
Citation: Zheng, L.; Jiang, Y.; Jiang,

H.; Tang, C.; Jiao, W.; Shi, Z.; Rehman,

A.U. Adaptive Dynamic Threshold

Graph Neural Network: A Novel

Deep Learning Framework for

Cross-Condition Bearing Fault

Diagnosis. Machines 2024, 12, 18.

https://doi.org/10.3390/

machines12010018

Academic Editors: Amare Desalegn

Fentaye and Konstantinos

Kyprianidis

Received: 1 December 2023

Revised: 25 December 2023

Accepted: 26 December 2023

Published: 28 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Adaptive Dynamic Threshold Graph Neural Network: A Novel
Deep Learning Framework for Cross-Condition Bearing
Fault Diagnosis
Linjie Zheng 1, Yonghua Jiang 1,2,* , Hongkui Jiang 2,*, Chao Tang 2, Weidong Jiao 1 , Zhuoqi Shi 1

and Attiq Ur Rehman 3

1 Key Laboratory of Intelligent Operation and Maintenance Technology and Equipment for Urban Rail Transit
of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China; linjie_z99@zjnu.edu.cn (L.Z.);
jiaowd1970@zjnu.cn (W.J.); shizhuoqi@zjnu.edu.cn (Z.S.)

2 Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; ethan95_tang@163.com
3 School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China;

atnutkani@zjnu.edu.cn
* Correspondence: yonghua_j82@zjnu.cn (Y.J.); jhkass@163.com (H.J.)

Abstract: Recently, bearing fault diagnosis methods based on deep learning have achieved significant
success. However, in practical engineering applications, the limited labeled data and various working
conditions severely constrain the widespread application of most deep-learning-based fault diag-
nosis methods. Additionally, many methods focus solely on the amplitude information of samples,
neglecting the rich relational information between samples. To address these issues, this paper
proposes a novel cross-condition few-shot fault diagnosis method based on an adaptive dynamic
threshold graph neural network (ADTGNN). The aim of the proposed method is to rapidly identify
fault types after they occur only a few times or even once. The adaptive threshold computation
module (ATCM) in ADTGNN dynamically assigns thresholds to each edge based on edge confidence,
optimizing the graph structure and effectively alleviating the over-smoothing issue. Furthermore,
a dynamic threshold adjustment strategy (DTAS) is introduced to gradually increase the threshold
with the training iterations, preventing the model from prematurely discarding crucial edges due to
insufficient performance. The proposed model’s effectiveness is demonstrated using three bearing
datasets. The experimental results indicate that the proposed approach significantly outperforms
other comparison methods in cross-condition bearing fault diagnosis.

Keywords: deep learning; bearing fault diagnosis; graph neural network; few-shot learning; cross-condition

1. Introduction

As crucial components in rotating machinery, bearings serve the primary function
of transferring loads from moving machine parts to stationary ones, thereby facilitating
the relative motion of the rotating components [1–5]. The healthy operation of bearings is
paramount for ensuring the safe production of rotating machinery. However, in most cases,
bearings are subjected to prolonged exposure in high-speed, heavy-load, and corrosive
environments, posing a substantial threat to the health of the bearings and leading to
potential failures [6]. Once a bearing fault occurs, it not only impacts the operation of
the machinery itself but also exerts repercussions on subsequent production, triggering a
chain reaction that can result in significant economic losses and even catastrophic accidents
causing personnel casualties [7,8].

In recent years, with the rapid development of computer hardware technology, deep
learning models have gradually become the mainstream method for bearing fault diagnosis
due to their powerful feature extraction capabilities and end-to-end characteristics. Among
them, convolutional neural networks [9,10], recurrent neural networks [11,12], and autoen-
coders [13,14] have received extensive attention from researchers. However, traditional

Machines 2024, 12, 18. https://doi.org/10.3390/machines12010018 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12010018
https://doi.org/10.3390/machines12010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-0890-615X
https://orcid.org/0000-0001-9815-6457
https://orcid.org/0000-0002-0219-4879
https://doi.org/10.3390/machines12010018
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12010018?type=check_update&version=1

Machines 2024, 12, 18 2 of 19

deep-learning-based methods for bearing fault diagnosis still face certain challenges. Con-
ventional deep learning models typically require a large amount of labeled data for training
and assume that the training and testing data are under the same working conditions. In
practical industrial production environments, however, the working conditions of rotating
machinery (such as speed and load) may change with variations in work tasks, making it
difficult to ensure that training and testing data are under identical conditions. Moreover, to
prevent personnel injuries and potential damage to the machinery, equipment is promptly
shut down once a fault occurs, making it impractical to collect a large amount of labeled
data for each working condition [15]. Therefore, achieving few-shot bearing fault diagnosis
across different working conditions remains a challenge.

Currently, there are primarily three methods to address the aforementioned issues:
data augmentation (DA), transfer learning (TL), and few-shot learning (FSL). DA involves
enhancing the training data by applying diverse transformations and expansions to ex-
isting samples. Operations such as rotation, flipping, and scaling on images can gen-
erate additional training samples, thereby improving the model’s generalization capa-
bility. Jiang et al. [16] proposed a novel generative adversarial-network-based ensemble
data augmentation framework to address the issue of data imbalance in fault diagnosis.
Wang et al. [17] introduced a new compressed sensing data augmentation method for bear-
ing fault diagnosis. While this method has achieved some success in mitigating sample
scarcity, the introduction of excessive noise through data augmentation may result in dis-
parities between generated samples and real samples. TL leverages knowledge acquired
from one task to enhance performance on another related task. This approach facilitates the
transfer of knowledge across different domains, allowing for the more efficient utilization of
limited samples. Huang et al. [18] proposed a deep adversarial capsule network designed
for comprehensive fault diagnosis in industrial equipment. Zeng et al. [19] introduced a
transfer-learning-based fault diagnosis approach that integrates nearest neighbor feature
constraints, specifically tailored for addressing cross-condition fault diagnosis challenges.
However, if the differences between two domains are substantial, a model trained on the
source domain may struggle to adapt well to the data distribution of the target domain. FSL
is specifically designed to address problems with limited sample quantities. It involves de-
signing more complex model architectures, utilizing advanced optimization algorithms, or
incorporating prior knowledge, all aimed at achieving better performance under restricted
data conditions. Wang et al. [20] proposed a reinforced relation network for few-shot
bearing fault diagnosis. Lei et al. [21] introduced a novel prior knowledge-embedded
meta-transfer learning approach to address the challenges of few-shot fault diagnosis under
varying conditions.

In recent years, graph neural networks (GNNs) have begun to be employed in the field
of few-shot fault diagnosis. Wang et al. [22] propose a dual graph neural network to address
fault diagnosis with limited data. Yang et al. [23] propose a graph contrastive learning
framework for few-shot machine fault diagnosis. GNNs are a type of deep learning model
specifically designed for processing graph data. Graph data consist of nodes and edges,
where nodes represent samples and edges signify relationships between nodes. Traditional
bearing fault diagnosis methods primarily extract information from the amplitude of
bearing vibration signals, overlooking the rich relational information among samples.
Transforming vibration signals into graph data allows for modeling these relational details.
The application of GNNs enables the deep exploration of relationships between nodes,
aggregating this information to learn expressive node representations. Given that few-
shot learning involves leveraging relationships between support set samples and query
set samples for classification, GNNs exhibit significant potential in addressing few-shot
classification challenges.

The main concept of GNNs is to learn expressive node representations through the
propagation of information. However, the existing research [24,25] indicates that this
propagation method encounters certain issues. Firstly, the majority of GNNs suffer from
the problem of over-smoothing. As the network layers and iteration counts increase, the

Machines 2024, 12, 18 3 of 19

representations of all nodes tend to converge to a fixed point, rendering them independent
of input features. Secondly, this propagation method makes each node highly dependent
on its neighborhood, making nodes susceptible to potential data noise. Some approaches
mitigate these issues through graph sparsification. Graph sparsification involves removing
unnecessary edges in the graph to simplify its structure, enhancing model performance.
Rong et al. [26] alleviate over-smoothing by randomly dropping certain edges during
training. However, random dropping may discard edges carrying essential information.
Xiao et al. [27] proposed an edge dropout threshold, removing edges with lower relevance
in the graph to improve its quality. Yet, this threshold remains constant. Considering that
the model faces varying difficulties in distinguishing different pairs of nodes, using a fixed
threshold to determine whether to discard edges may impede the propagation of crucial
information. Additionally, during the early stages of training, the model’s performance
is suboptimal, and for pairs of nodes that are challenging to differentiate, the model may
struggle to provide high similarity scores.

In response to the aforementioned issues, this paper proposes an adaptive dynamic
threshold graph neural network (ADTGNN) for achieving cross-condition few-shot bearing
fault diagnosis. The proposed adaptive threshold computation module (ATCM) in ADT-
GNN adaptively assigns thresholds to each edge. The threshold setting is related to the
confidence of the edge, reflecting the model’s learning state regarding the nodes connected
via the edge. This adaptive approach significantly reduces the risk of erroneously discard-
ing edges carrying crucial information, greatly simplifying the graph and alleviating the
over-smoothing issue. Additionally, we propose a dynamic threshold adjustment strategy
(DTAS), where the constructed thresholds increase with the number of training iterations.
This prevents the premature discarding of important edges during the early stages of
training, thereby improving training speed and stability. The main contributions of this
work are as follows:

1. To alleviate the over-smoothing issue in GNNs, an ATCM is proposed. This module
adaptively sets thresholds based on the confidence level of edges, discarding edges
with lower relevance and simplifying the structure of graph data.

2. A DTAS is proposed, where a relatively smaller threshold is assigned during the early
stages of model training. With the increasing number of iterations, the threshold is
gradually raised, preventing the premature discarding of important edges during the
early stages of training.

3. An ADTGNN is proposed for cross-condition few-shot bearing fault diagnosis. By
employing meta-learning strategies, the model rapidly achieves fault classification
in the target working condition without the need for retraining, leveraging prior
knowledge acquired from the known working condition.

The rest of the paper is organized as follows. In Section 2 we present the details of the
proposed method. In Section 3, we validate the effectiveness of the proposed method on
two public bearing datasets. In Section 4, we summarize the work conducted.

