕ→0.99ϕmax

(
−τ ln

[
1− ϕ

ϕmax

])
= 3.7 s. (23)

Given the airspeed V, let st in (12) equal Vt. In effect, after 3.7V seconds, the vehicle reaches
(extremely close to) the maximum bank angle and is able to complete the turn with radius
r. Clearly, (23) gives a trivial solution for ϕ→ ϕmax (t = ∞), so a value sufficiently close to
ϕmax (i.e., 99%) needs to be chosen.
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Closed-loop response
First-order model

Figure 10. Turn dynamics of the vehicle following a step input in roll command, ϕC, with aileron, δa,
and rudder, δr, inputs.

4.4. Simulation Results

By way of example, a polygonal geofence is established with seven geoposts sur-
rounding the northern pole, as shown in Figure 11. If (φ, λ, h) is a geodetic coordinate
triad, then the vehicle’s start position is (89.9994◦, 0◦, 100 m). The base location for the
vehicle to turn towards following activation of the flight controller is (89.998◦, 90◦, 0 m).
The vehicle’s starting airspeed, altitude, and heading are set at 12 m/s (23 knots), 100 m
(328 ft), and 90◦, respectively.

The behavior of the vehicle in a simulation around the northern pole is shown in
Figure 11. The dashed black trace shows a conventional RTB algorithm acting only when
the vehicle leaves the geozone. The solid black trace shows the vehicle’s trajectory for
tc = 3.7 s, where the parts in red indicate where the ARC has control over the aircraft’s
flight. The star shows the location on the geofence the vehicle is currently bearing to (only
shown for the simulation with ARC), while □ indicates the location of ‘home’. The center
of the plot is the northern pole, and the concentric circles represent decrements in latitude
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of 0.00001◦. The angles of longitude are shown on the outer latitude ring. Simulation time
is 320 s.
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Figure 11. Simulated constraint inside a geozone (denoted by the outer dotted line) with ARC,
centered on the northern pole. □ indicates the location of ‘home’. The star indicates the current flight
path intercept with the geofence for the ARC algorithm. Parts of the trace in red indicate where the
ARC had control.

Upon starting the simulation, the vehicle is instructed to maintain straight-wing-level
flight, leading to it approaching the geofence approximately near the 90◦-longitude line.
The ARC takes control of the vehicle and instructs it to turn to starboard, resulting in it
flying slightly inwards away from the fence. The hold controller maintains control of the
vehicle in straight-wing-level flight until it approaches the portion of the fence directly
below. The ARC then instructs the vehicle to perform another turn to keep the vehicle
inside the geozone. This behavior is maintained indefinitely, with the pilot able to retake
control only when the hold controller is active (the solid black parts of the trace). This
behavior contrasts with the response from a simple RTB algorithm (indicated by the dashed
trace), which shows the vehicle passing the geofence before it is returned by following a
heading towards the base, located with the □ symbol. Implementing the ARC ensures the
vehicle does not leave the geozone.

The algorithm is further demonstrated in the other problematic area: over the an-
timeridian (see Figure 12). In this case, a more constrictive geofence is used, though the
algorithm is still capable of ensuring the vehicle does not exceed the fence boundary.
Figure 12 also shows the effect different values of tc will have on the ability of the algorithm
to maintain the vehicle inside the geozone. Using a lower value below the minimum value
computed in (23) results in the vehicle deviating from the geozone. However, since the turn
was initiated before the vehicle left, the deviation is much less compared with a wholly
reactive RTB approach. The deviations can be eliminated by increasing the value of tc and,
hence, st in (12), effectively increasing the responsiveness of the ARC to the approaching
fence. In (23), tc = 1 s corresponds with ϕ = 0.713495ϕmax, and in (23), tc = 5 s corresponds
with ϕ = 0.998070ϕmax, whereas tc = 10 s corresponds with ϕ = 0.999996ϕmax. Increasing
st (through increasing tc) provides more secure flight around the fence, creating a larger
buffer zone around the zone edge. The disadvantage to the pilot is a reduced working
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field for which manual flight is allowed. Increasing st progressively creates a larger buffer
between the second-stage trajectory and the geofence and, hence, is a convenient way of
adding robustness to the system.

tc = 10 s

tc = 5 s

tc = 1 s

S

N

180
o

W E0o

Figure 12. Simulated constraint inside a geozone with ARC over the antimeridian on the equator.
□ indicates the location of ‘home’. Parts of the trace in red indicate where the ARC had control.

