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Abstract: This paper presents an ultimate motion methodology of a face-milling spiral bevel gear
pair to synthesize the mating tooth surfaces with a predesigned fourth-order motion curve. The
methodology is to control some contact points along the contact path in the process of tooth contact
analysis via application of an extended local synthesis which permits some transmission errors
rather than zero at the concerned contact point. The modified offset motion correction is selected to
demonstrate the proposed methodology. Applied torque corresponding to an elastic approach of
0.00635 mm at the mean contact point is calculated and the loaded tooth contact analysis is performed.
Numerical results show that the extended local synthesis can effectively control the transmission
errors on the predesigned fourth-order motion curve at arbitrarily predesigned contact points along
the contact path of the spiral bevel gear pair. The tooth contact pattern for the actual tooth pair is
scattered into three segments since the rotational motion of the driven gear at any instant angular
position is dependent on the tooth pair with the least transmission error among the three adjacent
tooth pairs. The actual tooth contact patterns of the spiral bevel gear pair become continuous when
meshing tooth surfaces are elastically deformed.

Keywords: fourth-order motion curve; loaded tooth contact analysis; transmission error; tooth
contact analysis; spiral bevel gears

1. Introduction

Spiral bevel gears are widely used in aviation, helicopters, navigation systems, au-
tomobiles, and renewable energy devices. Similar to other types of gears, operation
performances, e.g., vibration, efficiency, and reliability [1], of spiral bevel gear pairs mainly
depend on their contact patterns and motion curves (MCs). Much research work has
been dedicated to the synthesis and manufacturing of face-milling spiral bevel gears [2–4].
Litvin [5] presented a local synthesis method to control its contact patterns actively with
a parabolic MC. Litvin [6] contrasted the pinion tooth surfaces produced by head cutters
with circular and straight blades, respectively. After obtaining the stabilized contact pattern
with a limited magnitude of MC, they proceeded to investigate tooth root bending stress
and the contact pressure by using loaded tooth contact analysis (LTCA). Fan [7] discussed
distinctive characteristics of the face-milling and the face-hobbing processes of spiral bevel
gears and discounted mechanisms of tooth contact analysis (TCA) that are suitable for
free-form numerical controlled machines and LTCA, considering tooth deformations and
the housing deflection. Liu [8] presented a semi-analytical LTCA method for spiral bevel
gears which uses analytical formulas and finite element analysis correction and involves
Tredgold’s approximation, an optimization model, and a contact judgment strategy. Si-
mon [9] conducted a numerical analysis to investigate the effects of pinion misalignments
and tooth spacing errors on contact patterns and motion relationships of the spiral bevel
gear. Sheveleva [10] introduced the concept of intermediate tangent grids for the pinion and
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the gear in a spiral bevel gear pair. Meshing performances can be observed by measuring
the distance between the gear and the pinion as the gear pair rotated around the respective
axes. A face-milling method for hypoid gears with a fourth-order transmission error model
was developed to reduce error sensitivity due to misalignments [11]. Mu [12] proposed
a tooth surface modification method to prevent tooth edge contact for high-contact-ratio
(HCR) spiral bevel gears under misalignments or heavy loads based on cutter blade profile
corrections. Alves [13] proposed a method to calculate bending displacements of a spiral
bevel gear pair combining a finite element model with interpolation techniques to improve
the calculation efficiency. This helps for a more efficient analysis of the bending behavior of
spiral bevel gears under various operating conditions. Tsai [14] focused on designing the
machine-tool settings for a four-axis milling machine tool for spiral bevel gears to improve
contact performances using a predesigned motion curve. Ma [15] developed a nonlinear
dynamic model to optimize operation performances of four-point contact ball bearings in a
three-point contact state considering lubrication traction and dynamic characteristics of the
bearing assemblies. Xiang [16] conducted an analysis of geometric errors of a spiral bevel
gear pair in motion axes and their impacts on gear meshing performances. They focused
on six-axis CNC grinding machines and used forward and inverse kinematics modeling
techniques based on screw theory to create models for predicting and compensating for
volumetric errors, ultimately improving the accuracy and quality of gear grinding pro-
cesses. Alvarez [17] developed the surface topology model for predicting the roughness
of spiral bevel gear surfaces, which can help manufacturers better control product quality
and reduce trial and error costs, and verified the accuracy of the surface topology model to
achieve the size and surface quality of gear production. Mu [18] presented an approach for
designing high-contact-ratio spiral bevel gears with a focus on minimizing higher-order
transmission errors. This method improved meshing performances and overall functional-
ity of spiral bevel gears by using a concept of function-oriented design to optimize the gear
design process. The authors of [19] proposed a mathematical model for a logarithmic spiral
bevel gear drive. This type of gear drive offers several advantages over conventional spiral
bevel gears, including higher contact strength and the ability to separate their shaft angle.
These characteristics make logarithmic spiral bevel gear drives highly promising for a wide
range of applications, providing improved performance and functionality compared to
traditional spiral bevel gears. Mu [20] proposed a higher-order tooth surface modification
method aimed at reducing loaded transmission errors (LTEs) and meshing impacts for
improving dynamic characteristics of an HCR spiral bevel gear pair. Chen [21] presented an
integration of various factors to achieve a global tooth surface control method of spiral bevel
gears to solve an ease-off surface equation and optimize producing parameters. Yang [22]
introduced a taper design method for face-milled hypoid and spiral bevel gears within the
completing process. This approach ensures that there are proportional modifications in
both the tooth space width and tooth thickness in relation to the cone distance.

