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Abstract: Autonomous driving in unstructured environments is crucial for various applications,
including agriculture, military, and mining. However, research in unstructured environments signif-
icantly lags behind that in structured environments, mainly due to the challenges posed by harsh
environmental conditions and the intricate interactions between vehicles and terrains. This arti-
cle first categorizes unstructured path planning into hierarchical and end-to-end approaches and
then the special parts compared to structured path planning are emphatically reviewed, such as
terrain traversability analysis, cost estimation, and terrain-dependent constraints. This article offers a
comprehensive review of the relevant factors, vehicle–terrain interactions, and methods of terrain
traversability analysis. The estimation methods of safety cost, energy cost, and comfort cost are also
emphatically summarized. Moreover, the constraints caused by the limits of terrains and vehicles are
discussed. The applications of algorithms in recent articles for path planners are reviewed. Finally,
crucial areas requiring further research are analyzed in unstructured path planning.

Keywords: unstructured environments; terrain traversability analysis; cost estimation; path planning;
autonomous ground vehicles; autonomous driving technology

1. Introduction

In recent years, significant advancements have been made in autonomous driving
technology, with notable breakthroughs and accomplishments in perception, planning,
and control in structured environments [1–3]. However, despite these achievements,
the progress in dealing with unstructured environments lags behind that of structured
environments [4,5].

At present, the definition of structured environments and unstructured environ-
ments need further research and discussion. Structured environments typically en-
compass urban roads and highways characterized by regular road geometries, paved
road surfaces, and lane markings [6], as depicted in Figure 1. In light of the existing
literature [5,7] and practical applications, unstructured environments, which are also
referred to using similar keywords such as off-road and terrain, are comprehensively
defined in this article as encompassing various types of unpaved roads, as illustrated
in Figure 2a, and paved roads where the lane boundaries become indiscernible due to
the presence of water, snow, or other coverings, as depicted in Figure 2b. Real-world
applications of autonomous driving in unstructured environments have been diverse,
with notable implementations in agriculture [8,9], military [10], mining [11], rescue [12],
and planetary exploration [13,14].
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Figure 1. Example of structured environments generated by PanoSim [15]. 
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Figure 2. Some examples of terrains in unstructured environments: (a) unpaved road environments 
where the original geomorphological capture comes from Baidu Maps; (b) paved roads where the 
lane boundaries are indistinguishable due to water, snow, or other coverings. 

At present, due to the development of machine learning and sensor technology, the 
research on perception in unstructured environments has made great progress [16,17]. 
However, there are still many challenges in the path planning of unstructured environ-
ments [7,18].  

In path planning, it is essential to take into account road conditions and traffic envi-
ronments, as highlighted in Table 1. The road conditions in unstructured environments 
present formidable challenges due to their intricate and limitless variety, inconsistent fric-
tion distribution, and perpetually changing dynamic nature [19–21]. Additionally, various 
states and ratios of water, sand, and air within different soil conditions display distinct 
properties, which are significantly influenced by volatile weather conditions, such as rain, 
snow, and sandstorms.  

The path planning process encompasses both global and local path planning. In 
structured environments, global path planning relies on sensor information and high-pre-
cision maps to determine the most efficient route from the start to the destination. As a 
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At present, due to the development of machine learning and sensor technology, the re-
search on perception in unstructured environments has made great progress [16,17]. However,
there are still many challenges in the path planning of unstructured environments [7,18].

In path planning, it is essential to take into account road conditions and traffic envi-
ronments, as highlighted in Table 1. The road conditions in unstructured environments
present formidable challenges due to their intricate and limitless variety, inconsistent fric-
tion distribution, and perpetually changing dynamic nature [19–21]. Additionally, various
states and ratios of water, sand, and air within different soil conditions display distinct
properties, which are significantly influenced by volatile weather conditions, such as rain,
snow, and sandstorms.

The path planning process encompasses both global and local path planning. In
structured environments, global path planning relies on sensor information and high-
precision maps to determine the most efficient route from the start to the destination. As
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a general rule, the primary objective of global path planning is to determine the route
that results in the shortest distance or the shortest time of travel. Subsequently, local path
planning is carried out in response to real-time traffic situations [22], such as lane changes,
intersections, and obstacle avoidance, while also considering traffic regulations.

Table 1. Comparison of environmental characteristics and path planning between unstructured and
structured environments.

Contrast Item Structured Environment Unstructured Environment

Environment
characteristics

Road environment

Simple variety,
less changes,

normed geometries,
even friction distribution

Intricate and boundless variety,
frequent changes,

normed and terrain geometries,
uneven friction distribution

Traffic environment Lane markings,
lane boundaries

No lane markings,
no lane boundaries

Global
path planning

Road information
Sensing information,
high-precision map

Sensing information,
geographic map,
topographic map,
TTA information

Planning goal Shortest distance
or shortest time

Lower cost of safety,
energy, or comfort

Local
path planning

Consideration
Traffic regulation,
vehicle dynamics,
controlling target

Terrain,
traffic regulation,
vehicle dynamics,
controlling target

Obstacles avoidance Normal vehicles,
pedestrians

Normal and special vehicles,
pedestrians and animals

In unstructured path planning, the foremost considerations should focus on the
conditions of the road and soil, as well as the adaptability of various vehicles within
stochastic environments. Moreover, the driving capacity of diverse vehicles, along with
the same vehicles under different loads, is variable. Therefore, global path planning
in unstructured environments typically relies on integrated information from sensors,
geographic maps, and topographic maps. Obtaining high-precision maps can be chal-
lenging in unstructured environments due to factors such as the quality of the GPS
signal, military protection, and dynamic changes. Following this, terrain traversability
analysis (TTA) is carried out based on the collected data. The purpose of path planning
varies among vehicles in different applications. For instance, in agricultural applications,
the primary concerns are energy consumption and task completion; meanwhile, in mil-
itary applications, traversability is paramount. In mining operations, both safety and
operator comfort are of utmost importance. Therefore, path planning in unstructured
environments is complicated and challenging.