Figure 13 illustrates the requirement of assessing the turning circle criterion to ensure
the vehicle remains inside the geozone if dealing with fences that have acute internal
angles, as well as the effectiveness of using the anchor points instead of the home point
when dealing with excursions. The dashed gray trace shows the ARC algorithm without
consideration of test condition (ii), leading to the vehicle being driven down into the bottom
right geozone vertex. As a result. it leaves the geozone and follows a heading toward the
home location (denoted by the symbol □). This results in a considerable time outside the
geozone before it re-enters at the other end of the geozone. Alternatively, the solid gray
trace shows the behavior of the vehicle using the local anchor point as the target coordinates
during an excursion. The vehicle is seen to quickly turn back towards the centroid of the
bottom triangle of the geozone and re-enter the geozone sooner. Lastly, the solid black
trace indicates the desired performance by considering the inclusion of the turning circles
within the geozone (test condition ii). As a result, the vehicle turns before it reaches the
bottom fence vertex and subsequently remains inside the geozone at all times. As with
Figures 11 and 12, the parts highlighted in red indicate when the ARC has control over the
vehicles’ trajectory.
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Excursion control using
(no account for turning circles) 
Excursion control using
(no account for turning circles) 
ARC algorithm

N

Figure 13. Simulation illustrating the effect of using either the home coordinate (dashed gray trace)
or the local anchor point (solid gray trace) to deal with excursions. □ indicates the location of ‘home’.
Parts of the trace in red indicate where the ARC had control.

5. Remarks
5.1. Algorithm Complexity

It was previously mentioned that, for geozones of reasonably small size, it is sufficient
to approximate the distances between points on the surface of the earth as those projected
onto a flat plane. This greatly simplifies the algebra, as the geodetic coordinates can be
mapped to linear distances and simpler planar geometry can be used to assess the criterion
for initiating the turns. The ARC algorithm can be readily implemented in planar geometry.
However, the accuracy of certain mapping algorithms differs at different latitudes, so
the most appropriate one for the operating location would need to be chosen to ensure
reasonably accurate estimates. The use of geodesics, along with vector algebra, provides
a general and more concise implementation at any coordinates on (the spherical model
of) Earth. The downside is the larger computational cost, mainly from the dot product
operations. However, the implementation is still fast enough for real-time operation.
Further improved range accuracy, and completely generalizing the current implementation,
would need to take into account the local radius of Earth rather than the average spherical
Earth radius used. However, this is largely an issue at latitudes near the Equator. Such
further accuracy is not needed for most geofencing applications, though the same argument
could be made for using geodesics instead of planar approximations in the first place.

The use of the tuning parameter tc effectively controls the size of the soft geozone—the
allowable area for manual control before the ARC takes control from the pilot. The concept
of a soft geozone, or safety zone, is common in the literature, e.g., [15–19]. The algorithm
in this paper provides the handling of arbitrary geozone shapes (including concave zones
with acute angles) and also a scalable soft geozone based on the aircraft’s current flight
behavior to maximize the flight region of manual control. Algorithmically, the various test
conditions make the ARC algorithm complex. It has a cyclomatic complexity [50] of 37,
which is towards the higher side of a complex structured code (≤10 being simple, 20 to
50 being highly complex, and >50 generally being considered untestable). A breakdown of
the complexity for each of the subalgorithms is shown in Table 2. Testing for the turning
circle intersections and dealing with potential acute angles (contained in Algorithm 4:
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INTERSECT) is shown to introduce a substantial amount of complexity. The turn test
criteria used here are similar in concept and function to those developed in [18] and achieve
the same performance when dealing with acute geofence corners. The algorithm used
here achieves this without the need for the preliminary creation of defined safety areas.
However, there are benefits to that approach in terms of checking the validity of the
proposed geozone.

Table 2. Cyclomatic complexities. The arrows indicate sub-algorithms of the whole ARC algorithm.

# Algorithm Cyclomatic Complexity

Algorithm 1 Return to base 2
Algorithm 2 ARC 37
Algorithm 3 → FENCE → 7
Algorithm 4 → INTERSECT → 16
Algorithm 5 → TURN → 8
Algorithm 6 → RETURN → 5

The algorithm in this paper does not incorporate altitude fencing, but the problem
is somewhat easier to deal with. Multiple altitude limits could be dealt with via look-up
tables based on the current geodetic coordinates of the vehicle. The same anticipatory range
approach can be used by comparing the current altitude of the vehicle with the altitude of
the fence. The current climb rate and pitch response dynamics may also be used to provide
anticipation control for the approach to the altitude limit.

