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Abstract: Platooning is generally known as a control method for driving a group of connected and
automated vehicles in motorway context. Nevertheless, platoon control might also work on urban
roads. One possible strategy to increase overall road traffic performance and to reduce congestion
in urban traffic networks is to combine platooning with traffic signal control at intersections. The
traffic flow can be maximized with coordinated scheduling of traffic signals together with platooning
activities, resulting in decreased travel times and fuel consumption. This paper investigates several
aspects of this combined control, such as the procedures for coordination and communication
between platooning vehicles and traffic signals. Efficient algorithms are suggested to optimize
platoon formation and dissolution at junctions and to change traffic signal phases depending on
platoon arrival and departure times. The proposed solutions have been tested and verified with
SUMO, a high-fidelity microscopic traffic simulator.

Keywords: platooning; dynamic traffic light; urban traffic control; urban platooning; SUMO traffic
simulation

1. Introduction

The term platooning [1] is used to describe the practice of forming a number of vehicles
into a tight, coordinated formation. Platooning formation has arisen as a form of efficient
vehicle convoy control [2] that has the potential to solve critical traffic issues, such as
congestion, traffic safety hazards, or air pollution problem. The practice of forming groups
of cars to travel in tight formation improves traffic flow by allowing more cars on the
road at once without causing additional congestion, thanks to the reduced but controlled
spacing between vehicles and guaranteed constant speeds. A further vital advantage
is that it is environmentally sustainable. When cars drive in a platoon, they are able to
maximize fuel economy and to reduce greenhouse gas emissions, two factors that are
crucial to the development of sustainable transportation systems [3]. Moreover, with the
recent developments of the automated vehicle functions [4,5], platooning is getting closer
to everyday application, possibly in the near future.

Technologically, platooning systems take advantage of classical control theory or
machine learning, as well as vehicle-to-vehicle (V2V) communication to mimic the efficiency
of natural phenomena like bird flocks. On the other hand, when it comes to regulating and
directing traffic flow in urban contexts, smart intersections shall become game-changers.
Smart intersections represent a subset of Intelligent Transport Systems (ITS) intending to
improve the effectiveness and safety of traffic flow in the vicinity of road crossings. Smart
junctions require the use of recent developments in sensing, processing, and communicating
data to realize traffic-responsive intersection management. In order to reduce traffic jams,
accident risks, and environmental effects, numerous smart intersection methods have been
investigated [6], and the potential has also been revealed when intersection control is
realized with the consideration of automated vehicle technologies [7,8].
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While platooning has been a hot topic of automotive developments for decades, vehicle
convoy control in an urban context combined with traffic lights is still an open problem with
limited solutions. Ref. [9] provides signal timing optimization in connected transportation
networks by considering platoons; however, no direct platooning control is applied in their
framework. There is also much research on control determining optimal speed profiles
for individual cars in the vicinity of signalized intersections, e.g., [10]. However, these
approaches do not provide a solution to platoon control. A pioneering work on this
topic is the paper of [11] (“Traffic Signal Control by Leveraging Cooperative Adaptive
Cruise Control (CACC) Vehicle Platooning Capabilities”). This study focuses on a new
cooperative traffic signal algorithm for enhancing the CACC vehicle string operation but
still has limitations. Firstly, it does not investigate a specific platooning algorithm; instead,
the paper only utilizes the characteristics of this technology. Regarding the traffic light
control logic, it only deals with the green time duration of the given signal phase (increasing
or decreasing) according to the volume of traffic. Furthermore, the signal control algorithm
cannot go back to the previous cycle, even if a sudden increase in traffic volume happens,
i.e., it has to complete the whole current cycle. In all, throughout our literature research, we
have identified several research gaps in the existing literature. Our study aims to address
the revealed gaps. We propose novel scientific contributions that advance the fields of
traffic signal control and CACC vehicle platooning.

As a summary of the state of the art in intelligent intersection control together with
platooning, we can conclude that the existing solutions are rather focused on traffic light
control based on the actual platooning data and do not intend to influence the platoon
control, i.e., a form of effective combined control has not been established yet. The main
scientific contributions of our work are itemized below, highlighting the main innovations.

• Compared with the state of the art in traffic light control methods, a PID (Proportional–
Integral–Derivative) controller-based platooning model was applied combined with
traffic light system (TLS) control.

• The proposed TLS logic is not limited to keeping the same Signal Phase and Timing
(SPaT) [12] cycle order as in previous solutions. Calculations give the needed time for
the current active lane with the actual vehicle, which is managed to initiate vehicle-
to-infrastructure (V2I) communication, and the TLS will trace that vehicle until it
successfully passes through the intersection (before it is allowed to open the TLS
controlling communication again).

• The proposed dynamic algorithm focuses on the approaching vehicles sending signals
to the traffic light (via V2I communication). Priority calculation is based on the speed
and location of vehicles, i.e., faster vehicles can cross the intersection more efficiently.

2. The State of the Art of Platooning Operation and Smart Intersections

In this part, a brief literature review is provided to review the state-of-the-art solutions
of platoon control.