2. Related Works and Survey Boundaries

In structured environments, global path planning and local path planning algorithms
are well established in both scientific research and market applications. However, these
algorithms may not be well suited for unstructured environments and often require adjust-
ments. In recent years, the integration of machine learning has led to significant progress
in TTA research. Various surveys and reviews were conducted to evaluate path planning
algorithms and TTA methods in unstructured environments, as summarized in Table 2.
Various surveys and reviews have been conducted to evaluate path planning algorithms
and TTA methods.
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Table 2. The existing review articles that have covered path planning of unstructured environments,
including this article.

Study Area Covered Content Contained Technology Focused

Wang et al., 2021 [23] Wheeled vehicles Perception, navigation Sensors,
collision avoidance methods

Guastella et al., 2021 [24] Autonomous ground
vehicles Perception, navigation Learning-based methods of

TTA and end-to-end navigation

Chakraborty et al., 2022 [8] Agricultural ground
vehicles Path planning Path planning algorithms

and application

Bai et al., 2023 [9] Agricultural ground
vehicles Perception, navigation

Sensors, obstacle avoidance,
TTA, location,

path planning algorithms

Wijayathunga et al., 2023 [25] Autonomous ground
vehicles

Perception,
scene understanding,

path planning

Sensor fusion,
location, map creation,

path planning algorithms

This article Autonomous ground
vehicles Path planning

TTA, cost estimation,
constraints of terrain and vehicles,

path planning algorithms

Wang et al. [23] mainly reviewed the perception and navigation methods of collision
avoidance. However, obstacle avoidance is only a part of path planning in unstructured
environments. Guastella et al. [24] mainly focused on learning-based methods of per-
ception and navigation for ground vehicles, including methods of terrain traversability
analysis and end-to-end navigation algorithms. But for both TTA and end-to-end navi-
gation, there are other methods besides the learning-based ones. Chakraborty et al. [8]
and Bai et al. [9] focused on path planning in agriculture. Chakraborty et al. [8] mainly
reviewed the path planning algorithms and the application characteristics of these meth-
ods, such as the application scenarios and limitations. Bai et al. [9] considered obstacle
avoidance and TTA of path planning from the perspective of vision methods. Wijay-
athunga et al. [25] summarized the path planning algorithms encompassing location and
map creation methods.

The focus of the above articles was primarily directed towards the design and
implementation of path planning algorithms, along with the application of TTA methods.
Nevertheless, these articles did not provide a comprehensive discussion of the various
factors that influence TTA and did not particularly consider the cost estimation in path
planning, along with the constraints imposed by terrain and vehicles. The cost estimation
process in unstructured environments is of paramount importance, as it directly impacts
the safety risks and economic costs associated with vehicle traversability. Furthermore,
the constraints imposed by the terrain and the vehicles themselves must be taken into
consideration in order to ensure the practical feasibility of the generated path.

The main purpose of this article is to provide a comprehensive overview and assess-
ment of several unique aspects compared to structured path planning, such as TTA, cost
estimation, and constraints. Concerning TTA, a detailed analysis and summary of the influ-
ential factors of terrain, vehicle, and vehicle–terrain interaction will be conducted in this
article. When discussing cost evaluation, safety costs, energy consumption, and comfort
costs will be the main focus. Moreover, the analysis and handling methods of terrain-related
constraints will be highlighted as a critical aspect. Additionally, the application of path
planning algorithms over the past five years will be reviewed.

Path planning in unstructured environments is categorized into two main broad cat-
egories in this article, presented in Figure 3. The first category involves the hierarchical
path planning approach, which encompasses terrain traversability analysis, cost estima-
tion, global path planning, constraint analysis, and local path planning [13,26]. Generally,
the outcomes of terrain traversability analysis and cost estimation are utilized as input
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data for global path planners [27,28]. Subsequently, the local path is generated with the
selected global paths and the limits of the constraints. The second category encompasses
the end-to-end path planning approach, which directly outputs the path based on the
learning methods according to the input of sensor data. The article is structured as fol-
lows: Section 3 introduces the terrain traversability analysis methods. Section 4 analyzes
the cost estimation of safety, energy, and comfort. Section 5 summarizes the algorithms
for global path planners. Section 6 concludes with the constraints and algorithms for
local path planners. Section 7 reviews the learning methods of end-to-end path planning.
Section 8 contains the conclusions. Section 9 proposes some suggestions for future work.
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3. Terrain Traversability Analysis

Traversability refers to the capacity of a ground vehicle to traverse a particular terrain
area while satisfying predefined objectives and criteria [29]. This capacity of vehicles
has also been referred to with keywords like drivability, navigability, trafficability, and
mobility [10,30].

Predicting traversability in advance is fundamental for autonomous path planning in
unstructured environments. Inaccurate or inefficient information regarding traversability
can result in the generation of substandard paths which not only consume excessive energy
and time but also pose unnecessary risks of damaging both equipment and the environ-
ment [29]. The global path planner is responsible for selecting the path and optimizing it
based on the outputs obtained from the TTA results, such as the traversability map [31,32],
traversability cost model [33,34], or terrain classifier [35].

3.1. TTA Relevant Factors

Terrain traversability of autonomous driving vehicles depends on the geometrical and
physical properties of the terrain as well as the dynamics and structure parameters of the
vehicle [24,30]. Simultaneously, there are complex interactions between the vehicle and the
terrain. Figure 4 shows partial relevant factors of TTA.
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3.1.1. Terrain Geometrical and Physical Factors

The geometric features of terrain related to TTA encompass physiognomy and static
obstacles. Physiognomy is characterized by elevation, slope, roughness, and curvature [29].
Elevation changes and slope characteristics, including vertical and lateral slopes, are funda-
mental factors in TTA models [36], impacting climbing ability and potential rollover [10].
The research presented by [37] shows simulation and comparison of traversability under
different slope conditions. The TTA model also incorporates roughness [24,28], which
describes the coarseness and surface irregularity of the ground plane traversed by the
vehicle [38]. Heterogeneous roughness surfaces, such as vegetation, pebbles, sand, mud,
and rock, pose particular challenges for vehicle driving. In [39], different levels of rough-
ness are classified based on traversability cost. Furthermore, the curvature conditions of
the road, constrained by the minimum turning radius of the vehicle, significantly affect
traversability. Surface obstacles include crossable features like grass and low tree roots, as
well as uncrossable obstacles like thick trees and cliffs. These surface obstacles are further
categorized into two morphological groups: continuous ones, such as rivers, ditches, and
banks, and scattered ones, such as pits, mounds, and craters.