Much of the research work is concerned with the parabolic MC which can absorb
tooth meshing impacts at the changeover points to some extent between adjacent tooth
pairs caused by linear MC due to misalignments. However, the discontinuity of the first
derivative to the parabolic MC at the changeover points still causes some tooth impact in
the transition of mesh. Stadtfeld and Gaiser [23] noticed this and proposed a combined
motion curve (CMC), composed of a parabolic and a fourth-order polynomial, named as
ultimate motion graph (UMG), which narrows the gap of the first derivative discontinuity
at the changeover point. Stadtfeld demonstrated via experimentation that the ground
hypoid gears produced on a free-form CNC hypoid generator with CMC excelled the
ground hypoid gears with a parabolic MC to a great extent. Fan [24] introduced a CNC
six-axis generator developed by the Gleason Works. He mentioned the concept of UMG
which could be implemented via instantaneous machine settings including modified roll
that were expressed by the higher-order polynomial functions up to the sixth-order with
respect to the cradle rotation angle. So far, the UMG enables the tooth flank crowning
with the greatest flexibility. Li et al. [25] developed a gear form-grinding method with a
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predesigned fourth-order transmission error. Wang and Fong [26] developed a method
to form a fourth-order MC which was a simplified form of CMC and used the radial
motion correction to control the initial bias of the contact path and the MC, respectively.
They found that the radial motion correction could be also used on the CNC machine to
increase its adjustability [27]. They also used the same method along with a variant cradle
rotation angle to generate the tooth surfaces of a hypoid gear pair with the fourth-order
polynomial MC [28]. Since they chose several points on the predesigned contact path
and the corresponding number of points in the vicinity of the predesigned fourth-order
polynomial MC, the two machine settings mentioned above at these points were calculated
one after another and fitted with sixth-order polynomials. In addition, they thought that
the MC and the contact path were decoupled by taking the cradle rotation angle and the
instantaneous radial setting as controlling parameters. Since the fluctuation degree of MC
is relatively small, different MCs could correspond to almost the same contact path. In
other words, the change in the contact path of the spiral bevel gear pair occurs at a slower
rate than adjustments to machine settings or roll motion.

In this paper, a predesigned fourth-order CMC of the spiral bevel gear pair is de-
veloped as a design input to improve its meshing performances and determine the in-
stantaneous offset corrections. The work presents a general method to accurately control
transmission errors of the spiral bevel gear pair with an arbitrarily predesigned CMC.
Numerical TCA and LTCA results show that the proposed method is very efficient in
analyzing meshing performances of the spiral bevel gear pair.