2. Proposed Method
2.1. Problem Definition

The proposed method in this paper addresses the issue of cross-condition few-shot
bearing fault diagnosis. Let Dknown denote the dataset composed of known working
condition data, and Dtarget denote the dataset composed of target working condition data.
Dknown contains a large number of labeled samples, while Dtarget has only a limited number
of labeled samples. The proposed method requires training on Dknown to acquire prior
knowledge and subsequently utilizes the small number of labeled samples from Dtarget
to classify unlabeled samples within Dtarget. Specifically, we need to construct numerous
few-shot classification tasks on Dknown. Each few-shot classification task consists of a
support set (a set of a few labeled samples) and a query set (a set of unlabeled samples).
If a support set has N categories, each with K samples, the few-shot classification task
is referred to as an N-way K-shot classification task. The model needs to learn how to

Machines 2024, 12, 18 4 of 19

both utilize a small number of labeled samples for classifying unlabeled samples in these
few-shot classification tasks and apply the learned experience to Dtarget.

Figure 1 illustrates the workflow of the proposed ADTGNN for cross-condition
few-shot bearing fault diagnosis. ADTGNN is primarily composed of four modules: the
graph initialization module (GIM), the node feature update module (NFUM), the edge
feature update module (EFUM), and the ATCM. The details of these four modules will be
elaborated in the following subsections.

Machines 2024, 12, x FOR PEER REVIEW 4 of 20

𝐷 contains a large number of labeled samples, while 𝐷 has only a limited num-
ber of labeled samples. The proposed method requires training on 𝐷 to acquire prior
knowledge and subsequently utilizes the small number of labeled samples from 𝐷
to classify unlabeled samples within 𝐷 . Specifically, we need to construct numerous
few-shot classification tasks on 𝐷 . Each few-shot classification task consists of a sup-
port set (a set of a few labeled samples) and a query set (a set of unlabeled samples). If a
support set has N categories, each with K samples, the few-shot classification task is re-
ferred to as an N-way K-shot classification task. The model needs to learn how to both
utilize a small number of labeled samples for classifying unlabeled samples in these few-
shot classification tasks and apply the learned experience to 𝐷 .

Figure 1 illustrates the workflow of the proposed ADTGNN for cross-condition few-
shot bearing fault diagnosis. ADTGNN is primarily composed of four modules: the graph
initialization module (GIM), the node feature update module (NFUM), the edge feature
update module (EFUM), and the ATCM. The details of these four modules will be elabo-
rated in the following subsections.

Figure 1. The workflow of the proposed ADTGNN.

2.2. Graph Initialization Module
Let 𝛵 = S ∪ Q represent an N-way K-shot classification task, where S = 𝑥 , ,…, ×

denotes the support set, Q = 𝑥 × ,…, × represents the query set, and C is the
number of samples in the query set. Here, 𝑥 represents a sample. A convolutional neural
network is employed to extract initial node features 𝑣 from 𝑥 , as shown in the follow-
ing equation: 𝑣 = 𝑓 (𝑥 , 𝜃) (1)

where 𝑓 (∙) comprises two convolutional blocks and one fully connected layer. Each
convolutional block includes a convolutional layer, BatchNorm layer, LeakyReLU activa-
tion function layer, and MaxPool layer. 𝜃 represents the parameter set of 𝑓 (∙). To
broaden the receptive field, a convolutional layer with a kernel size of 1 × 32 is applied in
the first convolutional block. Let 𝑒 = (𝑒 , 𝑒) denote the initial edge features, where

Figure 1. The workflow of the proposed ADTGNN.

2.2. Graph Initialization Module

Let T = S ∪ Q represent an N-way K-shot classification task, where S = {xi}i=1,2,...,N×K
denotes the support set, Q = {xi}i=N×K+1,...,N×K+C represents the query set, and C is
the number of samples in the query set. Here, xi represents a sample. A convolutional
neural network is employed to extract initial node features v0

i from xi, as shown in the
following equation:

v0
i = fcnn(xi, θcnn) (1)

where fcnn(·) comprises two convolutional blocks and one fully connected layer. Each
convolutional block includes a convolutional layer, BatchNorm layer, LeakyReLU activation
function layer, and MaxPool layer. θcnn represents the parameter set of fcnn(·). To broaden
the receptive field, a convolutional layer with a kernel size of 1 × 32 is applied in the first
convolutional block. Let e0

ij =
(

e0
ij1, e0

ij2

)
denote the initial edge features, where e0

ij1 and e0
ij2

represent similarity and dissimilarity, respectively. The setting process for e0
ij is expressed

as follows:

e0
ij =

(1, 0), if yi = yj and i, j ≤ N × K,
(0, 1), if yi ̸= yj and i, j ≤ N × K,
(0.5, 0.5), otherwise.

(2)

where yi and yj represent the labels of nodes i and j, respectively. Let V =
{

v0
i
}

i=1,2,...,N×K+C

denote the set of initial node features, and E =
{

e0
ij

}
i,j=1,2,...,N×K+C

denote the set of initial

edge features. Based on V and E, a fully connected graph G = (V, E) can be constructed
and input into the following module for node feature updating and edge feature updating.

Machines 2024, 12, 18 5 of 19

2.3. Node Feature Update Module

Based on the node features from the previous layer and the edges in the current layer,
we can obtain the node features for the current layer, as shown below:

vl
i = f v

(
vl−1

i ||∑
j

∼
e

l−1
ij1 vl−1

j ||∑
j

∼
e

l−1
ij2 vl−1

j , θv

)
(3)

∼
e ij1 =

eij1

∑k eik1
(4)

where || denotes the concatenation operation, and fv(·) represents the node feature updat-
ing network. fv(·) consists of two convolutional blocks, each comprising a convolutional
layer, BatchNorm layer, LeakyReLU activation function layer, and dropout layer, and θv
is the parameter set of fv(·). By setting a threshold for el−1

ij1 and eliminating some edges,
we can reduce the impact of redundant information during node feature updating. Ad-
ditionally, during the update of vl

i , both similarity-based aggregation information and
dissimilarity-based aggregation information are considered, enhancing the expressive
power of node features.

2.4. Edge Feature Update Module

Given the node features vl
i and vl

j at the l-th layer of the model, two metric networks,

fsim(·) and fdsim(·), are employed to compute the similarity score sl
ij and dissimilarity score

dl
ij. The process is outlined as follows:

sl
ij = fsim

(
vl

i , vl
j, θsim

)
(5)

dl
ij = fdsim

(
vl

i , vl
j, θdsim

)
(6)

where the network architecture of fsim(·) is the same as that of fdsim(·). Both consist of
two convolutional blocks and a Sigmoid activation function layer. θsim and θdsim are the
parameter sets of fsim(·) and fdsim(·), respectively. Based on sl

ij and dl
ij, the current layer’s

edge features el
ij can be obtained through the following equations:

eij1 =
sl

ije
l−1
ij1

∑k sl
ikel−1

ik1 /
(

∑k el−1
ik1

) (7)

eij2 =
dl

ije
l−1

ij2

∑k dl
ikel−1

ik2 /
(

∑k el−1
ik2

) (8)

el
ij = el

ij/
∥∥∥el

ij

∥∥∥
1

(9)

2.5. Adaptive Threshold Computation Module

For ideal node features, we desire their similarity to be significantly higher with nodes
of the same class than with nodes of different classes. However, in reality, there are always
some nodes that are challenging for the model to accurately cluster, especially during the
early stages of training. The values of the edges depend on the nodes they connect, implying
that for these challenging nodes, the network may struggle to compute edges with larger
values. Therefore, when using a fixed threshold to remove unnecessary edges, there is a risk
of erroneously discarding these edges, thus reducing the transmission of useful information
in the graph. The goal of this paper is to adaptively set corresponding thresholds for each
edge, thereby minimizing the risk of discarding useful edges erroneously. We design edge

Machines 2024, 12, 18 6 of 19

thresholds based on two principles. Firstly, the threshold setting should be related to the
model’s confidence in the edges, reflecting the model’s learning state. Additionally, the
confidence of edges should be related to the confidence of the nodes they connect.

For this purpose, before calculating the confidence of edges, it is necessary to obtain the
confidence of the nodes. This paper utilizes the distribution features of nodes to measure
their confidence. Given the distribution features of node i as El

i ∈ R1×D, where

El
i =

(
el

i11, el
i21, . . . , el

iD1

)
(10)

El
i is composed of the similarity between node i and the rest of the nodes. If the

similarity of node i with the nodes of the same class is significantly higher than its similarity
with nodes of different classes, calculating the entropy of El

i will result in a smaller value.
Conversely, if the similarity of node i with nodes of the same class is not significantly higher
than its similarity with the nodes of different classes, calculating the entropy of El

i will yield
a larger value, as shown in Figure 2.

Machines 2024, 12, x FOR PEER REVIEW 6 of 20

2.5. Adaptive Threshold Computation Module
For ideal node features, we desire their similarity to be significantly higher with

nodes of the same class than with nodes of different classes. However, in reality, there are
always some nodes that are challenging for the model to accurately cluster, especially
during the early stages of training. The values of the edges depend on the nodes they
connect, implying that for these challenging nodes, the network may struggle to compute
edges with larger values. Therefore, when using a fixed threshold to remove unnecessary
edges, there is a risk of erroneously discarding these edges, thus reducing the transmis-
sion of useful information in the graph. The goal of this paper is to adaptively set corre-
sponding thresholds for each edge, thereby minimizing the risk of discarding useful edges
erroneously. We design edge thresholds based on two principles. Firstly, the threshold
setting should be related to the model’s confidence in the edges, reflecting the model’s
learning state. Additionally, the confidence of edges should be related to the confidence
of the nodes they connect.

For this purpose, before calculating the confidence of edges, it is necessary to obtain
the confidence of the nodes. This paper utilizes the distribution features of nodes to meas-
ure their confidence. Given the distribution features of node i as 𝐸 ∈ 𝑅 × , where 𝐸 = 𝑒 , 𝑒 , … , 𝑒 (10) 𝐸 is composed of the similarity between node i and the rest of the nodes. If the sim-
ilarity of node i with the nodes of the same class is significantly higher than its similarity
with nodes of different classes, calculating the entropy of 𝐸 will result in a smaller value.
Conversely, if the similarity of node i with nodes of the same class is not significantly
higher than its similarity with the nodes of different classes, calculating the entropy of 𝐸
will yield a larger value, as shown in Figure 2.

Figure 2. Entropy of different node distribution features.