Terrain physical factors generally comprise terrain types and soil properties. Different
weather conditions, such as rain, snow, sandstorms, and frost, can result in the same
terrain exhibiting varying characteristics. Temperature also has a notable impact. For
instance, hot weather can cause soil drying, while cold weather can lead to freezing. Terrain
types are commonly categorized as rigid and deformable [40]. Soil properties encompass
permanent characteristics and transient characteristics [41]. Permanent characteristics, such
as particle size, particle shape, composition, specific gravity, and consistency limits, remain
relatively stable despite external stress fields or short-term environmental effects. Transient
characteristics, including moisture, density, and permeability, are subject to change based
on environmental and loading conditions. Moreover, soil properties engender intricate
interactions between vehicles and the ground, consequently influencing traversability.
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3.1.2. Vehicle Dynamics and Structure Parameters

The trafficability of a vehicle is greatly influenced by a range of vehicle dynamics pa-
rameters, including those related to the dynamic system, powertrain system, and drivetrain
system. One example of this influence can be seen in the vehicle’s ability to overcome the
maximum tilt slope, which is dependent on the dynamic system and powertrain system.
This ability is also closely linked to the vehicle’s control strategy, which involves factors
such as throttle opening, brake operation, and gear selection. Furthermore, different driv-
ing mechanisms, such as wheels and tracks, contribute to varying levels of traversability.
Tracked vehicles, in contrast to wheeled vehicles, exhibit superior climbing ability and
are less prone to getting stuck or slipping on wet mud or soft soil. Conversely, wheeled
vehicles are better suited for navigating narrow spaces due to their flexible steering and
good traversability. The key parameters affecting the performance of wheels include tire
diameter, pattern, material, and pressure, while the main parameters of tracks are their
length and width.

The traversability of a vehicle is influenced by various structural size parameters,
such as length, width, and height, which determine its ability to navigate narrow roads.
Furthermore, the wheelbase and center of gravity position play a crucial role in the vehicle’s
ability to corner effectively. In addition, the vehicle’s ability to overcome trenches is closely
related to geometric parameters, including tire diameter and wheelbase. Furthermore,
parameters such as minimum ground clearance, brake-over angle, approach angle, and
departure angle under full load conditions significantly impact the vehicle’s ability to
navigate obstacles without collision. Additionally, fording depth determines the vehicle’s
traversability in wading areas. The mass and load distribution of the vehicle also affects its
acceleration performance, braking distance, and steering stability.

3.1.3. Vehicle–Terrain Interaction

The traditional path planners, as noted in prior research, are designed for operation
within structured and homogeneous environments, meaning they do not require explicit
consideration of the vehicle–terrain interaction [16]. However, recent studies on TTA have
underscored the critical significance of vehicle–terrain interaction [42–44]. This interaction
can give rise to variations such as wheel slip, wheel entrapment, and vehicle rollover, which
consequently influence the overall traversability of the terrain.

The analysis of vehicle–terrain interaction is commonly conducted through the ter-
ramechanics model, which can be categorized into three main types [45]: empirical models,
physics-based models, and semi-empirical methods. The authors of [46] provided a de-
tailed review of the theory, characteristics, and applications of these models. Empirical
models, while simple, lack generalizability beyond the experimental conditions in which
they were developed [47]. On the other hand, physics-based models, such as finite and
discrete element models, offer the highest fidelity, but their extensive computational require-
ments make them unsuitable for real-time tire force prediction and limit their applicability
for real-time terrain estimation [42]. In contrast, semi-empirical models strike a balance
between computational efficiency and fidelity, making them better suited for real-time esti-
mation and control [46,48]. Among the semi-empirical methods, Bekker-based models have
emerged as the most widely used [28,49]. These models calculate stresses over the contact
patch between a rigid tire and deformable terrain, which are then integrated to determine
the forces acting on the tire [50]. To accurately capture the complex stress distribution at
the contact patch, Bekker-based models rely on numerous parameters that describe terrain
characteristics, such as cohesion and internal friction angle [44].

3.2. TTA Methods

Sensing data are required in TTA to produce various results based on application
requirements and method characteristics, as depicted in Figure 5.
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According to the sensing types, TTA can be classified into two main groups: remote
sensing and in situ soil sensing: remote sensing and in situ soil sensing [48]. Remote
sensing encompasses space-borne measurements, such as satellite and thermal spectro-
scopic, along with local measurements, such as cameras and radars. On the other hand,
in situ soil sensing includes both direct and indirect measurements. Commonly used in
direct measurements are sub-surface drilling, penetrometers, and bevameters [43]. In the
case of indirect measurements, semi-empirical models, simulation models, and principle
experiments are employed. The simulation aspect can be carried out using software like
Chrono [42,51], Gazebo [18,52], and Open Dynamics Engine [13,35]. Additionally, experi-
ments can be conducted using instrumented wheels [49,53], small smart demo cars [19,54],
or real vehicles [31,39].