2. Predesigned CMC of a Spiral Bevel Gear Pair
2.1. Basic MC

It has already been recognized by researchers that the main source of vibration and
noise is MC. Reducing MC and controlling the shape of an MC function curve can improve
dynamic performance and reduce vibration of a gear system. Conventionally, a general
MC function is defined as

∆ϕ2 = (ϕ2 − ϕ20)− a1(ϕ1 − ϕ10) (1)

where ϕ1 and ϕ2 are actual rotation angles of the pinion and the gear, respectively; a1 is the
speed ratio of the spiral bevel gear, i.e., Z1/Z2, in which Z1 and Z2 are the tooth number of
the pinion and the gear, respectively; and ϕ10 and ϕ20 are theoretical rotation angles of the
pinion and the gear, respectively.

When a spiral bevel gear pair is in meshing, the difference between the gear’s actual
rotation angle and its mean rotation angle is defined as the MC of the gear pair, and the
second-order and the fourth-order polynomial MCs can be represented as

∆ϕ2
(2) = (ϕ2 − ϕ20)− a1(ϕ1 − ϕ10) = a2(ϕ1 − ϕ10)

2 (2)

∆ϕ2
(4) = (ϕ2 − ϕ20)− a1(ϕ1 − ϕ10) = a2(ϕ1 − ϕ10)

2 + a3(ϕ1 − ϕ10)
3 + a4(ϕ1 − ϕ10)

4 (3)

respectively, where ai(i = 2, 3, 4) is the order number of the MC determined by kinematic
requirements, and superscripts (2) and (4) represent the second-order and the fourth-order
MC functions of the spiral bevel gear pair, respectively.

2.2. Formation of CMC

For a specific spiral bevel gear pair, we proposed a method to determine its CMC. The
CMC formation process of the spiral bevel gear pair is as follows:

Step 1: According to the pinion tooth number and kinematic errors of the spiral bevel
gear pair, 10 points Ai(i = 1, 2, · · · , 10), denoted by “ ◦ ” as in Figure 1a, are chosen to
control the shape of the fourth-order MC. Using the least squares method, the values of
ai(i = 2, 3, 4) can be determined.

Step 2: Combining two intersections of the above fourth-order polynomial MC with
the abscissa, which are symmetrical about the coordinate origin and another point on the
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ordinate, i.e., Bi(i = 1, 2, 3), denoted by “ • ” as in Figure 1b, the second-order polynomial
MC can be represented as

∆ϕ2
(2) = (ϕ2 − ϕ20)− a1(ϕ1 − ϕ10) = − b2

b1
2 (ϕ1 − ϕ10)

2 + b2 (4)

where b1, or b3, and b2 are the coordinates of Bi(i = 1, 2, 3), i.e., B1(−b1, 0), B2(0, b2) and
B3(b3, 0), respectively.

Step 3: The upper part of the fourth-order polynomial MC and the lower part of the
second-order polynomial MC, as in the thick line in Figure 1, comprises a CMC, which can
be represented as

∆ϕ2 =


− b2

b1
2 (ϕ1 − ϕ10)

2 + b2 (ϕ1 − ϕ10) < −b1 or (ϕ1 − ϕ10) > b3

a2(ϕ1 − ϕ10)
2 + a3(ϕ1 − ϕ10)

3 + a4(ϕ1 − ϕ10)
4 − b1 ≤ (ϕ1 − ϕ10) ≤ b3

(5)

Step 4: Moving the combined curve in the thick line downward until the maximum
point coincides with the abscissa, the final combined function of transmission errors (FTEs),
i.e., the CMC, as in Figure 1b, is formed, in which the minimum point M denoted by “ • ”
represents the mean contact point. The CMC function of the spiral bevel gear pair can be
represented as

∆ϕ2 =


− b2

b1
2 (ϕ1 − ϕ10)

2 + b2 − ∆ϕ2 max (ϕ1 − ϕ10) < −b1 or (ϕ1 − ϕ10) > b3

a2(ϕ1 − ϕ10)
2 + a3(ϕ1 − ϕ10)

3 + a4(ϕ1 − ϕ10)
4 − ∆ϕ2 max − b1 ≤ (ϕ1 − ϕ10) ≤ b3

(6)

where ∆ϕ2 max is the ordinate value of the maximum point of Equation (5).