Based on this principle, the confidence 𝑞 of node i can be computed. First, utilize
the following equation to calculate the entropy of 𝐸 :

ℎ = 𝑒 log 𝑒 (11)

where ℎ represents the uncertainty of node i. Let 𝐻 = (ℎ , ℎ , … , ℎ), and normalize it
to obtain 𝐻 , as shown below: 𝐻 = 𝐻 𝑀𝑖𝑛(𝐻)𝑀𝑎𝑥(𝐻) 𝑀𝑖𝑛(𝐻) (12) 𝐻 ∈ (0,1) represents the i-th element of 𝐻 . A higher value of 𝐻 indicates that node
i is more challenging to distinguish, and its reliability is lower. The confidence 𝑞 of node
i is then obtained using the following equation:

Figure 2. Entropy of different node distribution features.

Based on this principle, the confidence ql
i of node i can be computed. First, utilize the

following equation to calculate the entropy of El
i :

hl
i = −

C

∑
j

el
ij1log

(
el

ij1

)
(11)

where hl
i represents the uncertainty of node i. Let Hl =

(
hl

1, hl
2, . . . , hl

D

)
, and normalize it

to obtain
∼
H

l
, as shown below:

∼
H

l
=

Hl − Min
(

Hl
)

Max
(

Hl
)
− Min

(
Hl
) (12)

∼
H

l

i ∈ (0, 1) represents the i-th element of
∼
H

l

i . A higher value of
∼
H

l

i indicates that node
i is more challenging to distinguish, and its reliability is lower. The confidence ql

i of node i
is then obtained using the following equation:

ql
i = 1 −

∼
H

l

i (13)

With the confidence of the nodes given, we can now calculate the confidence of the
edge Cl

ij, which depends on the confidences of nodes i and j:

Cl
ij =

ql
i + ql

j

2
(14)

Machines 2024, 12, 18 7 of 19

Based on Cl
ij, we can calculate the corresponding threshold pl

ij, and the process is
as follows:

pl
ij = τCl

ij (15)

where τ represents the global threshold, a constant. Since Cl
ij ∈ (0, 1), pl

ij will not exceed

τ. Cl
ij changes with variations in El

i and El
j , enabling the adaptive adjustment of pl

ij based

on Cl
ij. The higher the value of Cl

ij, the greater the model’s confidence in that edge, and pl
ij

becomes closer to τ.

2.6. Dynamic Adjustment Strategy of the Thresholds

During the early stages of training, the model’s performance is relatively poor, making
it challenging to accurately determine similarity scores between nodes. In such cases,
adopting a high global threshold may lead to the removal of some useful edges, causing
instability in the training process. To address this, we establish a dynamic threshold p̂l

ij,
which steadily increases with the number of network iterations t, preventing the premature
discard of useful edges during the early training phase, as shown below:

α = −δ−(t−1) + 1 (16)

p̂l
ij = αpl

ij (17)

where δ > 1 is a constant. Figure 3 illustrates the curve of α for different values of δ. It can
be observed that a smaller value of δ leads to a smoother change in α. Due to the adaptive
adjustment of pl

ij based on El
i and El

j , p̂l
ij will actually fluctuate and rise with the increase

in t.

Machines 2024, 12, x FOR PEER REVIEW 7 of 20

𝑞 = 1 𝐻 (13)

With the confidence of the nodes given, we can now calculate the confidence of the
edge 𝐶 , which depends on the confidences of nodes i and j: 𝐶 = 𝑞 𝑞2 (14)

Based on 𝐶 , we can calculate the corresponding threshold 𝑝 , and the process is as
follows: 𝑝 = 𝜏𝐶 (15)

where 𝜏 represents the global threshold, a constant. Since 𝐶 ∈ (0,1), 𝑝 will not exceed 𝜏 . 𝐶 changes with variations in 𝐸 and 𝐸 , enabling the adaptive adjustment of 𝑝
based on 𝐶 . The higher the value of 𝐶 , the greater the model’s confidence in that edge,
and 𝑝 becomes closer to 𝜏.

2.6. Dynamic Adjustment Strategy of the Thresholds
During the early stages of training, the model’s performance is relatively poor, mak-

ing it challenging to accurately determine similarity scores between nodes. In such cases,
adopting a high global threshold may lead to the removal of some useful edges, causing
instability in the training process. To address this, we establish a dynamic threshold �̂� ,
which steadily increases with the number of network iterations 𝑡, preventing the prema-
ture discard of useful edges during the early training phase, as shown below: 𝛼 = 𝛿 () 1 (16) �̂� = 𝛼𝑝 (17)

where 𝛿 > 1 is a constant. Figure 3 illustrates the curve of 𝛼 for different values of 𝛿. It
can be observed that a smaller value of 𝛿 leads to a smoother change in 𝛼. Due to the
adaptive adjustment of 𝑝 based on 𝐸 and 𝐸 , �̂� will actually fluctuate and rise with
the increase in 𝑡.

Figure 3. The curve of 𝛼 for different values of 𝛿.

This paper aims to discard edges below a threshold through adaptive thresholding
while leaving edges above the threshold unchanged. So, if the value of 𝑒 is below �̂� ,
we consider the relationship between these two nodes to be insignificant and set it to 0.
Conversely, no action is taken. The equation is expressed as follows:

Figure 3. The curve of α for different values of δ.

This paper aims to discard edges below a threshold through adaptive thresholding
while leaving edges above the threshold unchanged. So, if the value of el

ij1 is below p̂l
ij,

we consider the relationship between these two nodes to be insignificant and set it to 0.
Conversely, no action is taken. The equation is expressed as follows:

el
ij1 =

{
el

ij1, el
ij1 > p̂l

ij
0, el

ij1 ≤ p̂l
ij

(18)

2.7. Label Prediction and Loss Function

Through L rounds of iterative updates, the eL
ij in the last layer of the network can serve

as the final predicted edge label for the model. Let ŷij = eL
ij1, where ŷij ∈ [0, 1], represent

the probability that nodes i and j belong to the same category. By utilizing the predicted

Machines 2024, 12, 18 8 of 19

edge labels between support set samples and query set samples, we can determine the
predicted labels for the query set samples through weighted voting. Firstly, for node i, we
need to compute the probability p(k)i of it belonging to category k, as shown below:

p(k)i = so f tmax

 ∑
{j:j ̸=i

∧
(xj ,yj)}

ŷijδ
(
yj = Ck

) (19)

δ
(
yj = Ck

)
=

{
0, i f yj = Ck
1, otherwise

(20)

where Ck represents category k. Subsequently, we can calculate the predicted label ŷi for
node i using the following equation:

ŷi = argmax
([

p(k)i

]
k=1,2,...,N

)
(21)

where argmax(·) is a function that returns the index of the maximum value. Given the
predicted labels and true labels for each layer of query set samples, ADTGNN is trained by
minimizing the following loss function:

L =
L

∑
l=1

BCE
(

Y, Ŷl
)

(22)

where Y represents the set of true labels for the query set, Ŷl represents the set of predicted
labels for the l-th layer of the query set samples, and BCE(·) denotes the binary cross-
entropy loss function.

2.8. Fault Diagnosis Process

The fault diagnosis process of the proposed method is primarily divided into the
following steps, as illustrated in Figure 4:

Machines 2024, 12, x FOR PEER REVIEW 9 of 20

Figure 4. The fault diagnosis process of the proposed method.

3. Experimental Results and Analysis
To validate the effectiveness and to exhibit the superiority of the proposed ADTGNN,

this paper conducted a series of comparison experiments using the Case Western Reserve
University (CWRU) bearing dataset [28], the Paderborn University (PU) bearing dataset
[29], and the drivetrain dynamics simulator (DDS) bearing dataset.

3.1. Dataset Introduction
The CWRU dataset is a publicly available dataset widely utilized in bearing fault di-

agnosis research, collected on the experimental platform illustrated in Figure 5. It com-
prises vibration signals from motors working at 0 horsepower (hp) (1797 rpm), 1 hp (1772
rpm), 2 hp (1750 rpm), and 3 hp (1730 rpm). For each working condition, the dataset in-
cludes data from normal conditions (NCs), as well as various types of fault states. The
fault types primarily consist of inner race faults (IFs), outer race faults (OFs), and rolling
element faults (RFs). Electrical discharge machining is employed to simulate faults, with
each fault induced by three different fault diameters: 0.007, 0.014, and 0.021 inches. This
study conducts experiments using vibration signals collected from the drive end, with a
sampling frequency of 12 kHz and a signal length of 1024 for each sample. Table 1 pro-
vides a description of the working conditions used in this study.

Figure 5. Rolling bearing fault detection platform [28].

Table 1. Details of working conditions in the CWRU dataset.

Dataset Name Motor Loads (hp) Speed (rpm) Fault Type/Label
A 1 hp 1772 NC/0, RF/1–3, IF/4–6,

OF/7–9 B 2 hp 1750
C 3 hp 1730

The PU dataset is collected on a modular experimental platform, as illustrated in Fig-
ure 6. This modular experimental platform consists of an electric motor, torque test shaft,
rolling bearing test module, flywheel, and a load motor. By varying the speed of the drive

Figure 4. The fault diagnosis process of the proposed method.

Step 1: Initialize the network parameters of ADTGNN (θcnn, θv, θsim, etc.).
Step 2: Given a dataset Dknown containing a large number of labeled samples under

known working operating conditions, randomly select samples to form multiple few-shot
classification tasks.

Step 3: Utilize ADTGNN to predict labels for the query set samples.
Step 4: Calculate the loss based on the predicted labels and true labels of the query set

samples, and update the network parameters of ADTGNN using the gradient descent algorithm.
Step 5: If the training iterations reach the preset value, proceed to the next step;

otherwise, repeat Steps 2 to 4.

Machines 2024, 12, 18 9 of 19

Step 6: Employ the prior knowledge learned on Dknown to achieve fault diagnosis
on the target working condition dataset Dtarget, which contains only a small number of
labeled samples.

3. Experimental Results and Analysis

To validate the effectiveness and to exhibit the superiority of the proposed ADTGNN,
this paper conducted a series of comparison experiments using the Case Western Reserve
University (CWRU) bearing dataset [28], the Paderborn University (PU) bearing dataset [29],
and the drivetrain dynamics simulator (DDS) bearing dataset.