The early TTA was primarily conducted through experiments. One example is the
cone index method, initially proposed by the Waterways Experiment Station (WES) of the
U.S. military, to assess the traversability of vehicles in various soil conditions. This method
has successfully correlated the soil rating cone index with vehicle performance in loose
sand and wet soil [41]. Despite its ability to comprehensively reflect the mechanical and
physical properties of soil, the method is not suitable for unknown terrains and necessitates
substantial experimental costs. Nevertheless, it remains widely utilized in military and
agricultural applications. In contrast, recent mainstream TTA methods have harnessed
computer technology and can be categorized into geometry-based, appearance-based, and
behavior-based approaches [32]. Geometry-based methods first develop a geometric rep-
resentation of the terrain, evaluating traversability by comparing features such as height,
roughness, slope, curvature, and width with vehicle parameters [30]. Although indepen-
dent of lighting conditions, smoke, shadows, or adverse weather, this approach based on
geomorphology overlooks the physical characteristics of the terrain. Appearance-based
methods treat traversability analysis as an image-processing problem, which distinguishes
different types of soil and vegetation with distinct costs [29]. While cost-effective in terms
of camera usage, this method is susceptible to lighting conditions, smoke, shadows, or
poor weather. Its primary application lies in discrete terrain class assessment. A new trend
in TTA processing involves behavior-based methods, which evaluate traversability using
experts’ driving trajectories and learning-based techniques [55]. This approach incorporates
human driving experience and vehicle dynamics but may yield inconsistent assessment
results due to variations in drivers and vehicles. The summary and comparison of these
TTA methods are shown in Table 3.

The outputs of the TTA delivered to the path planner may be regression-based out-
puts [56], classification-based outputs [44,57], or mixed regression–classification-based out-
puts [14,58]. Classification-based results are generally discrete classes of terrain type, includ-
ing binary classification and multi-classification. Regression-based results are traversability
maps or functions with continuous scores. The types of outputs can be selected according
to the following path planning algorithms.
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Table 3. Summary and comparison of TTA methods.

Method Main Mean Basis Input Advantage Disadvantage Application

Cone index method Experiment Soil state,
vehicle parameters

Comprehensively reflects
the mechanical and

physical properties of soil

Not suitable for
unknown terrains,

substantial
experimental costs

Traversability
assessment on soft soil,
widely used in military

and agriculture

Geometry-based
method

Computer
technology

Terrain geometric
features,

vehicle parameters

Not affected by lighting
conditions, smoke,

shadows, or
poor weather

No consideration of
terrain physical
characteristics

Traversability
assessment based

on geomorphology

Appearance-based
method

Computer
technology

Images of terrain,
vehicle parameters

Low cost of
assessment equipment

Affected by lighting
conditions, smoke,

shadows, or
poor weather

Discrete terrain
classes assessment

Behavior-based
method

Computer
technology

Driving trajectories,
vehicle parameters

Driving experience is
taken into account

Inconsistent assessment
and difficult to repeat

Traversability
assessment based on
driving operations

To obtain accurate and reliable analysis results, some TTA methods took into ac-count
the factors discussed above, including terrain characteristics, vehicle parameters, and
vehicle–terrain interactions. Table 4 shows different methods proposed in recent years with
the details of sensing type, processing type, factors considered, and output type.

Table 4. Overview of different TTA methods published in recent years.

Study Sensing Type Processing Type Factor Considered Output Type

Mei et al., 2018 [59] Remoting Appearance-based Terrain, vehicle Classification-based

Chavez-Garcia et al., 2018 [35] In situ Geometry-based Terrain Classification-based

Dallas et al., 2020 [47] In situ Behavior-based
Terrain, vehicle,
vehicle–terrain

interaction

Mixed regression
and classification

Zhu et al., 2020 [32] Remoting Behavior-based Terrain, vehicle Regression-based

Palazzo et al., 2020 [54] Remoting Appearance-based Terrain Mixed regression
and classification

Oliveira et al., 2021 [39] Remoting, in situ Mixed behavior
and geometry Terrain, vehicle Mixed regression

and classification

Wallin et al., 2022 [29] In situ Geometry-based Terrain, vehicle Regression-based

Lee et al., 2023 [60] Remoting Mixed behavior
and geometry Terrain, vehicle Regression-based

Xue et al., 2023 [61] Remoting, in situ Geometry-based Terrain Regression-based

Bae et al., 2023 [62] Remoting Mixed appearance
and geometry Terrain Regression-based

Guan et al., 2023 [63] Remoting Mixed appearance
and geometry Terrain Mixed regression

and classification

4. Cost Estimation

The TTA mainly determines whether the vehicle can pass through the area to eliminate
the untraversable area. However, for traversable areas, vehicles may pass with some costs,
such as safety costs [64,65], energy costs [51,66], and comfort costs [39,67]. Generally, the
costs are estimated based on the previous TTA output and then the estimation results such
as cost function [68] or cost map [69,70] can be obtained and passed to the path planner [34].
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4.1. Safety Cost

Traditional path planning mainly considers obstacle avoidance in terms of safety [71],
but for unstructured environments, rollover and wheel slip caused by terrain characteristics
should also be considered [67]. For example, for traversable areas with negative obstacles
and steep slopes, the vehicle may pass after some good operations in a certain direction
or at a certain speed [52], but there may be speed limitations or experience requirements
for control operation, so there is still a safety risk of rollover in this condition. Negative
obstacles are those with a negative height below the ground [5], such as pits and holes.
For traversable areas, such as grainy roads, slippery roads, and icy roads, there is a risk
of wheel slip, so vehicles have to pass under certain speed or power limitations. Table 5
summarizes the safety cost considerations and methods presented in the recent literature.

Table 5. Overview of safety cost considerations and methods published in recent years.

Study Cost Considered Method Estimated

Gao et al., 2010 [72] Obstacle avoidance, Wheel slip Cost function
Ono et al., 2015 [27] Obstacle avoidance Rollover model and cost function

Brandao et al., 2016 [73] Wheel slip Slippage model and cost function
Li et al., 2019 [67] Obstacle avoidance, rollover Rollover model and cost function

Sakayori et al., 2021 [13] Rollover of pitch and roll Cost function
Xiong et al., 2021 [64] Obstacle avoidance, rollover Cost function

Oliveira et al., 2021 [39] Rollover of pitch and roll Cost function and cost map
Lee et al., 2023 [60] Obstacle avoidance, rollover Cost function

Dang et al., 2023 [74] Obstacle avoidance Cost function

The static environment obstacles have been considered in TTA, but there is still a
collision risk for the transition zone between the traversable and untraversable areas. This
risk can be assessed by setting continuous or discrete safety costs. The safety cost of
transition and uncertain zones can be probabilistically set higher compared to normal. The
authors of [72] established a safety cost model for obstacle avoidance, which takes into
account vehicle size and speed.