(a) (b)

Figure 1. Formation of CMC of the spiral bevel gear pair. (a) CMC up to the fourth order in process;
(b) CMC in the end.

3. Derivation of Tooth Surfaces of the Work Gear
3.1. Coordinate Systems of the Face-Milling Machine Tool

A common mathematical model for the generation of tooth surfaces of the pinion
and the gear is used in Figure 2. There are six coordinate systems. A coordinate sys-
tem Si(Xi, Yi, Zi) is rigidly attached to the work gear. A movable coordinate system
Sci(Xci, Yci, Zci) is used to describe the angular position of the cradle. A coordinate system
Smi(Xmi, Ymi, Zmi) is rigidly connected to the cutting machine tool. The cradle and the work
gear perform related rotations around the Zmi-axis and Xbi-axis, respectively. A coordinate
system Shi(Xhi, Yhi, Zhi) is rigidly attached to the head cutter of the work gear. Coordinate
systems Sai(Xai, Yai, Zai) and Sbi(Xbi, Ybi, Zbi) are used for assisting the installment of the
work gear. Angles ψci and ψi are rotation angles of the cradle and the work gear, respec-
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tively. There are six potential auxiliary motions that can be used to modify the tooth flank:
the sliding base XBi, the radial setting Sri, the blank offset Emi, the installment angle qi, the
machine center to back XDi, and the machine root angle γmi.

Figure 2. Coordinate systems for tooth surface generation of the gear.

3.2. Coordinate Systems of the Head Cutter

The head cutter blade usually composes a straight edge and a circular arc in Figure 3.
The position vectors of the head cutter in Shi(Xhi, Yhi, Zhi) can be represented as

rhi
(a)(uhi, θhi) =

[
xhi

(a) yhi
(a) zhi

(a)
]T

=

 (Rhi ± uhi sin αhi) cos θhi
(Rhi ± uhi sin αhi) sin θhi
−uhi cos αhi

 (7)

rhi
(b)(uhi, θhi) =

[
xhi

(b) yhi
(b) zhi

(b)
]T

=

 (Thi ± ρhi sin λhi) cos θhi
(Thi ± ρhi sin λhi) sin θhi
−ρhi(1 − cos λhi)

 (8)

where αhi and Rhi are the modified blade angle and head cutter point radius, respec-
tively; uhi and θhi are tooth surface parameters, where uhi is defined in the range of
uhi ≥ ρhi(1 ∓ sin αhi)/cos αhi; Thi and ρhi are the head cutter fillet center radius and
the fillet radius, respectively; λhi and θhi are tooth fillet parameters, where λhi is mean-
ingful when it is in the range 0 ≤ λhi ≤ π

2 − αhi. Rhi and Thi are related by Thi =
Rhi ∓ ρhi(1 − sin αhi)/cos αhi. The upper sign in “ ± ” and “ ∓ ” should be regarded
for the concave side or outer blade, and the lower sign for the convex side or inner blade.
Superscripts (a) and (b), (c) represent the straight edge and the fillet arc of the head cutter
blade, respectively.
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(a) (b)

Figure 3. Head cutter blade and generating surface. (a) Head cutter composition; (b) concave side or
outer blade.

The unit normal vectors of the straight edge and fillet arc can be derived from
Equations (7) and (8), respectively, which can be represented as

nhi
(a)(θhi) =

∂rhi
(a)

∂uhi
× ∂rhi

(a)

∂θhi∣∣∣ ∂rhi
(a)

∂uhi
× ∂rhi

(a)

∂θhi

∣∣∣ =
 cos αhi cos θhi

cos αhi sin θhi

± sin αhi

 (9)

nhi
(b)(θhi) =

∂rhi
(b)

∂uhi
× ∂rhi

(b)

∂θhi∣∣∣ ∂rhi
(b)

∂uhi
× ∂rhi

(b)

∂θhi

∣∣∣ =
 sin λhi cos θhi

sin λhi sin θhi
± cos λhi

 (10)

The straight edge of the blade forms a cone, and the fillet arc forms a revolution surface.
They are used to form the tooth surface and fillet part, respectively.