3.1. Dataset Introduction

The CWRU dataset is a publicly available dataset widely utilized in bearing fault diag-
nosis research, collected on the experimental platform illustrated in Figure 5. It comprises
vibration signals from motors working at 0 horsepower (hp) (1797 rpm), 1 hp (1772 rpm),
2 hp (1750 rpm), and 3 hp (1730 rpm). For each working condition, the dataset includes
data from normal conditions (NCs), as well as various types of fault states. The fault
types primarily consist of inner race faults (IFs), outer race faults (OFs), and rolling el-
ement faults (RFs). Electrical discharge machining is employed to simulate faults, with
each fault induced by three different fault diameters: 0.007, 0.014, and 0.021 inches. This
study conducts experiments using vibration signals collected from the drive end, with a
sampling frequency of 12 kHz and a signal length of 1024 for each sample. Table 1 provides
a description of the working conditions used in this study.

Machines 2024, 12, x FOR PEER REVIEW 9 of 20

Figure 4. The fault diagnosis process of the proposed method.

3. Experimental Results and Analysis
To validate the effectiveness and to exhibit the superiority of the proposed ADTGNN,

this paper conducted a series of comparison experiments using the Case Western Reserve
University (CWRU) bearing dataset [28], the Paderborn University (PU) bearing dataset
[29], and the drivetrain dynamics simulator (DDS) bearing dataset.

3.1. Dataset Introduction
The CWRU dataset is a publicly available dataset widely utilized in bearing fault di-

agnosis research, collected on the experimental platform illustrated in Figure 5. It com-
prises vibration signals from motors working at 0 horsepower (hp) (1797 rpm), 1 hp (1772
rpm), 2 hp (1750 rpm), and 3 hp (1730 rpm). For each working condition, the dataset in-
cludes data from normal conditions (NCs), as well as various types of fault states. The
fault types primarily consist of inner race faults (IFs), outer race faults (OFs), and rolling
element faults (RFs). Electrical discharge machining is employed to simulate faults, with
each fault induced by three different fault diameters: 0.007, 0.014, and 0.021 inches. This
study conducts experiments using vibration signals collected from the drive end, with a
sampling frequency of 12 kHz and a signal length of 1024 for each sample. Table 1 pro-
vides a description of the working conditions used in this study.

Figure 5. Rolling bearing fault detection platform [28].

Table 1. Details of working conditions in the CWRU dataset.

Dataset Name Motor Loads (hp) Speed (rpm) Fault Type/Label
A 1 hp 1772 NC/0, RF/1–3, IF/4–6,

OF/7–9 B 2 hp 1750
C 3 hp 1730

The PU dataset is collected on a modular experimental platform, as illustrated in Fig-
ure 6. This modular experimental platform consists of an electric motor, torque test shaft,
rolling bearing test module, flywheel, and a load motor. By varying the speed of the drive

Figure 5. Rolling bearing fault detection platform [28].

Table 1. Details of working conditions in the CWRU dataset.

Dataset Name Motor Loads (hp) Speed (rpm) Fault Type/Label

A 1 hp 1772 NC/0, RF/1–3,
IF/4–6,
OF/7–9

B 2 hp 1750
C 3 hp 1730

The PU dataset is collected on a modular experimental platform, as illustrated in
Figure 6. This modular experimental platform consists of an electric motor, torque test
shaft, rolling bearing test module, flywheel, and a load motor. By varying the speed of
the drive system, the radial force on the bearing, and the load torque of the drive system,
the PU dataset encompasses data from four working conditions. Table 2 provides detailed
information on the three working conditions used in this study. The detailed parameters of
the faulty bearings used in this study are presented in Table 3. The vibration signals used
were measured via a piezoelectric accelerometer at the top adapter of the rolling bearing
module, with a sampling frequency of 64 kHz and a signal length of 4096 for each sample.

Machines 2024, 12, 18 10 of 19

Machines 2024, 12, x FOR PEER REVIEW 10 of 20

system, the radial force on the bearing, and the load torque of the drive system, the PU
dataset encompasses data from four working conditions. Table 2 provides detailed infor-
mation on the three working conditions used in this study. The detailed parameters of the
faulty bearings used in this study are presented in Table 3. The vibration signals used were
measured via a piezoelectric accelerometer at the top adapter of the rolling bearing mod-
ule, with a sampling frequency of 64 kHz and a signal length of 4096 for each sample.

Figure 6. Modular experimental platform [29].

Table 2. Details of working conditions in the PU dataset.

Dataset Name Load Torque (Nm) Speed (rpm) Radial Force (N)
D 0.1 1500 1000
E 0.7 1500 400
F 0.7 1500 1000

Table 3. Detailed information on faulty bearings in the PU dataset used in this study.

Bearing Code Fault Type/LABEL Extent of Damage Damaged Length/Width (mm)
K001 NC/0 / /
KA03 OF/1 2 3/2
KA06 OF/2 2 3/3
KI03 IF/3 1 2/ 1
KI08 IF/4 2 3/1

The DDS dataset was collected on the drivetrain dynamics simulator of Spectra
Quest, as illustrated in Figure 7. Acceleration sensors were used at the parallel gearbox to
gather vibration signals of five different types of bearings at motor frequencies of 15 Hz,
20 Hz, and 25 Hz. These types include NC, IF, OF, RF, and a combination fault (CF). The
sampling frequency was set at 20 kHz, and the signal length for each sample was 2048.
Table 4 provides detailed information about the DDS dataset.

Figure 7. Drivetrain dynamics simulator.

Figure 6. Modular experimental platform [29].

Table 2. Details of working conditions in the PU dataset.

Dataset Name Load Torque (Nm) Speed (rpm) Radial Force (N)

D 0.1 1500 1000
E 0.7 1500 400
F 0.7 1500 1000

Table 3. Detailed information on faulty bearings in the PU dataset used in this study.

Bearing Code Fault Type/LABEL Extent of Damage Damaged
Length/Width (mm)

K001 NC/0 / /
KA03 OF/1 2 3/2
KA06 OF/2 2 3/3
KI03 IF/3 1 <2/ <1
KI08 IF/4 2 3/1

The DDS dataset was collected on the drivetrain dynamics simulator of Spectra Quest,
as illustrated in Figure 7. Acceleration sensors were used at the parallel gearbox to gather
vibration signals of five different types of bearings at motor frequencies of 15 Hz, 20 Hz,
and 25 Hz. These types include NC, IF, OF, RF, and a combination fault (CF). The sampling
frequency was set at 20 kHz, and the signal length for each sample was 2048. Table 4
provides detailed information about the DDS dataset.

Machines 2024, 12, x FOR PEER REVIEW 10 of 20

system, the radial force on the bearing, and the load torque of the drive system, the PU
dataset encompasses data from four working conditions. Table 2 provides detailed infor-
mation on the three working conditions used in this study. The detailed parameters of the
faulty bearings used in this study are presented in Table 3. The vibration signals used were
measured via a piezoelectric accelerometer at the top adapter of the rolling bearing mod-
ule, with a sampling frequency of 64 kHz and a signal length of 4096 for each sample.

Figure 6. Modular experimental platform [29].

Table 2. Details of working conditions in the PU dataset.

Dataset Name Load Torque (Nm) Speed (rpm) Radial Force (N)
D 0.1 1500 1000
E 0.7 1500 400
F 0.7 1500 1000

Table 3. Detailed information on faulty bearings in the PU dataset used in this study.

Bearing Code Fault Type/LABEL Extent of Damage Damaged Length/Width (mm)
K001 NC/0 / /
KA03 OF/1 2 3/2
KA06 OF/2 2 3/3
KI03 IF/3 1 2/ 1
KI08 IF/4 2 3/1

The DDS dataset was collected on the drivetrain dynamics simulator of Spectra
Quest, as illustrated in Figure 7. Acceleration sensors were used at the parallel gearbox to
gather vibration signals of five different types of bearings at motor frequencies of 15 Hz,
20 Hz, and 25 Hz. These types include NC, IF, OF, RF, and a combination fault (CF). The
sampling frequency was set at 20 kHz, and the signal length for each sample was 2048.
Table 4 provides detailed information about the DDS dataset.

Figure 7. Drivetrain dynamics simulator.

Figure 7. Drivetrain dynamics simulator.

Table 4. Details of working conditions in the DDS dataset.

Dataset Name Motor Frequencies (Hz) Fault Type/Label

G 15
NC/0, IF/1, OF/2,

RF/3, CF/4
H 20
I 25

Machines 2024, 12, 18 11 of 19

3.2. Experimental Setup

To validate the effectiveness of the proposed ADTGNN, this study constructed 18 cross-
condition few-shot fault diagnosis tasks based on these three datasets. Each task requires the
model to be trained on a known working condition dataset with a large number of labeled
samples and tested on a target working dataset with only a few labeled samples. Five
models were selected for comparison with the proposed ADTGNN: edge-labeling graph
neural network (EGNN) [30], prototypical network (PN) [31], relation network (RN) [32],
DenseNet [33], and ResNet [34]. EGNN serves as the baseline model for the ADTGNN, and
PN and RN have been widely used in recent years to address cross-condition few-shot fault
diagnosis problems. DenseNet and ResNet are two popular deep-learning-based classifiers.
Among them, PN, RN, EGNN, and ADTGNN use the same structure for feature extractors.
The network parameters for the ADTGNN are specified in Table 5. For the two parameters
τ and δ in the ADTGNN, this study set them to 0.4 and 1.005, respectively.

Table 5. The network parameters for the ADTGNN.

Module Name Configuration

GIM

Conv1d Channels: 16; kernel size: 1 × 32
BN + LR MaxPool1d (kernel size: 1 × 3)
Conv1d Channels: 32; kernel size: 1 × 3
BN + LR MaxPool1d (kernel size: 1 × 3)

NFUM

Conv2d Channels: 128, kernel size: 1 × 1
BN + LR Dropout(p:0.2)
Conv2d Channels: 128, kernel size: 1 × 1
BN + LR Dropout(p:0.2)

EFUM

Conv2d Channels: 128, kernel size: 1 × 1
BN + LR Dropout(p:0.2)
Conv2d Channels: 128, kernel size: 1 × 1
BN + LR Dropout(p:0.2)

ATCM + DTAS

The code used in this study is implemented on the Pytorch platform, employing the
Adam optimizer with an initial learning rate of 0.0001. The meta-training and meta-testing
rounds are set to 200 and 50, respectively. The computational platform used consists of
an Intel (R) Xeon (R) Silver 4210 CPU at 2.20 GHz and an NVIDIA GeForce RTX 2080Ti
GPU. To mitigate the impact of randomness, each experiment is repeated five times, and
the results are averaged.