Modeling can be used to estimate the safety cost of rollover by determining the
probability of driving risk, which is mainly assessed through roll and pitch evaluation.
In the case of off-road vehicles, particularly engineering and agricultural machinery,
the estimation modeling of rollover heavily relies on the positioning of the center of
gravity [43,75]. The authors of [43] provide a detailed calculation method for determining
the center of gravity position on slopes. Dynamic rollover models encompass two distinct
types: the full-car model [76] and the curvilinear trajectory rollover model [77]. The
full-car model offers the benefit of characterizing the roll produced by the impact of the
terrain on the vehicle, whereas the curvilinear trajectory rolling model only characterizes
the roll produced by steering [78]. The pitch and roll angle derived from the modeling
process are essential for estimating the rollover cost [43,67].

The estimation of the safety cost of wheel slip is typically carried out through slip
modeling, taking into account factors such as vehicle load, tire type, road type, and adhesion
condition. The accuracy of the tire model plays a critical role in this estimation. The Pacejka
model is widely used in wheel slip estimation [72,75] because it has been shown applicable
to off-road conditions [42]. Various methods for estimating tire–road friction coefficient
have been examined in [79], encompassing off-board sensors-based, vehicle dynamics-
based, and data-driven approaches. Moreover, a review in [80] outlines slippage estimation
methods for planetary exploration rovers, including proprioceptive-based, model-based,
and exteroceptive-based strategies. Depending on the safety cost requirements, the results
of wheel slip estimation can be discrete or continuous. For instance, in [44], wheel slip is
discretized into categories of low slip, moderate slip, and high slip. Furthermore, regression
evaluation of wheel slip has been performed using machine learning methods such as multi-
layer perceptron (MLP), random forest (RF), and extreme gradient boosting (XGB) [81].
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Notably, the estimation model proposed in [81] demonstrates strong performance in both
discrete and regression prediction of wheel slip.

4.2. Energy Cost

In unstructured environments, the variations in energy consumption among differ-
ent paths are substantial due to the diverse terrain conditions. For resource-constrained
contexts, such as military, agriculture, planetary rover, and disaster relief missions, prior-
itizing the reduction in energy costs is crucial for the successful accomplishment of the
tasks [51,66,82–84]. In pursuit of minimizing energy expenses and enhancing operational
efficiency, the selection of the shortest distance or time-optimal path is often favored [85,86].
However, it is noteworthy that in unstructured environments, the path with the shortest
distance does not necessarily translate to the one with the least energy consumption [87].
Energy costs are influenced by various factors, including terrain characteristics (such as ter-
rain types, slope, friction, curvature, stiffness, and softness) [51,88] and vehicle parameters
(such as engine speed, torque, and gear ratio) [11,89].

The energy cost estimation methods of unstructured environments typically fall into
two categories: physics model-based methods and data-driven methods [83], as shown in
Table 6.

Table 6. Overview of energy cost approaches and considerations in recent years.

Study Approach Type Factor Considered

Ganganath et al., 2015 [87] Physics model-based Terrain slope, friction

Higa et al., 2019 [90] Mixed of data-driven
and physics model

Terrain slope, robot’s location,
heading angle

Wallace et al., 2019 [91] Physics model-based Terrain slope, slippage,
vehicle speed

Quann et al., 2020 [88] Data-driven Terrain type, slope, viscosity,
vehicle–terrain interaction

Sakayori et al., 2021 [13] Physics model-based Terrain slope, heading angle,
vehicle–terrain interaction

Huang et al., 2022 [92] Data-driven Terrain slope, driving mode

Goulet et al., 2022 [66] Physics model-based
Terrain elevation,
vehicle dynamics,

vehicle–terrain interaction,

Visca et al., 2022 [51] Data-driven- Terrain type, elevation,
driving operation

4.2.1. Physics Model-Based Approaches

Several physics-based models have been developed to accurately estimate driving
energy consumption in natural terrains [83,93]. A physics-based motion energy cost
model was proposed in [94], which considered terrain attributes such as slope and
friction, as well as the effects of configuration changes on operational energy costs. One
challenging issue of physics-based approaches is to estimate the interaction between the
vehicle and terrain [95]. To address this problem, a self-supervised approach is presented
in [95], which considers terrain geometry and soil types to predict energy consumption.
The authors of [13] examined the vehicle–terrain interaction and vehicle dynamic model
and subsequently establishes the power consumption model through a neural network.

However, physics-based approaches in terrain modeling often exhibit only an
approximate representation of the mechanical behavior of various types of terrain [96].
Furthermore, these approaches typically rely on terrain-dependent parameters that are
frequently unknown a priori. Moreover, the utilization of these methods may result
in substantial computational costs and may be unsuitable for time-sensitive planning
frameworks [97].
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4.2.2. Data-Driven Approaches

Data-driven approaches have been proposed as a solution to the challenges as-
sociated with physics-based approaches [83,98]. One type of these approaches is to
classify and identify the environment into a set of different categories. Then, different
data-driven energy models, such as semi-empirical function [92,99], table lookup [100],
or neural network [101,102], are used to link the terrain geometry to the drive energy
consumption of each terrain type. However, this type of approach is not suitable for
terrain with uncertainty.

Probabilistic methods can capture and clarify the uncertainty in energy prediction [51].
The authors of [82] used Gaussian process regression (GPR) and known vehicle model-
ing information to predict future path energy costs. A framework based on multi-task
Gaussian process regression (MTGP) to share terrain information across multiple robots
was developed to predict power consumption [88]. Meta learning was used in [51,83] to
model the existing energy consumption uncertainties and effectively adapt probabilistic
predictions based on a small number of local measurements.

However, data-driven approaches are specific to one individual and generally cannot
be directly applied to different individuals or the same individual under different operating
conditions (e.g., tire pressure, weight distribution) [88].