3.3. Generation of Tooth Surfaces of the Gear

Transforming Equations (7)–(10) of the head cutter blade from coordinate system
Shi(Xhi, Yhi, Zhi) to the coordinate system Si(Xi, Yi, Zi), a family of generating surfaces are
generated. The work gear tooth surface is the envelope to the family of generating surfaces,
which can be represented as

ri
(a)(uhi, θhi, ψci) = Mi_hirhi

(a)(uhi, θhi)

ni
(a)(θhi, ψci) = Li_hinhi

(a)(θhi)

fi
(a)(uhi, θhi, ψci) = 0

(11)


ri
(b)(λhi, θhi, ψci) = Mi_hirhi

(b)(λhi, θhi)

ni
(b)(θhi, ψci) = Li_hinhi

(b)(θhi)

fi
(b)(λhi, θhi, ψci) = 0

(12)

where Mi_hi = Mi_biMbi_aiMai_miMmi_ciMci_hi is the transformation matrix from the head cutter
axis to the work gear axis. Li_hi is the upper-left 3 × 3 submatrix of Mi_hi. fi

(a)(uhi, θhi, ψci),
and fi

(b)(λhi, θhi, ψci) are the equations of meshing for the tooth surface and the fillet part
of the head cutter, respectively. The equations of meshing of the straight edge and the fillet
arc of the head cutter and the work gear can be represented as

fi
(a)(uhi, θhi, ψci) = nhi

(a)(θhi, ψci) � vtr
(hi,i) (13)

fi
(b)(λhi, θhi, ψci) = nhi

(b)(θhi, ψci) � vtr
(hi,i) (14)

respectively, where vtr
(hi,i) is the relative transitional velocity between the head cutter and

the work gear for both the straight edge and the fillet arc of the head cutter. When only the
blank offset is chosen as the design variable, the relative transitional velocity of the head
cutter and the work gear can be represented as
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vtr
(hi,i) =

drhi
dt

− dri
dt

=


vtrx
vtry
vtrz


(hi,i)

=




Emi

dψi
dt

sin γmi +

(
dψci
dt

− dψi
dt

sin γmi

)
[Sri sin(qi + ψci) + Rhi sin(qi + ψci + θhi)]

− uhi

(
dψci
dt

− dψi
dt

sin γmi

)
sin αhi sin(qi + ψci + θhi)


dEmi

dt
− XBi

dψi
dt

cos γmi +

(
dψci
dt

− dψi
dt

sin γmi

)
[Sri cos(qi + ψci) + Rhi cos(qi + ψci + θhi)]

− uhi

[(
dψci
dt

− dψi
dt

sin γmi

)
sin αhi cos(qi + ψci + θhi)−

dψi
dt

cos αhi cos γmi

]


− Emi
dψi
dt

cos γmi + [Sri sin(qi + ψci) + Rhi sin(qi + ψci + θhi)]
dψi
dt

cos γmi

+ uhi sin αhi sin(qi + ψci + θhi)
dψi
dt

cos γmi





(15)

4. Extended Local Synthesis and Multi-Point Control Approach
4.1. Coordinate Systems for TCA

When a spiral bevel gear pair is in meshing, five coordinate systems are used to
describe the meshing state, as shown in Figure 4. A coordinate system S f

(
X f , Yf , Z f

)
is rigidly attached to the frame. Coordinate systems S1(X1, Y1, Z1) and S2(X2, Y2, Z2)
are rigidly connected to the pinion and the gear, respectively. Coordinate systems
Sd1(Xd1, Yd1, Zd1) and Sd2(Xd2, Yd2, Zd2) are auxiliary reference coordinate systems for the
pinion and the gear, respectively. Four misalignments are defined: ∆E1 and ∆E2 are axial
errors of the pinion and the gear, respectively; ∆E is the shortest distance between the axes
of the gear and the pinion when pinion–gear axes are crossed rather than intersected; and
∆γ is the error of the shaft angle γ. When the gear set is aligned, all four misalignments are
counted as zeros.