3.3. Analysis of Experimental Results on the CWRU Dataset

In order to better showcase the superiority of the proposed model, we introduced
Gaussian white noise with a signal-tonoise ratio (SNR) of −6 dB into the original vibration
signals from the CWRU dataset. The formula for calculating the SNR is as follows:

SNR = 10lg
Ps

Pn
(23)

where Ps represents the power of the original signal, and Pn represents the power of the
signal with added noise. As the intensity of the added noise increases, the SNR decreases.
Taking the example of the inner race fault under 1 hp conditions, Figure 8 illustrates the
time-domain plots of the original vibration signal and the signal with added Gaussian
white noise at −6 dB. It can be observed that after adding the noise, the fault features are
obscured, significantly increasing the difficulty of fault diagnosis.

Machines 2024, 12, 18 12 of 19

Machines 2024, 12, x FOR PEER REVIEW 12 of 20

Taking the example of the inner race fault under 1 hp conditions, Figure 8 illustrates the
time-domain plots of the original vibration signal and the signal with added Gaussian
white noise at −6 dB. It can be observed that after adding the noise, the fault features are
obscured, significantly increasing the difficulty of fault diagnosis.

Figure 8. A comparison of the original signal and the signal with added noise under different loads.

Table 6 and Figure 9 display the experimental results of various models on the CWRU
dataset. In Table 6, A→B indicates that the model was trained on dataset A with a large
number of labeled samples and tested on dataset B with only a few labeled samples. It can
be seen that the accuracy of the proposed ADTGNN is consistently higher than that of
other comparative models across six cross-condition fault diagnosis tasks. Under the 1-
shot condition, ADTGNN achieves an average accuracy of 96.45%, surpassing EGNN by
2.83%. Under the 3-shot condition, ADTGNN demonstrates an average accuracy of
97.93%, exceeding EGNN by 2.26%. These findings highlight the superior performance of
ADTGNN. From Figure 9c, it can be observed that the average accuracy of various few-
shot learning models under 3-shot conditions is higher than that under 1-shot conditions.
This is well understood, as the more samples each class has, the more information the
model can learn about that class. Under the 1-shot condition, the average accuracies of
DenseNet and ResNet are significantly lower than the other four few-shot learning mod-
els. Especially in the C→A task, the accuracy of DenseNet is only 85.12%, and ResNet
achieves an accuracy of only 85.41%. The reason for this may be that traditional deep
learning training strategies hinder the models from acquiring better general experience,
making it challenging to handle fault diagnosis tasks across different operating condi-
tions.

Table 6. Experimental results on the CWRU dataset (add −6 dB Gaussian white noise).

Classification Task Model
Fault Diagnosis Task

A→B A→C B→A B→C C→A C→B Average

/
DenseNet 88.81% 92.62% 88.70% 91.42% 85.12% 86.24% 88.82%

ResNet 92.45% 91.24% 90.45% 92.61% 85.41% 90.83% 90.50%

10-way
1-shot

PN 91.21% 90.79% 93.91% 90.61% 91.79% 89.60% 91.33%
RN 91.32% 92.14% 94.46% 91.15% 93.56% 92.59% 92.54%

EGNN 95.26% 92.17% 96.03% 92.24% 93.98% 92.05% 93.62%
ADTGNN 96.89% 95.24% 97.13% 95.18% 97.31% 96.93% 96.45%

10-way
3-shot

PN 93.64% 92.80% 95.68% 93.20% 93.79% 90.59% 93.28%
RN 93.8% 93.41% 97.39% 95.02% 95.41% 94.79% 94.97%

EGNN 96.73% 94.83% 97.71% 95.78% 95.56% 93.38% 95.67%
ADTGNN 98.10% 96.76% 98.31% 97.38% 98.87% 98.18% 97.93%

Figure 8. A comparison of the original signal and the signal with added noise under different loads.

Table 6 and Figure 9 display the experimental results of various models on the CWRU
dataset. In Table 6, A→B indicates that the model was trained on dataset A with a large
number of labeled samples and tested on dataset B with only a few labeled samples. It
can be seen that the accuracy of the proposed ADTGNN is consistently higher than that
of other comparative models across six cross-condition fault diagnosis tasks. Under the
1-shot condition, ADTGNN achieves an average accuracy of 96.45%, surpassing EGNN
by 2.83%. Under the 3-shot condition, ADTGNN demonstrates an average accuracy of
97.93%, exceeding EGNN by 2.26%. These findings highlight the superior performance of
ADTGNN. From Figure 9c, it can be observed that the average accuracy of various few-shot
learning models under 3-shot conditions is higher than that under 1-shot conditions. This
is well understood, as the more samples each class has, the more information the model can
learn about that class. Under the 1-shot condition, the average accuracies of DenseNet and
ResNet are significantly lower than the other four few-shot learning models. Especially in
the C→A task, the accuracy of DenseNet is only 85.12%, and ResNet achieves an accuracy
of only 85.41%. The reason for this may be that traditional deep learning training strategies
hinder the models from acquiring better general experience, making it challenging to
handle fault diagnosis tasks across different operating conditions.

Table 6. Experimental results on the CWRU dataset (add −6 dB Gaussian white noise).

Classification Task Model
Fault Diagnosis Task

A→B A→C B→A B→C C→A C→B Average

/
DenseNet 88.81% 92.62% 88.70% 91.42% 85.12% 86.24% 88.82%

ResNet 92.45% 91.24% 90.45% 92.61% 85.41% 90.83% 90.50%

10-way
1-shot

PN 91.21% 90.79% 93.91% 90.61% 91.79% 89.60% 91.33%
RN 91.32% 92.14% 94.46% 91.15% 93.56% 92.59% 92.54%

EGNN 95.26% 92.17% 96.03% 92.24% 93.98% 92.05% 93.62%
ADTGNN 96.89% 95.24% 97.13% 95.18% 97.31% 96.93% 96.45%

10-way
3-shot

PN 93.64% 92.80% 95.68% 93.20% 93.79% 90.59% 93.28%
RN 93.8% 93.41% 97.39% 95.02% 95.41% 94.79% 94.97%

EGNN 96.73% 94.83% 97.71% 95.78% 95.56% 93.38% 95.67%
ADTGNN 98.10% 96.76% 98.31% 97.38% 98.87% 98.18% 97.93%

Machines 2024, 12, 18 13 of 19Machines 2024, 12, x FOR PEER REVIEW 13 of 20

Figure 9. The accuracy of various models on the CWRU dataset. (a) The accuracy of each model
under the 1-shot condition; (b) the accuracy of each model under the 3-shot condition; (c) compari-
son of average accuracy of few-shot learning models.

3.4. Analysis of Experimental Results on the PU Dataset
Table 7 and Figure 10 present the experimental results of various models on the PU

dataset. It can be observed that under both 1-shot and 3-shot conditions, ADTGNN out-
performs the other comparative models significantly. For instance, under the 1-shot con-
dition, ADTGNN achieves accuracies of 97.01% and 97.51% in the D→E and F→E tasks,
respectively, surpassing the second best by 2.47% and 6.08%. It is worth noting that under
both 1-shot and 3-shot conditions, the average accuracy of PN and RN is lower than that
of DenseNet and ResNeRN. The reason for this phenomenon may be that when there is a
significant difference in the data distribution between the source and target domains, the
relatively simple feature extractor structure of PN and RN prevents them from learning
better general knowledge. From Figure 10b and Figure 10a, we observe that the perfor-
mance of various models in the D→E and F→E tasks is lower compared to the other four
tasks. For example, under the 1-shot condition, EGNN achieves 100% accuracy in the D→F
task but only 94.54% and 91.43% accuracy in the D→E and F→E tasks, respectively. Re-
ferring to Table 2, the probable reason for this is that changes in radial force have a signif-
icant impact on the probability distribution of bearing vibration signals. This leads to a
substantial difference between known and target working condition data in the D→E and
F→E tasks, resulting in poorer performance across all models. However, even under these
conditions, the proposed ADTGNN outperforms the baseline EGNN, demonstrating the
effectiveness of the improvements introduced in this paper.

Table 7. Experimental results on the PU dataset.

Classification Task Model
Fault Diagnosis Task

D→E D→F E→D E→F F→D F→E Average

/
DenseNet 92.83% 100% 98.41% 99.60% 99.66% 94.49% 97.50%

ResNet 93.24% 100% 100% 100% 100% 92.8% 97.67%

5-way
1-shot

PN 79.98% 97.95% 93.58% 95.18% 90.75% 77.99% 89.24%
RN 84.78% 98.71% 97.98% 98.80% 98.30% 79.59% 93.03%

EGNN 94.54% 100% 100% 100% 100% 91.43% 97.66%
ADTGNN 97.01% 100% 100% 100% 100% 97.51% 99.09%

5-way
3-shot

PN 94.79% 100% 97.51% 96.73% 99.59% 89.19% 96.30%
RN 85.18% 100% 99.12% 99.51% 100% 81.97% 94.29%

EGNN 95.12% 100% 100% 100% 100% 94.54% 98.28%
ADTGNN 98.42% 100% 100% 100% 100% 98.82% 99.54%

Figure 9. The accuracy of various models on the CWRU dataset. (a) The accuracy of each model
under the 1-shot condition; (b) the accuracy of each model under the 3-shot condition; (c) comparison
of average accuracy of few-shot learning models.

3.4. Analysis of Experimental Results on the PU Dataset

Table 7 and Figure 10 present the experimental results of various models on the
PU dataset. It can be observed that under both 1-shot and 3-shot conditions, ADTGNN
outperforms the other comparative models significantly. For instance, under the 1-shot
condition, ADTGNN achieves accuracies of 97.01% and 97.51% in the D→E and F→E tasks,
respectively, surpassing the second best by 2.47% and 6.08%. It is worth noting that under
both 1-shot and 3-shot conditions, the average accuracy of PN and RN is lower than that
of DenseNet and ResNeRN. The reason for this phenomenon may be that when there is a
significant difference in the data distribution between the source and target domains, the
relatively simple feature extractor structure of PN and RN prevents them from learning
better general knowledge. From Figure 10b and Figure10a, we observe that the performance
of various models in the D→E and F→E tasks is lower compared to the other four tasks.
For example, under the 1-shot condition, EGNN achieves 100% accuracy in the D→F task
but only 94.54% and 91.43% accuracy in the D→E and F→E tasks, respectively. Referring to
Table 2, the probable reason for this is that changes in radial force have a significant impact
on the probability distribution of bearing vibration signals. This leads to a substantial
difference between known and target working condition data in the D→E and F→E tasks,
resulting in poorer performance across all models. However, even under these conditions,
the proposed ADTGNN outperforms the baseline EGNN, demonstrating the effectiveness
of the improvements introduced in this paper.