4.3. Comfort Cost

When vehicles drive on uneven ground in unstructured environments, vibration
occurs, impacting the performance and lifespan of vehicle parts. Additionally, this vibration
affects the integrity of the transported goods. Consequently, it is essential to evaluate the
comfort cost when planning the vehicle’s path in unstructured terrains to ensure stable
driving [11,103].

Comfort is closely related to different parameters such as the natural frequency of
the vehicle system, road profile, and system characteristics. The elevation variance of the
ground nodes was used in [52,104] to describe the terrain unevenness. The authors of [43]
studied vibration responses of different models to different ground conditions, including
quarter-car model, bicycle–car model, half-car model, and full-car model. The relationship
among vehicle shock, ground roughness, and vehicle speed has been studied in [103]
using machine learning. Based on the above influencing factors and their correlation,
cost functions of comfort were established. The cost function of comfort in [67] mainly
considered the terrain smoothness and path consistency. In addition, path vertical variation
was also taken into account in [105].

5. Global Path Planner

The global path planner is mainly used to generate the cursory path which is based
on the traversability and cost estimation. The traditional algorithms for global path
planners have been improved and applied in unstructured environments, such as graph-
search-based, sampling-based, and artificial potential field (APF) methods, and optimal
methods [7,106,107], as depicted in Table 7.

Table 7. Overview of global path planning algorithms for unstructured environments.

Type Algorithm Study Application Limitation

Graph-search-based A*, Dijkstra [39,70,108–110]
Widely used in global path, global

optimal solution,
vehicle constraints considered

Not suitable for real-time
and complex transformation

environments

Sampling-based RRT, PRM [91,109,111,112] Probabilistic completeness Difficult to find the optimal solution

APF APF [113] High real-time
obstacles avoidance

Falling into the local minimum, not
necessarily global optimal solution

Optimal method GDA, PSO, GA [11,85] Multi-objective optimization,
search efficiency improved

Taking a lot of computing resources
and time,

falling into local minimum solutions
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Graph search-based methods discretize the configuration space as a graph and then
search for a minimum-cost path within it [7]. The A* algorithm [108] and Dijkstra algo-
rithm [39,114] and their improvements are the most common approaches. The obtained
cost map of TTA can easily be integrated into a classical graph search algorithm [24]. For
this method, the global optimal solution can be obtained, complex terrain and obstacles
can be dealt with, and the dynamic constraints of the vehicle can be taken into account.
However, this method takes a long time to search and is not suitable for real-time path
planning. Moreover, for dynamic environments, map information needs to be updated
constantly, which increases the computational load and complexity.

For sampling-based methods, a set of nodes or other forms are used to randomly
sample the environment to obtain the final path [52]. Rapidly exploring Random Tree
(RRT) [109] and the Probabilistic Road Map (PRM) [91] are the two most common methods.
These methods have probabilistic completeness, but it is difficult to find the optimal solution
in unstructured environments [7,64].

For artificial potential field methods, the global path is planned by setting the
gravitational field of the starting and ending points and the repulsive force field of
obstacles [67], which is simple and easy to understand, and can be implemented in the
case of high real-time requirements for path planning. However, this method is prone
to falling into local minima, and the planned path is not necessarily the global optimal
solution [64,67].

In optimal methods, the path optimization problem can be solved by gradient descent
algorithm (GDA) or intelligent optimization algorithm such as particle swarm optimization
(PSO) [85] and genetic algorithm (GA) [11]. This method can deal with multi-objective opti-
mization problems and can improve search efficiency by introducing heuristic methods and
strategies based on prior knowledge of the problem. However, it needs high computational
complexity and is easy to fall into local minimum solutions.

Due to the complexity of the unstructured environment, several methods are often
combined to plan the optimal path. For example, some articles discretize vehicle states
by using such as sampling-based methods and search for a least-cost path by using the
Dijkstra or A* algorithm [13,69]. The artificial potential field method and optimal path
methods were combined in [113] to search for the globally optimal path.

6. Local Path Planner

Local path planning optimizes the path from global path planning to ensure smooth-
ness and safety, considering vehicle and terrain limits, path feasibility, and dynamic envi-
ronment collision avoidance.

6.1. Constraints

Local path planners must account for various constraints related to vehicle and terrain
limitations. Table 8 provides an overview of the constraints considered in recent articles.

For position constraints, the optimized trajectories must pass through some specific
points whose positions are known during the planning process, such as the start point
and the goal point [52,115]. Continuity constraints are mainly required for the connec-
tion points of each segment trajectory. To ensure the smoothness of the trajectory, the
continuity of the movement, and the requirement of comfort, it is necessary to ensure
that the derivative of the connection point is continuous [13]. Kinematic constraints
contain inequality constraints and equality constraints. For inequality constraints, an
autonomous vehicle has to satisfy the limits of physical restrictions on the values of
velocity, acceleration, and steering angle within their corresponding bounds [11,116].
According to the chosen vehicle model, an autonomous vehicle should also satisfy the
kinematic equality constraints. Dynamics constraints are established according to the
vehicle dynamic model and driving conditions. For example, the constraints of engine
power are set according to the application scenario and vehicle dynamic parameters [11].
Safety constraints contain the collision avoidance constraints [85,104,117] and rollover-
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free constraints [66,75]. Obstacle avoidance can be met by setting a safe distance from
obstacles or limits on speed and acceleration [118]. Rollover can be avoided by limiting
the steering angle [75], pitch angle, and roll angle [66]. The speed and acceleration
constraints during traveling on a side slope were studied in [43].

Table 8. Overview of constraints considered in recent articles.