Figure 4. Coordinate systems for TCA of the spiral bevel gear pair.

4.2. Equations for Tooth Meshing and Contact

The pinion tooth surface Σ1 and the gear tooth surface Σ2 are in continuous tangency
when the following equations stand in the coordinate system S f

(
X f , Yf , Z f

)
of meshing

r f 1
(a)(uh1, θh1, ψc1, ϕ1)− r f 2

(a)(uh2, θh2, ψc2, ϕ2) = 0

n f 1
(a)(θh1, ψc1, ϕ1)− n f 2

(a)(θh2, ψc2, ϕ2) = 0

fi
(a)(uhi, θhi, ψci) = 0 (i = 1, 2)

(16)
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4.3. Extended Local Synthesis

Local synthesis controls the meshing performance at the mean contact point, where
the transmission error is zero, meaning that the ratio of the rotational speed of the gear pair
is equal to the inverse ratio of the tooth numbers. In order to realize the predesigned CMC,
the meshing performance of any concerned point on the CMC must be controlled, not just
the mean contact point. Generally, the transmission error at these points is not equal to
zero. This requires that the local synthesis needs to be extended to suit this situation, and
thereafter, the local synthesis becomes global.

4.3.1. Multi-Point Control Approach

The predesigned CMC is taken as the design objective, of which the following in-
equality must sustain for the meshing point at the instant angular position of the mating
gear pair

∆ϕ2 − ∆ϕ2t

∆ϕ2
< ε (17)

where ∆ϕ2t is the actual value of CMC, and ε is an arbitrarily convergent limit, i.e., 10−9. As
we can see, only one variable is needed to satisfy Equation (17). We choose the blank offset
of the pinion Ev1 as the design variable. From the above analysis, we can see that there
are eight equations and nine variables in Equations (16) and (17). The independent design
variables are uh1, θh1, ψc1, ϕ1, uh2, θh2, ψc2, ϕ2 and Em1. We can solve Equations (16) and (17)
simultaneously by assigning an instant value of ϕ1 for every meshing position. The process
of solution is as follows.

Step 1: Based on the local synthesis, calculate the machine-tool settings of the pinion
at the mean contact point M. Three design requirements are given at the mean contact
before the calculation is performed. They are the direction of the tangent to the contact
path, the semi-major axis of the contact ellipse, and the magnitude of the FTE. Among
the three design requirements, the third one is chosen around the maximum value of the
fourth-order polynomial MC, as shown in Figure 1a. The instant blank offset is related to it.
The actual machine-tool settings will be formed afterward according to the predesigned
fourth-order polynomial FTE. Since an error exists at the mean contact point for the CMC,
as shown in Figure 1b, the machine-tool settings of the pinion should be regulated to some
extent by observing Equation (17).

Step 2: Solve the set of Equations (16) and (17). Departing from the mean contact point,
the pinion is rotated about its own axis, and the tooth surface of the gear must be in contact
with that of the pinion. In other words, Equation (16) must be satisfied. At the same time,
the predesigned CMC must also be fulfilled, so Equation (17) can be satisfied as well. The
calculation is performed by using an iterative strategy.

Step 3: Perform the tooth contact analysis. After the machine-tool settings are cal-
culated, the TCA gives the results of FTEs, the contact path, the instant ellipses, and the
relative velocity of a meshing point over the tooth surface of the pinion and gear. The
instant blank offset is interpolated linearly between the above serial instant blank offsets
obtained in Step 2.