Table 7. Experimental results on the PU dataset.

Classification Task Model
Fault Diagnosis Task

D→E D→F E→D E→F F→D F→E Average

/
DenseNet 92.83% 100% 98.41% 99.60% 99.66% 94.49% 97.50%

ResNet 93.24% 100% 100% 100% 100% 92.8% 97.67%

5-way
1-shot

PN 79.98% 97.95% 93.58% 95.18% 90.75% 77.99% 89.24%
RN 84.78% 98.71% 97.98% 98.80% 98.30% 79.59% 93.03%

EGNN 94.54% 100% 100% 100% 100% 91.43% 97.66%
ADTGNN 97.01% 100% 100% 100% 100% 97.51% 99.09%

5-way
3-shot

PN 94.79% 100% 97.51% 96.73% 99.59% 89.19% 96.30%
RN 85.18% 100% 99.12% 99.51% 100% 81.97% 94.29%

EGNN 95.12% 100% 100% 100% 100% 94.54% 98.28%
ADTGNN 98.42% 100% 100% 100% 100% 98.82% 99.54%

Machines 2024, 12, 18 14 of 19Machines 2024, 12, x FOR PEER REVIEW 14 of 20

Figure 10. The accuracy of various models on the PU dataset. (a) The accuracy of each model under
the 1-shot condition; (b) the accuracy of each model under the 3-shot condition; (c) comparison of
average accuracy of few-shot learning models.

3.5. Analysis of Experimental Results on the DDS Dataset
Table 8 and Figure 11 display the experimental results of various models on the DDS

dataset. It can be observed that under 1-shot and 3-shot conditions, the proposed
ADTGNN outperforms the other comparison models across all six tasks. Under 1-shot
conditions, ADTGNN achieves an average accuracy of 94.20% across the six tasks, which
is 5.5% higher than EGNN. Under 3-shot conditions, ADTGNN achieves an average accu-
racy of 96.25%, surpassing EGNN by 4.02%. This can be attributed to the proposed ATCM
and DTAS, which enable ADTGNN to adaptively set thresholds, thereby discarding some
irrelevant edges and improving accuracy. From Figure 11a, it can be observed that the
performance of various models on the G→H and G→I tasks is relatively poor. The reason
for this may be the significant distribution difference between dataset G and dataset H,
resulting in the knowledge learned by the model in the source domain not effectively
transferring to the target domain, especially in cases with small sample sizes. It is observed
that under the 1-shot condition, the average accuracy of PN is only 82.03%, which is lower
than DenseNet with 83.58% and ResNet with 84.47%. The potential reason for this could
be that when there is only one sample per class, PN struggles to derive effective class
prototypes, leading to relatively poorer performance. Moreover, ADTGNN maintains rel-
atively high accuracy under the 1-shot condition. This is attributed to the transformation
of one-dimensional vibration signals into a graph, enabling ADTGNN to effectively lev-
erage relational information among samples during classification.

Table 8. Experimental results on the DDS dataset.

Classification Task Model
Fault Diagnosis Task

G→H G→I H→G H→I I→G I→H Average

/
DenseNet 88.41% 78.45% 86.01% 90.12% 73.66% 84.83% 83.58%

ResNet 86.40% 74.41% 87.66% 94.76% 70.76% 92.83% 84.47%

5-way
1-shot

PN 77.59% 73.54% 76.79% 92.31% 77.13% 94.79% 82.03%
RN 81.59% 78.79% 85.10% 93.59% 80.79% 92.39% 85.38%

EGNN 82.95% 83.60% 85.43% 98.24% 86.62% 95.35% 88.70%
ADTGNN 90.73% 93.58% 88.19% 98.86% 96.69% 97.13% 94.20%

5-way
3-shot

PN 86.79% 82.33% 87.63% 95.19% 83.14% 94.81% 88.32%
RN 83.49% 80.99% 88.79% 97.99% 83.19% 95.59% 88.34%

EGNN 88.73% 85.96% 89.72% 99.03% 92.77% 97.18% 92.23%

Figure 10. The accuracy of various models on the PU dataset. (a) The accuracy of each model under
the 1-shot condition; (b) the accuracy of each model under the 3-shot condition; (c) comparison of
average accuracy of few-shot learning models.

3.5. Analysis of Experimental Results on the DDS Dataset

Table 8 and Figure 11 display the experimental results of various models on the
DDS dataset. It can be observed that under 1-shot and 3-shot conditions, the proposed
ADTGNN outperforms the other comparison models across all six tasks. Under 1-shot
conditions, ADTGNN achieves an average accuracy of 94.20% across the six tasks, which
is 5.5% higher than EGNN. Under 3-shot conditions, ADTGNN achieves an average
accuracy of 96.25%, surpassing EGNN by 4.02%. This can be attributed to the proposed
ATCM and DTAS, which enable ADTGNN to adaptively set thresholds, thereby discarding
some irrelevant edges and improving accuracy. From Figure 11a, it can be observed
that the performance of various models on the G→H and G→I tasks is relatively poor.
The reason for this may be the significant distribution difference between dataset G and
dataset H, resulting in the knowledge learned by the model in the source domain not
effectively transferring to the target domain, especially in cases with small sample sizes.
It is observed that under the 1-shot condition, the average accuracy of PN is only 82.03%,
which is lower than DenseNet with 83.58% and ResNet with 84.47%. The potential reason
for this could be that when there is only one sample per class, PN struggles to derive
effective class prototypes, leading to relatively poorer performance. Moreover, ADTGNN
maintains relatively high accuracy under the 1-shot condition. This is attributed to the
transformation of one-dimensional vibration signals into a graph, enabling ADTGNN to
effectively leverage relational information among samples during classification.

Table 8. Experimental results on the DDS dataset.

Classification Task Model
Fault Diagnosis Task

G→H G→I H→G H→I I→G I→H Average

/
DenseNet 88.41% 78.45% 86.01% 90.12% 73.66% 84.83% 83.58%

ResNet 86.40% 74.41% 87.66% 94.76% 70.76% 92.83% 84.47%

5-way
1-shot

PN 77.59% 73.54% 76.79% 92.31% 77.13% 94.79% 82.03%
RN 81.59% 78.79% 85.10% 93.59% 80.79% 92.39% 85.38%

EGNN 82.95% 83.60% 85.43% 98.24% 86.62% 95.35% 88.70%
ADTGNN 90.73% 93.58% 88.19% 98.86% 96.69% 97.13% 94.20%

5-way
3-shot

PN 86.79% 82.33% 87.63% 95.19% 83.14% 94.81% 88.32%
RN 83.49% 80.99% 88.79% 97.99% 83.19% 95.59% 88.34%

EGNN 88.73% 85.96% 89.72% 99.03% 92.77% 97.18% 92.23%
ADTGNN 93.89% 96.50% 92.81% 99.12% 97.15% 98.04% 96.25%

Machines 2024, 12, 18 15 of 19

Machines 2024, 12, x FOR PEER REVIEW 15 of 20

ADTGNN 93.89% 96.50% 92.81% 99.12% 97.15% 98.04% 96.25%

Figure 11. The accuracy of various models on the DDS dataset. (a) The accuracy of each model under
the 1-shot condition; (b) the accuracy of each model under the 3-shot condition; (c) comparison of
average accuracy of few-shot learning models.

3.6. Analysis of Over-Smoothing Issue
Chen et al. [35] proposed that the over-smoothing issue in GNNs may result from the

excessive mixing of information and noise. In GNNs, interactions between nodes can
bring useful information or irrelevant noise. For instance, interactions between nodes of
the same class bring valuable information, making their representations closer to each
other. Conversely, interactions between the nodes of different classes introduce noise,
leading to learned representations that are indistinguishable. As the number of network
layers increases, the acquired noise gradually outweighs the useful information, resulting
in the over-smoothing problem. To validate the effectiveness of the proposed ATCM and
DTAS in addressing over-smoothing issues, this study investigated the performance of
EGNN and ADTGNN with different model layers in the challenging tasks of D→E and
F→E. The experimental results under the 1-shot condition are presented in Table 9 and
Figure 12.

Table 9. The accuracy of EGNN and ADTGNN under different model layers.

Fault Diagnosis Task Model
Model Layer

1 2 3 4 5

D→E EGNN 91.7% 95.28% 90.87% 88.34% 84.49%
ADTGNN 95.48% 97.01% 96.65% 95.07% 94.23%

F→E
EGNN 82.65% 91.43% 87.26% 84.24% 82.13%

ADTGNN 93.93% 97.51% 96.82% 95.71% 94.13%

Figure 11. The accuracy of various models on the DDS dataset. (a) The accuracy of each model under
the 1-shot condition; (b) the accuracy of each model under the 3-shot condition; (c) comparison of
average accuracy of few-shot learning models.

3.6. Analysis of Over-Smoothing Issue

Chen et al. [35] proposed that the over-smoothing issue in GNNs may result from
the excessive mixing of information and noise. In GNNs, interactions between nodes can
bring useful information or irrelevant noise. For instance, interactions between nodes of the
same class bring valuable information, making their representations closer to each other.
Conversely, interactions between the nodes of different classes introduce noise, leading
to learned representations that are indistinguishable. As the number of network layers
increases, the acquired noise gradually outweighs the useful information, resulting in the
over-smoothing problem. To validate the effectiveness of the proposed ATCM and DTAS
in addressing over-smoothing issues, this study investigated the performance of EGNN
and ADTGNN with different model layers in the challenging tasks of D→E and F→E. The
experimental results under the 1-shot condition are presented in Table 9 and Figure 12.

Table 9. The accuracy of EGNN and ADTGNN under different model layers.

Fault Diagnosis Task Model
Model Layer

1 2 3 4 5

D→E
EGNN 91.7% 95.28% 90.87% 88.34% 84.49%

ADTGNN 95.48% 97.01% 96.65% 95.07% 94.23%

F→E
EGNN 82.65% 91.43% 87.26% 84.24% 82.13%

ADTGNN 93.93% 97.51% 96.82% 95.71% 94.13%
Machines 2024, 12, x FOR PEER REVIEW 16 of 20

Figure 12. Accuracy comparison of EGNN and ADTGNN under different model layers. (a) Task
D→E; (b) Task F→E.