Literature Position Continuity Kinematic Dynamics Safety

Usami et al., 2020 [119] Initial,
terminal

Curvature,
b-spline Speed, acceleration Vehicle dynamics,

Motor/Engine–Torque
Wheel slip,

Rollover

Tian et al., 2021 [11] Terrain-dependent / Speed, acceleration,
terrain-dependent Engine Power /

Zhou et al., 2022 [52] Initial,
terminal

Bezier curve,
derivative
continuity

Speed, acceleration / Collision avoidance

Guo et al., 2022 [85] Initial,
terminal /

Speed, acceleration,
steering angle,

terrain-dependent
Vehicle dynamics Collision avoidance

Goulet et al., 2022 [66] Initial,
terminal / Speed,

acceleration Vehicle dynamics
Wheel slip,

rollover,
collision avoidance

Sun et al., 2022 [104] Initial,
terminal /

Speed, acceleration,
steering angle,

steering angular speed
Vehicle dynamics Collision avoidance

Qi et al., 2023 [120] Initial,
terminal

Three-layers
continuous
optimizer

Speed,
acceleration Vehicle dynamics Collision avoidance

Chen et al., 2023 [31] Initial,
terminal Curvature

Speed, acceleration,
angular speed,

angular acceleration
Vehicle dynamics Collision avoidance

There are also constraints related to terrain [11,52,85]. For example, when going up
and down slopes or around corners, speed and acceleration have different limits depending
on the terrain [11]. In addition, when the vehicle approaches the shoulder edge, the
vehicle steering is restricted to protect the vehicle tire, and ignoring the constraints will
cause blowout and tire cord breakdown [85,121]. For field operations, such as mining
areas, the vehicle has to enter a narrow area, but due to environmental restrictions, the
vehicle sometimes cannot turn and can only go backward. To effectively handle the terrain-
dependent constraints, an approximation formulation for these constraints was designed
to eliminate the non-differentiability of these constraints [85]. Some terrain constraints can
be set as a series of subgoals based on different terrain features, and then decompose the
whole planning problem into a series of subproblems with different constraints, which are
widely applied to mountain slopes [119,122].

6.2. Dynamic Obstacles Avoidance Algorithms

Local path planning strategies generally utilize sensor data about their surround-
ings to respond to the changing dynamics of the environment [25]. Dynamic obstacle
avoidance is crucial to ensure safety, which makes obstacle avoidance decisions based
on the perception of the constantly changing local environment [123]. Table 9 presents
various algorithms employed for dynamic obstacle avoidance in unstructured local
path planning.
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Table 9. Overview of global path planning algorithms for dynamic obstacle avoidance in unstructured
environments.

Algorithm Study Application Limitation

Dynamic Window Approach [31,124,125] High real-time performance High computational complexity

APF [18,126,127] Unknown obstacles avoidance Falling into the local minimum

Time Elastic Banding Algorithm [74,128] Continuity, smoothness Poor adaptability for complex situation

The dynamic window approach (DWA) is planned in the velocity space to generate
a reference point motion speed that satisfies the vehicle constraints and ensures obstacle
avoidance. It is suitable for real-time path planning and it can also optimize the algorithm’s
performance by adjusting the window parameters. However, it is sensitive to changes in
the environment and requires frequent updates of obstacle information around the mobile
robot [18,129].

The artificial potential field method is utilized in local path planning to establish
a repulsive force field around the robot’s obstacles, thereby guiding the robot to avoid
obstacles and reach its target via a safe path. This method is particularly advantageous
in the avoidance of unknown obstacles. Nonetheless, in complex environments, it may
readily become trapped in local minima and is susceptible to noise interference [64,129].

The Time Elastic Banding Algorithm is the improvement based on the elastic band
algorithm, which uses the concept of elastic body in mechanics to apply force to points
on the path, and realize obstacle avoidance through the action of force. It considers the
continuity of time, making the path smoother, but it cannot deal with complex scenes [129].

7. End-to-End Path Planning

For end-to-end path planning, the output path is generated directly according to
the input of sensor data based on the learning methods which include the consideration
of terrain and vehicle without separate procedures of TTA and cost estimation. With
the development of machine learning, different kinds of learning-based algorithms were
applied in end-to-end path planning, as shown in Table 10. To improve the adaptation of
different vehicles, a CNN (Convolutional Neural Network) was used in [4] with a stereo
camera for off-road path prediction. Apprenticeship learning was used in [19] by the sensor
data from cameras and proprioceptive sensors for the adaptation navigation of different
terrain types, such as concrete, grass, mud, pebble, and rock. The authors of [130] proposed
an online adaptive self-supervised learning for off-road driving in rough terrain to realize a
smooth, collision-free navigation policy that was suitable for plentiful vegetation, rock, and
sandy environments. Inverse reinforcement learning using soft value iteration networks
was proposed in [131] to solve the difficult path planning problems of planetary rovers with
satellite maps. To improve planning time and planning success rate, deep reinforcement
learning based on Rainbow architecture was used in [18] to navigate unknown rough
terrain. Gaussian process regression (GPR) and decision tree theory were combined in [132]
to build a proactive method to autonomously adapt the behavior to a priori unknown
environments. [133] was based on Gaussian process regression to study the navigation in
dynamic uncertain and unseen terrain. The path planning of terrain with different slop,
friction coefficient, and roughness conditions was studied in [60] by Gaussian process
regression according to the inputs of RGB camera and LiDAR.

The end-to-end path planning approach has stronger adaptability with different
terrains than the hierarchical approach, especially for unknown environments. However,
it depends on the dataset which is insufficient in unstructured environments at present.
In addition, the end-to-end approach requires a lot of computing power, so it does not
perform well in real-time planning.
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Table 10. Overview of learning-based algorithms applied in end-to-end path planning.