4.3.2. Loaded Tooth Contact Analysis (LTCA)

LTCA is used to analyze transmission errors and tooth contact patterns of the spiral
bevel gear pair under load, considering tooth deformations and the load sharing among
neighboring tooth pairs. It is carried out by obeying the force equilibrium condition, the
deformation compatibility condition, and the non-embedding condition.
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C · F + w = (∆θ · r)n + d(

FT · r
)

t = T
Fi > 0, di = 0; Fi = 0, di > 0

(i = 1, 2, · · ·, n) (18)

where n is the total number of the discrete potential contact points on the pinion and gear
tooth surfaces at the instant meshing position; C is the flexibility matrix which is reciprocal
of the stiffness matrix with the unit of N/m; w and d represent the initial tooth surface gap
and the deformed tooth surface gap between the mating tooth surfaces, respectively; r is the
distance from the contacting points to the gear shaft; F is the normal force at the contacting
points; ∆θ is the variation in the gear rotational angle under torque T; and subscripts n and
t denote the normal section of the tooth and the rotational plane of the gear, respectively.

According to the experience of the Gleason Works, the amount of the tooth surface
approach is approximately 0.00635 mm on a gear rolling test machine. Taking the amount
as the target, the torque applied on the gear is calculated via loaded tooth contact analysis
when the mating tooth pair contacts at the mean contact point.

5. Numerical Studies

An aviation spiral bevel gear set is investigated to confirm the proposed method. The
design parameters of the gear drive are listed in Table 1. The predesigned CMC of the spiral
bevel gear pair based on the proposed method is shown in Figure 5. Figure 5a shows a
CMC for a single meshing tooth pair with the maximum transmission error of 3′′. Figure 5b
shows three entwined CMC from left to right representing the proceeding tooth pair, the
actual tooth pair, and the following tooth pair, respectively. Design specifications of the
spiral bevel gear drive are listed in Table 2. Polynomial coefficients of the CMC function
of the spiral bevel gear pair are listed in Table 3. The installation parameters of the gear
head cutter are listed in Table 4. They are assumed to be known according to an SB card
provided by the Gleason Works. The machine-tool settings of the head cutter of the pinion
are listed in Table 5.

Table 1. Blank data of the spiral bevel gear pair.

Items Pinion Gear

Mean spiral angle β1, β2 30◦ 30◦

Shaft angle γ 90◦ 90◦

Number of teeth Z1, Z2 23 65
Hand of spiral RH LH

Whole depth h (mm) 7.34 7.34
Pitch angle γ1, γ2 19◦29′ 70◦31′

Face angle γ f 1, γ f 2 21◦58′30′′ 71◦36′40′′

Root angle γm1, γm2 18◦23′20′′ 68◦1′30′′

Mean cone distance Am 115.9511 115.9511
Face width b (mm) 37 37

Module m (mm) 3.9 3.9
Clearance c1, c2 0.71 0.71

Addendum ha1, ha2 (mm) 5.1 1.54
Dedendum h f 1, h f 2 (mm) 2.24 5.8

Table 2. Design specifications of the spiral bevel gear pair.

Items Pinion Concave and Gear Convex

Magnitude of function of transmission error ∆ϕ2a 31′′

Tangent to the path of contact on the gear surface η 6◦

Semi-major axis of the contact ellipse a (mm) 3.7
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The variation in the instant blank offset with respect to the value at the mean contact
point for the concave side of the pinion tooth surface is shown in Figure 6. The blank offset
of the head cutter of the pinion changes with the CMC of the spiral bevel gear pair in
Figure 5. The results of tooth contact analysis have confirmed that the predesigned CMC
is fulfilled with sufficient accuracy as shown in Figure 7, in which the dotted points in
the middle line represent the controlled points for the actual tooth pair, while the three
continuous lines represent the CMC of TCA. Based on the numerical results of TCA of
the spiral bevel gear pair, the maximum transmission error is −3.1527′′. The difference
between the maximum transmission error and the predesigned CMC is 0.1527′′. As the
gear is driven by the tooth pair with the least transmission error among three neighboring
tooth pairs, the contact pattern of the actual tooth pair is scattered into three segments
over the tooth surfaces, as in Figure 8, when the spiral bevel gears are considered as rigid
bodies. The corresponding CMC of LTCA of the spiral bevel gear pair is shown in Figure 9.
This is specific to the CMC and should not be taken as bridge contact, which is usually
unacceptable. Based on the numerical results of LTCA of the spiral bevel gear pair, the
maximum loaded transmission error is −22.0763′′. Actually, when the loads are applied,
contact patterns on tooth surfaces of the spiral bevel gear pair become continuous, and the
maximum transmission error increases by −18.9236′′ due to the elastic deformation of the
meshing tooth surfaces as shown in Figure 10.