5.2. Uncertainty Handling

The presence of wind and turbulence would be expected to deteriorate the perfor-
mance of the algorithm, but two aspects would support limiting this effect. First, by using
the ground speed rather than the airspeed in computing the anticipatory range and turning
circle radii, the turn should be initiated depending on any variations in atmospheric wind.
Secondly, the timing parameter tc can also be increased to improve the buffer zone around
the geofence. This would amount to effectively altering the size of the soft geozone to
account for the uncertainty in the atmospheric conditions. This amounts to adding an
additional safety, or ‘slack’ parameter, as used in [19] to define the boundaries of the soft
geozone. However, a sideslip of considerable speed would still potentially push the vehicle
outside of the geozone. Additional modeling of the dynamics of the aircraft would be
needed to eliminate this, which could be achieved with additional measurements of wind
speeds and the use of more predictive control (e.g., [51,52]) to achieve robust management
of more extreme approaches to the geofence.

5.3. Enhancements

The ARC algorithm could also be modified to work as no-fly zones (i.e., keeping
the vehicle outside a geozone), which could be made dynamic by updating the geopost
coordinates (see, for example, [53,54]). In this way, the algorithm could provide real-
time obstacle avoidance of moving objects. Examples of where such online updates of
geofencing would be useful are in effective traffic rerouting following abnormally busy
traffic or emergency flights.

5.4. Experimental Validation

This paper demonstrated the viability of the algorithm in a comprehensive software
simulation environment. It remains to demonstrate the operation of this system with
hardware in either a hardware-in-the-loop scenario and/or an actual fight test. The com-
plexity analysis of the code showed it to be reasonably traceable, and the calculations are
not onerously complex to expect the algorithm to be easily run on modern embedded
platforms. Integration with open-source flight control and management software, such as
ArduPilot [55] and Mission Planner [56], is a sensible progression for this work.
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6. Conclusions

This paper detailed and demonstrated the concept of an anticipatory range controller
(ARC) for implementing geofencing, primarily for fixed-wing aircraft. Due to the flight
behavior of such craft compared with multicopter UAVs, there is a greater need to com-
pensate for the reduced mobility and speed of these aircraft to avoid them penetrating
a geofence. Furthermore, techniques to deal with the concave and internal acute angles
on the geofence were presented and demonstrated. Simulations showed the improved
range management of this system compared with a standard return to a base geofencing
system, as well as compared with using a locally calculated anchor point to determine
a re-entry trajectory following an excursion. By using a tuning parameter, tc, linked to
the rise-time performance of the vehicle’s roll command tracking, the ‘hard’ geofence can
be maintained based on the dynamic characteristics of the specific vehicle. The tuning
parameter also allows for variation in the buffer zone around the geofence where the ARC
overrides manual (or normal) control to improve the robustness of the hard border to deal
with vehicle performance uncertainty or atmospheric turbulence.
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Nomenclature

The following symbols are used in this manuscript:

C Geozone
ĉ Vector for a plane
g Acceleration due to gravity
h Altitude
I Inertia tensor
L Rolling moment
M Pitching moment
m Mass
N Yawing moment
n̂ n-vector
n̂+ n-vector for the intersection point on the geofence
pE Position vector in ECEF reference frame
p Position
Rb/E Transformation matrix for angular velocities from ECEF to body axes
R0 Average radius of the Earth
RN Vertical prime radius curvature of Earth
r Turn radius
s Distance
smin Minimum distance required to complete a turn
st Distance covered to start the turn (i.e., rise-time delay)
s+ Distance to the intersection point with the geofence
t Time
tc Rise time of the transient roll response
V Velocity vector
V Velocity
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v Geopost location
w Winding number
X Axial force
Y Side (or lateral) force
Z Normal force
α Geometry reference angles
δa Aileron deflection
δe Elevator deflection
δr Rudder deflection
λ Longitude
θ Geometric angle
ϕ Roll angle
ϕmax Maximum (commanded) bank angle during a turn
φ Geodetic latitude
ψ Heading
ψC Heading command
τ Time constant
σ Subtended central angle
℧ Excursion anchor point
ω Angular velocity vector
AAM Advanced air mobility
ARC Anticipatory range controller
ECEF Earth-Centered, Earth-Fixed
GPS Global positioning system
PID Proportional-Intergal-Derivative (control)
RPV Remotely piloted vehicle
RTB Return to base
UAV Unmanned air vehicle
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