Literature Algorithm Sensor Data Application

Holder et al., 2018 [4] CNN Stereo camera Off-road

Siva et al., 2019 [19] Apprenticeship learning Camera, wheel odometry,
motor speed, IMU Concrete, grass, mud, pebble, rock

Pflueger et al., 2019 [131] Inverse reinforcement learning Satellite map Planetary rover

Manderson et al., 2020 [130] Self-supervised learning Camera, aerial image Plentiful vegetation, rock, and sandy

Josef et al., 2020 [18] Deep reinforcement learning IMU, elevation map Unknown rough terrain

Gall et al., 2021 [132] Gaussian process regression,
decision tree Simulation data from Gazebo Priori unknown, rough and

slippery terrain

Siva et al., 2022 [133] Gaussian process regression Color camera, LiDAR, GPS, IMU,
wheel odometry

Dynamic uncertain grass terrain,
unseen forest terrain

Lee et al., 2023 [60] Gaussian process regression RGB camera, LiDAR Terrain with different slop, friction
coefficient, roughness conditions

8. Conclusions

Methods of unstructured path planning were reviewed in detail in this article, includ-
ing the path planning framework, the relevant factors, the analysis methods, the necessary
models, and algorithms. This article focused on the unique aspects compared to structured
path planning, such as TTA, cost estimation, and terrain-dependent constraints.

• This article categorized path planning in unstructured environments into hierarchical
and end-to-end approaches. The hierarchical path planning approach involves TTA,
cost estimation, global path planner, constraints analysis and handling, and local path
planner. The end-to-end path planning approach directly outputs the path based on
the learning methods according to the input of sensor data. The recent articles on
end-to-end path planning were summarized in terms of algorithm, sensor data, and
application. The end-to-end path planning approach has stronger adaptability, but it
needs a large quantity of dataset and computing power.

• The relevant factors influencing TTA were meticulously summarized and thoroughly
discussed. These factors encompass terrain geometrical and physical attributes, vehicle
dynamics, structural parameters, and the interaction between the vehicle and the
terrain. This thorough analysis of relevant factors forms the foundation of TTA.
Incorporating a more comprehensive consideration of these factors is instrumental
in delivering a more accurate TTA. The inputs for TTA were categorized into remote
sensing and in situ soil sensing, and the corresponding sensors and sensing techniques
were introduced. For TTA processing, there are four methods: the cone index method
was proposed early and is mainly based on experimental; the other methods are based
on computer technology, including geometry-based, appearance-based, and behavior-
based ones. These four methods were compared and summarized in detail. The output
of the TTA delivered to the path planner may be regression-based, classification-based,
or mixed regression and classification.

• For cost estimation, the models and methods were summarized, including safety
cost, energy cost, and comfort cost. Among them, the energy cost was analyzed
and discussed emphatically. The physics model-based and data-driven energy cost
approaches were introduced and compared. In addition, the considerations and
estimation methods of safety cost and comfort cost were reviewed.

• The constraints considered in recent articles were summarized, including position
constraints, continuity constraints, kinematic constraints, dynamics constraints, and
safety constraints. Among them, the terrain-dependent constraints and their handling
methods were introduced emphatically.

• The global and local path planning methods suitable for unstructured environments
in recent articles were reviewed and summarized.
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9. Perspectives

In the future, to achieve autonomous driving in unstructured environments, several
important research areas remain to be explored:

• Multiple uncertainties in path planning. In practical applications, it is often challeng-
ing to acquire an accurate prior map. Even in familiar environments, there can be
randomness in different weather conditions. Especially in agriculture and rescue oper-
ations, the actual environment is often dynamic. Additionally, for operational vehicles,
the load is often variable. These interactive uncertainties increase the complexity that
should be further considered in TTA and path planning.

• The reliability and coverage of TTA. High-fidelity terramechanics models are essential
for reliable TTA. However, most terramechanics models currently used in unstructured
path planning are simplified, making it challenging to accurately represent real-world
conditions. Additionally, off-road vehicles often operate on submerged ground, such as
agricultural machinery and amphibious vehicles. It is undoubtedly more challenging
for vehicles to traverse submerged soil compared to normal soil. Nevertheless, there is
currently limited consideration of this in TTA.

• Vehicle instability evaluation. Vehicle instability evaluation is fundamental for un-
structured path planning. Accurate failure analysis is necessary to make a reasonable
estimation of vehicle traversability and cost. Currently, numerous studies have been
conducted on the models and evaluation criteria of failure analysis, but their coverage
and accuracy fall short of meeting the requirements of unstructured environment
path planning.

• The effect of vehicle posture on path planning. Under the same terrain and conditions,
the traversability and cost of vehicles with different postures are often different. For
example, the risk severity of a vehicle moving forward and backward at the same
speed is different. Besides, on the same slope, the energy consumption of vehicles
going uphill and downhill is also different. In addition, for some scenarios, the
vehicle cannot traverse in the forward direction but can successfully pass through by
adjusting the heading angle or with a series of maneuvers. However, there is limited
consideration of vehicle posture in current research.

• Safety redundancy in path planning. Safety is a crucial aspect of path planning, and
indeed, it is necessary to achieve higher safety goals. To ensure safety, redundancy
often exists in actual path planning. However, for vehicles, especially military vehicles
operating in more demanding conditions, excessive safety redundancy can affect
the maneuverability range. Therefore, the precise boundaries of safety need to be
further explored.

• Adaptation and real-time requirements in path planning. As discussed above, the
present hierarchical path planning does not perform well in adaptation and the end-
to-end path planning cannot meet the real-time requirements. However, adaptability
and real-time requirements are usually simultaneously needed. Therefore, whether
the two frameworks can be combined, or a new framework can be proposed to meet
the requirements should be further studied.

• Completeness verification for path planning methods. Real vehicle validation in
unstructured environments is sometimes unsafe and does not cover all scenarios.
Simulation and small smart demo vehicle testing can partially replace real vehicle
testing. However, two issues need to be addressed in the alternative tests. One is
the high fidelity of the alternative tests, including the reproduction of environments,
vehicles, and their incentives and responses. The other is the effective and targeted
scene design. The test scenario set can be generated according to the characteristics of
application scenarios and vehicle instability assessment.

• Applications for passenger cars. Current market applications for autonomous driving
in unstructured environments tend to center on agricultural and engineering vehicles.
While most driver assistance or autonomous driving features on passenger cars cannot
be utilized in unstructured environments, there is a certain demand among passenger
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vehicle customers for autonomous driving capabilities in snow, ice, desert, or other
unstructured environments. However, there is limited research on the path planning
for this purpose.
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