Table 3. Polynomial coefficients of the CMC function of the spiral bevel gear pair.

a2 a3 a4 b1 b2 b3

Polynomial
coefficients −0.00489 −0.00075 0.00023 0.00037 0.00016 0.00008

Table 4. Installation parameters of the head cutter of the gear.

Items Inner Blade

Blade angle α2 22◦30′

Cutter point radius Rh2 (mm) 113.155
Point width Wh2 (mm) 2.29
Radial setting Sr2 (mm) 115.078
Cutter radius Rc2 (mm) 114.3

Installment angle q2 59◦20′7′′

Machine center to back XD2 (mm) 0.00
Sliding base XB2 (mm) 0.051
Blank offset EM2 (mm) 0.00
Fillet radius ρh2 (mm) 1.31

Modified blade angle a 23◦50′

Ratio of cutting m2c 1.06

Table 5. Machine-tool settings of the head cutter of the pinion.

Items Outer Blade

Cutter point radius Rh1 (mm) 124.879
Blade angle α1 22◦30′

Radial setting Sr1 (mm) 91.116
Installment angle q1 56◦58′56′′

Sliding base XB1 (mm) −0.059
Machine center to back XD1 (mm) 1.231

Blank offset EM1 (mm) 34.197
Ratio of cutting m1c 2.499

Modified blade angle a 21◦10′

Fillet radius ρh1 (mm) 1.31
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(a) (b)

Figure 5. Predesigned CMC of the spiral bevel gear pair. (a) CMC for single tooth pair; (b) CMC for
multi-tooth pairs.

Figure 6. Variation in blank offset of the head cutter for pinion concave side.

Figure 7. Numerical results of the CMC of TCA of the spiral bevel gear pair.
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Figure 8. Contact patterns of TCA of the spiral bevel gear pair.

Figure 9. Numerical results of the CMC of LTCA of the spiral bevel gear pair.
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Figure 10. Contact patterns of LTCA of the spiral bevel gear pair.

6. Conclusions

Theoretically, the proposed predesigned face-milling method based on the predesigned
fourth-order CMC function is not limited to gear tooth profiles of spiral bevel gears and
is applicable to hypoid gears. Local gear tooth modifications of spiral bevel gears can be
calculated based on the predesigned fourth-order CMC function. Especially, spiral bevel
gears with completed time-varying meshing stiffness and tooth profiles are difficult to
adjust the amount of modification. Based on TCA and LTCA results of contact patterns
and transmission errors of the face-milled spiral bevel gear pair, the proposed predesigned
fourth-order CMC function can improve its meshing performances. Some conclusions can
be given as follows:

1. A method for the development of the combined MC up to the fourth-order CMC of
the spiral bevel gear pair has been proposed;

2. A mathematical model is established and an extended local synthesis is used to obtain
the instant blank offset for the combined motion curve. The basic idea is to introduce a
closed-loop strategy for tooth contact analysis. In this way, the meshing performance
of the kinematic errors over the whole tooth surface of a is controlled;

3. The proposed method was validated by a numerical study of TCA of a spiral bevel
gear pair. The maximum transmission error of the TCA results is −3.1527′′. The
difference between the maximum transmission error and the predesigned CMC is
only 0.1531′′, which is 4.86% of the maximum transmission error.

4. When the tooth surfaces of the spiral bevel gear pair are elastically deformed during
meshing, the actual tooth contact patterns become continuous. When the loads are
applied, the elastic deformation of the meshing tooth surfaces results in an increase in
the maximum transmission error of −18.9236′′.
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