It can be observed that for tasks D→E and F→E, when the model has two layers, both
EGNN and ADTGNN achieve their highest accuracy. As the number of model layers in-
creases, there is a varying degree of decrease in accuracy for EGNN and ADTGNN. How-
ever, compared to EGNN, ADTGNN exhibits a more gradual decline. For instance, in the
D→E task, when the model has five layers, ADTGNN’s accuracy only decreases by 2.78%
compared to its peak accuracy. In contrast, EGNN’s accuracy drops by 10.79%. This indi-
cates that the proposed strategy in this paper effectively mitigates over-smoothing issues.

3.7. Selection of Parameter
In ADTGNN, a critical parameter, the global threshold 𝜏, has a substantial impact on

the model’s performance. The choice of τ directly affects the upper limit of the adaptive
threshold learned by the model. To explore the performance of ADTGNN under different
τ values, we conducted experiments under the 1-shot condition, focusing on the challeng-
ing tasks of D→E and F→E. In these experiments, ADTGNN had a model depth of two
layers, and the 𝛿 value was set to 1.005. The results of the experiments are depicted in
Table 10 and Figure 13.

Figure 13. Performance of ADTGNN under different 𝜏 values.

Figure 12. Accuracy comparison of EGNN and ADTGNN under different model layers. (a) Task
D→E; (b) Task F→E.

Machines 2024, 12, 18 16 of 19

It can be observed that for tasks D→E and F→E, when the model has two layers,
both EGNN and ADTGNN achieve their highest accuracy. As the number of model layers
increases, there is a varying degree of decrease in accuracy for EGNN and ADTGNN.
However, compared to EGNN, ADTGNN exhibits a more gradual decline. For instance, in
the D→E task, when the model has five layers, ADTGNN’s accuracy only decreases by 2.78%
compared to its peak accuracy. In contrast, EGNN’s accuracy drops by 10.79%. This indicates
that the proposed strategy in this paper effectively mitigates over-smoothing issues.

3.7. Selection of Parameter

In ADTGNN, a critical parameter, the global threshold τ, has a substantial impact on
the model’s performance. The choice of τ directly affects the upper limit of the adaptive
threshold learned by the model. To explore the performance of ADTGNN under different τ
values, we conducted experiments under the 1-shot condition, focusing on the challenging
tasks of D→E and F→E. In these experiments, ADTGNN had a model depth of two layers,
and the δ value was set to 1.005. The results of the experiments are depicted in Table 10
and Figure 13.

Table 10. The accuracy of ADTGNN under different τ values.

Fault Diagnosis Task
The Value of Global Threshold τ

0.1 0.2 0.3 0.4 0.5

D→E 94.01% 93.93% 94.71% 97.01% 93.35%
F→E 93.09% 93.38% 95.45% 97.51% 94.34%

Machines 2024, 12, x FOR PEER REVIEW 16 of 20

Figure 12. Accuracy comparison of EGNN and ADTGNN under different model layers. (a) Task
D→E; (b) Task F→E.

It can be observed that for tasks D→E and F→E, when the model has two layers, both
EGNN and ADTGNN achieve their highest accuracy. As the number of model layers in-
creases, there is a varying degree of decrease in accuracy for EGNN and ADTGNN. How-
ever, compared to EGNN, ADTGNN exhibits a more gradual decline. For instance, in the
D→E task, when the model has five layers, ADTGNN’s accuracy only decreases by 2.78%
compared to its peak accuracy. In contrast, EGNN’s accuracy drops by 10.79%. This indi-
cates that the proposed strategy in this paper effectively mitigates over-smoothing issues.

3.7. Selection of Parameter
In ADTGNN, a critical parameter, the global threshold 𝜏, has a substantial impact on

the model’s performance. The choice of τ directly affects the upper limit of the adaptive
threshold learned by the model. To explore the performance of ADTGNN under different
τ values, we conducted experiments under the 1-shot condition, focusing on the challeng-
ing tasks of D→E and F→E. In these experiments, ADTGNN had a model depth of two
layers, and the 𝛿 value was set to 1.005. The results of the experiments are depicted in
Table 10 and Figure 13.

Figure 13. Performance of ADTGNN under different 𝜏 values.

Figure 13. Performance of ADTGNN under different τ values.

It can be observed that ADTGNN performs best when τ = 0.4. An excessively high
τ may lead to the erroneous discarding of some useful edges, while an excessively low τ
may result in the ineffective filtering of irrelevant edges.

3.8. Ablation Experiment

To assess the impact of the proposed ATCM and DTAS on the overall performance of
the model, this study conducted ablation experiments on four challenging tasks. Here,

ADTGNN_1 indicates that the model does not use ATCM and DTAS. ADTGNN_2
indicates the model with a fixed threshold of 0.3 and without DTAS, while ADTGNN_3
indicates that the model only uses ATCM and not DTAS, with a τ value set to 0.4. The
experimental results are presented in Table 11. It can be observed that ADTGNN_3 ex-
hibits significantly higher accuracy across all four tasks compared to ADTGNN_2. This is
attributed to the proposed ATCM, which adaptively sets thresholds for each edge based

Machines 2024, 12, 18 17 of 19

on confidence, reducing the likelihood of erroneously discarding important edges. To
demonstrate the effectiveness of DTAS more distinctly, this paper plotted the testing ac-
curacy curves for ADTGNN_3 and ADTGNN in a specific experiment in Figure 14. As
seen in Figure 14, ADTGNN achieves higher accuracy more rapidly than ADTGNN_3,
particularly in tasks C→A and F→E. This is because during the early stages of training,
the model’s performance may be insufficient, and setting high thresholds could result in
erroneously discarding useful edges, leading to training instability. DTAS, by constructing
dynamic thresholds, effectively enhances training stability. Finally, it can be observed that
ADTGNN_1 exhibits the poorest performance among the four models. In summary, we can
conclude that both the proposed ATCM and DTAS contribute to the overall performance of
the model and are indispensable.

Table 11. The results of the ablation experiment.

Model
Fault Diagnosis Task

C→A C→B D→E F→E

ADTGNN_1 95.26% 92.17% 94.54% 91.43%
ADTGNN_2 95.67% 92.92% 94.73% 94.14%
ADTGNN_3 96.15% 94.56% 96.12% 96.37%

ADTGNN 96.89% 95.24% 97.01% 97.51%

Machines 2024, 12, x FOR PEER REVIEW 17 of 20

Table 10. The accuracy of ADTGNN under different τ values.

Fault Diagnosis Task
The Value of Global Threshold 𝝉

0.1 0.2 0.3 0.4 0.5
D→E 94.01% 93.93% 94.71% 97.01% 93.35%
F→E 93.09% 93.38% 95.45% 97.51% 94.34%

It can be observed that ADTGNN performs best when 𝜏 = 0.4. An excessively high 𝜏 may lead to the erroneous discarding of some useful edges, while an excessively low 𝜏
may result in the ineffective filtering of irrelevant edges.

3.8. Ablation Experiment
To assess the impact of the proposed ATCM and DTAS on the overall performance

of the model, this study conducted ablation experiments on four challenging tasks. Here,
ADTGNN_1 indicates that the model does not use ATCM and DTAS. ADTGNN_2 indi-
cates the model with a fixed threshold of 0.3 and without DTAS, while ADTGNN_3 indi-
cates that the model only uses ATCM and not DTAS, with a τ value set to 0.4. The experi-
mental results are presented in Table 11. It can be observed that ADTGNN_3 exhibits sig-
nificantly higher accuracy across all four tasks compared to ADTGNN_2. This is attributed
to the proposed ATCM, which adaptively sets thresholds for each edge based on confi-
dence, reducing the likelihood of erroneously discarding important edges. To demon-
strate the effectiveness of DTAS more distinctly, this paper plotted the testing accuracy
curves for ADTGNN_3 and ADTGNN in a specific experiment in Figure 14. As seen in
Figure 14, ADTGNN achieves higher accuracy more rapidly than ADTGNN_3, particu-
larly in tasks C→A and F→E. This is because during the early stages of training, the
model’s performance may be insufficient, and setting high thresholds could result in er-
roneously discarding useful edges, leading to training instability. DTAS, by constructing
dynamic thresholds, effectively enhances training stability. Finally, it can be observed that
ADTGNN_1 exhibits the poorest performance among the four models. In summary, we
can conclude that both the proposed ATCM and DTAS contribute to the overall perfor-
mance of the model and are indispensable.

Figure 14. The testing accuracy curves for ADTGNN_3 and ADTGNN. (a) Task C→A; (b) Task C→B;
(c) Task D→E; (d) Task F→E.

4. Conclusions

This paper proposes a novel cross-condition few-shot fault diagnosis method based
on ADTGNN. ADTGNN is primarily composed of four modules: the GIM, the NFUM,
the EFUMand the ATCM. Firstly, the one-dimensional vibration signal is transformed
into a graph using the GIM. The graph is then input into the NFUM and the EFUM for
feature transformation. The ATCM dynamically assigns thresholds to each edge based on
its confidence, adapting and optimizing the graph structure, thereby effectively alleviating
the over-smoothing issue in the graph. Furthermore, this paper proposed a DTAS, creating

Machines 2024, 12, 18 18 of 19

a dynamic threshold that gradually increases with the number of training iterations. This
approach aims to prevent the model from prematurely discarding crucial edges in the
early stages of training due to insufficient performance. Finally, fault diagnosis is achieved
through a weighted voting mechanism. The proposed method’s superiority is validated
through the construction of 18 cross-condition few-shot fault diagnosis tasks on three
bearing datasets.

However, in order to achieve fault diagnosis across different working conditions,
ADTGNN still relies on collecting a small number of labeled samples for each fault in
advance. In future work, we will endeavor to address this issue.

Author Contributions: Conceptualization, L.Z. and Y.J.; methodology, L.Z. and Y.J.; software, L.Z.;
validation, L.Z., Y.J. and H.J.; formal analysis, H.J.; investigation, C.T.; resources, W.J.; data curation,
Z.S.; writing—original draft preparation, L.Z.; writing—review and editing, L.Z.; visualization,
A.U.R.; supervision, Y.J.; project administration, Y.J. and H.J.; funding acquisition, Y.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
numbers: 51405449 and 51575497) and the Zhejiang Provincial Natural Science Foundation of China
(grant number: LZ22E050001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Acknowledgments: The authors give thanks to CWRU and PU for providing this research with the
open experiment data of rolling bearing faults.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pu, H.; Zhang, K.; An, Y. Restricted Sparse Networks for Rolling Bearing Fault Diagnosis. IEEE Trans. Ind. Inf. 2023, 19,

11139–11149. [CrossRef]
2. Zhang, X.; Wang, H.; Ren, M.; He, M.; Jin, L. Rolling Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and

SOA-SVM. Machines 2022, 10, 485. [CrossRef]
3. Mikic, D.A.; Desnicab, E.; Asonjac, A.; Stojanovicd, B.; Epifanic-Pajic, V. Reliability Analysis of Ball Bearing on the Crankshaft of

Piston Compressors. J. Balk. Tribol. Assoc. 2016, 22, 2060–5070.
4. Patil, A.A.; Desai, S.S.; Patil, L.N.; Patil, S.A. Adopting Artificial Neural Network for Wear Investigation of Ball Bearing Materials

Under Pure Sliding Condition. Appl. Eng. Lett. 2022, 7, 81–88. [CrossRef]
5. Vasić, M.; Stojanović, B.; Blagojević, M. Failure Analysis of Idler Roller Bearings in Belt Conveyors. Eng. Fail. Anal. 2020,

117, 104898. [CrossRef]
6. Xiong, J.; Liu, M.; Li, C.; Cen, J.; Zhang, Q.; Liu, Q. A Bearing Fault Diagnosis Method Based on Improved Mutual Dimensionless

and Deep Learning. IEEE Sens. J. 2023, 23, 18338–18348. [CrossRef]
7. Lin, T.; Zhu, Y.; Ren, Z.; Huang, K.; Gao, D. CCFT: The Convolution and Cross-Fusion Transformer for Fault Diagnosis of Bearings.

IEEE/ASME Trans. Mechatron. 2023, 1–12. [CrossRef]
8. Meng, Z.; Luo, C.; Li, J.; Cao, L.; Fan, F. Research on Fault Diagnosis of Rolling Bearing Based on Lightweight Model with

Multiscale Features. IEEE Sens. J. 2023, 23, 13236–13247. [CrossRef]
9. Zhang, K.; Li, Z.; Zheng, Q.; Ding, G.; Tang, B.; Zhao, M. Fault Diagnosis with Bidirectional Guided Convolutional Neural

Networks Under Noisy Labels. IEEE Sens. J. 2023, 23, 18810–18820. [CrossRef]
10. Wang, X.; Hua, T.; Xu, S.; Zhao, X. A Novel Rolling Bearing Fault Diagnosis Method Based on BLS and CNN with Attention

Mechanism. Machines 2023, 11, 279. [CrossRef]
11. Zhang, Y.; Zhou, T.; Huang, X.; Cao, L.; Zhou, Q. Fault Diagnosis of Rotating Machinery Based on Recurrent Neural Networks.

Measurement 2021, 171, 108774. [CrossRef]
12. Kim, H.; Lee, H.; Kim, S.; Kim, S.W. Attention Recurrent Neural Network-Based Severity Estimation Method for Early-Stage

Fault Diagnosis in Robot Harness Cable. Sensors 2023, 23, 5299. [CrossRef] [PubMed]
13. Zhang, Z.; Yang, Q.; Zi, Y.; Wu, Z. Discriminative Sparse Autoencoder for Gearbox Fault Diagnosis Toward Complex Vibration

Signals. IEEE Trans. Instrum. Meas. 2022, 71, 3522611. [CrossRef]
14. Yu, S.; Wang, M.; Pang, S.; Song, L.; Zhai, X.; Zhao, Y. TDMSAE: A Transferable Decoupling Multi-Scale Autoencoder for

Mechanical Fault Diagnosis. Mech. Syst. Signal Process. 2023, 185, 109789. [CrossRef]

https://doi.org/10.1109/TII.2023.3243929
https://doi.org/10.3390/machines10060485
https://doi.org/10.18485/aeletters.2022.7.2.5
https://doi.org/10.1016/j.engfailanal.2020.104898
https://doi.org/10.1109/JSEN.2023.3264870
https://doi.org/10.1109/TMECH.2023.3312935
https://doi.org/10.1109/JSEN.2023.3270880
https://doi.org/10.1109/JSEN.2023.3289948
https://doi.org/10.3390/machines11020279
https://doi.org/10.1016/j.measurement.2020.108774
https://doi.org/10.3390/s23115299
https://www.ncbi.nlm.nih.gov/pubmed/37300026
https://doi.org/10.1109/TIM.2022.3203440
https://doi.org/10.1016/j.ymssp.2022.109789

Machines 2024, 12, 18 19 of 19

15. Li, F.; Wang, L.; Wang, D.; Wu, J.; Zhao, H. Transfer Multiscale Adaptive Convolutional Neural Network for Few-Shot and
Cross-Domain Bearing Fault Diagnosis. Meas. Sci. Technol. 2023, 34, 125002. [CrossRef]

16. Jiang, X.; Zheng, J.; Zhuang, X.; Ge, Z. Ensemble Data Augmentation for Imbalanced Fault Diagnosis. IEEE Trans. Instrum. Meas.
2023, 72, 3528312. [CrossRef]

17. Wang, D.; Dong, Y.; Wang, H.; Tang, G. Limited Fault Data Augmentation with Compressed Sensing for Bearing Fault Diagnosis.
IEEE Sens. J. 2023, 23, 14499–14511. [CrossRef]

18. Huang, R.; Li, J.; Liao, Y.; Chen, J.; Wang, Z.; Li, W. Deep Adversarial Capsule Network for Compound Fault Diagnosis of
Machinery Toward Multidomain Generalization Task. IEEE Trans. Instrum. Meas. 2021, 70, 3506311. [CrossRef]

19. Zeng, M.; Li, S.; Li, R.; Li, J.; Xu, K.; Li, X. A Transfer-Learning Fault Diagnosis Method Considering Nearest Neighbor Feature
Constraints. Meas. Sci. Technol. 2023, 34, 015114. [CrossRef]

20. Wang, S.; Wang, D.; Kong, D.; Wang, J.; Li, W.; Zhou, S. Few-Shot Rolling Bearing Fault Diagnosis with Metric-Based Meta
Learning. Sensors 2020, 20, 6437. [CrossRef]

21. Lei, Z.; Zhang, P.; Chen, Y.; Feng, K.; Wen, G.; Liu, Z.; Yan, R.; Chen, X.; Yang, C. Prior Knowledge-Embedded Meta-Transfer
Learning for Few-Shot Fault Diagnosis under Variable Operating Conditions. Mech. Syst. Signal Process. 2023, 200, 110491.
[CrossRef]

22. Wang, H.; Wang, J.; Zhao, Y.; Liu, Q.; Liu, M.; Shen, W. Few-Shot Learning for Fault Diagnosis with a Dual Graph Neural Network.
IEEE Trans. Ind. Inf. 2023, 19, 1559–1568. [CrossRef]

23. Yang, C.; Liu, J.; Xu, Q.; Zhou, K. A Generalized Graph Contrastive Learning Framework for Few-Shot Machine Fault Diagnosis.
IEEE Trans. Ind. Inf. 2023, 1–10. [CrossRef]

24. Li, Q.; Han, Z.; Wu, X.-M. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Association for the Advancement of
Artificial Intelligence: Washington, DC, USA, 2018.

25. Zhao, L.; Akoglu, L. PairNorm: Tackling Oversmoothing in GNNs. ICLR’20. arXiv 2020, arXiv:1909.12223.
26. Rong, Y.; Huang, W.; Xu, T.; Huang, J. Dropedge: Towards Deep Graph Convolu—Tional Networks on Node Classification.

ICLR’20. arXiv 2020, arXiv:1907.10903.
27. Xiao, X.; Li, C.; Huang, J.; Yu, T.; Wong, P.K. An Improved Graph Convolutional Networks for Fault Diagnosis of Rolling Bearing

with Limited Labeled Data. Meas. Sci. Technol. 2023, 34, 125109. [CrossRef]
28. Case Western Reserve University Bearings Vibration Dataset. Available online: http://csegroups.case.edu/bearingdatacenter/

home (accessed on 12 November 2022).
29. Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition Monitoring of Bearing Damage in Electromechanical Drive Systems

by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification. In European Conference
of the Prognostics and Health Management Society; Prognostics and Health Management Society: Utrecht, The Netherlands, 2016.

30. Kim, J.; Kim, T.; Kim, S.; Yoo, C.D. Edge-Labeling Graph Neural Network for Few-Shot Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019.

31. Snell, J.; Swersky, K.; Zemel, R.S. Prototypical Networks for Few-Shot Learning. arXiv 2017, arXiv:1703.05175.
32. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.S.; Hospedales, T.M. Learning to Compare: Relation Network for Few-Shot

Learning. arXiv 2018, arXiv:1711.06025.
33. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018,

arXiv:160806993.
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
35. Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; Sun, X. Measuring and Relieving the Over-Smoothing Problem for Graph Neural

Networks from the Topological View. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12
February 2020; Association for the Advancement of Artificial Intelligence: Washington, DC, USA, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1361-6501/aced5b
https://doi.org/10.1109/TIM.2023.3307757
https://doi.org/10.1109/JSEN.2023.3277563
https://doi.org/10.1109/TIM.2020.3042300
https://doi.org/10.1088/1361-6501/ac8dae
https://doi.org/10.3390/s20226437
https://doi.org/10.1016/j.ymssp.2023.110491
https://doi.org/10.1109/TII.2022.3205373
https://doi.org/10.1109/TII.2023.3297664
https://doi.org/10.1088/1361-6501/acefea
http://csegroups.case.edu/bearingdatacenter/home
http://csegroups.case.edu/bearingdatacenter/home

	Introduction
	Proposed Method
	Problem Definition
	Graph Initialization Module
	Node Feature Update Module
	Edge Feature Update Module
	Adaptive Threshold Computation Module
	Dynamic Adjustment Strategy of the Thresholds
	Label Prediction and Loss Function
	Fault Diagnosis Process

	Experimental Results and Analysis
	Dataset Introduction
	Experimental Setup
	Analysis of Experimental Results on the CWRU Dataset
	Analysis of Experimental Results on the PU Dataset
	Analysis of Experimental Results on the DDS Dataset
	Analysis of Over-Smoothing Issue
	Selection of Parameter
	Ablation Experiment

	Conclusions
	References