2.1. Theoretical Framework of Platooning

Communication protocols and the dissemination of information play crucial roles
in the technological architecture of platooning. V2V communication is a crucial part of
the platooning ecosystem sharing information about their current location, speed, as well
as acceleration/deceleration. Dedicated Short Range Communication (DSRC), which is
largely utilized to provide collision prevention applications, cellular vehicle-to-everything
(C-V2X) technology, and upcoming 5G networks all support this kind of data transmission
in real time. “According to estimates from the U.S. Department of Transportation DSRC
can prevent up to 82% of all crashes in the country” [13], making it one of the principal
applications of V2V communication. Another use of V2V is present in CACC systems,
where cars form platoons and modify their speeds based on the information they obtain
from the vehicles ahead of them [14]. When cars move in convoy, the front vehicle shields
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the rear vehicles from the wind, lowering the drag they experience, i.e., the cars behind can
greatly benefit from this phenomenon, which is known as slipstreaming or drafting [15].

When it comes to platooning, sensor systems play crucial roles in collecting data.
Multiple types of vehicle sensors, including radar, LIDAR (Light Detection and Ranging),
ultrasonic, radar, optical cameras, infrared, and vision sensors, collaborate to provide a
detailed, real-time image of the world around the vehicle [16]. These parts are essential
for the safety and effectiveness of platooning because they identify possible obstructions,
track vehicle attributes, and monitor the actions of neighboring road users in real time [17].
Sensor fusion [18] is also essential for overcoming the difficult challenge of moving object
recognition and tracking in autonomous vehicles.

Control systems [17] serve as the platooning operation’s central nervous system by pro-
cessing information from the vehicle sensors and adjusting the vehicle behavior accordingly.
CACC and similar technologies are also embedded in these control systems [19]. Important
processes including acceleration, deceleration, steering, and braking are controlled by their
interpretation of the vast amounts of sensory data. They do this by constantly updating the
cars’ speed and direction based on real-time data, allowing for the most efficient formation
possible while also improving fuel economy and traffic flow. The general flowchart of the
platooning architecture is illustrated in Figure 1. Primarily, it comprises three key stages.
The initial stage involves information perception, as previously discussed, followed by the
application of various platooning algorithms in the subsequent phases. Formation and
coordination algorithms, or merging and leaving algorithms are the foundation of a platoon-
ing system, ensuring that vehicles within a platoon behave predictably and cooperatively.
These algorithms strike a balance between efficient traffic flow and road safety, enabling the
safe entry and exit of vehicles onto the highway while reacting appropriately to changes
in speed or direction initiated by the lead vehicle. The longitudinal control algorithm,
represented later by the PID controller, serves as CACC, and governs the acceleration and
deceleration of platoon vehicles, maintaining consistent distances and smoothing traffic
flow. Equally crucial are lateral control algorithms, responsible for keeping vehicles within
their lanes, enhancing platoon stability, and reducing lane departure incidents. These
algorithms play a significant role in maintaining platoon cohesion, ensuring driver safety,
and optimizing traffic control. And lastly, the controller can take an action.

Figure 1. Platooning architecture flowchart.
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2.2. Smart Intersections

Platoons of cars can improve their efficiency and lessen traffic congestion by communi-
cating with smart traffic lights. Some platoon movements that may be used in conjunction
with an intelligent traffic signal system are as follows: before the platoon reaches the
junction, the light is preemptively changed to green by sending a signal to the traffic
light system. This means the platoon can get to the junction just as the light turns green,
saving time otherwise spent waiting. Multiple options for improving platoon efficiency
and overall traffic flow at traffic light intersections are provided by the intelligent traffic
light system. Green wave (or coordinated control of TLS) coordinates the timing and
phases of traffic lights along a route such that a platoon traveling at a certain speed always
arrives at green lights. This shortens the time it takes between platoon stops and increases
productivity. Platoons are more productive on the road because of this prioritizing, which
reduces wait times and guarantees a smooth passage for them. Platooning vehicles may
benefit from real-time traffic information and make more educated judgments about speed,
formation, and route. Platoons can improve their road safety and efficiency by planning
ahead for things like traffic signal changes and anticipated congestion. In all, intelligent
TLS techniques and characteristics play a crucial role in improving traffic flow at crossings,
decreasing congestion, and optimizing platoon travel. The technology enhances efficiency,
cuts down on delays, and promotes a safer and more convenient trip for all road users by
permitting seamless coordination between platoons and traffic signals.

To function, smart intersections must rely on one-way or rather two-way communi-
cation networks, such as V2I, I2V, or infrastructure-to-infrastructure (I2I) communication.
With the use of V2I communication, traffic lights can update drivers on traffic conditions
in real time, allowing drivers to modify their speeds to ease congestion, save money
on gas, and cut down on pollution. Optimizing traffic flow and facilitating informed
decision-making are both facilitated by I2I communication between traffic control devices
and central traffic management systems. Real-time traffic management enables V2I and
I2V connections, in which the information is shared among cars and traffic management
systems. With V2V communication, automobiles may coordinate and travel more safely
by exchanging data about their current conditions. Advanced communication technolo-
gies like Dedicated Short Range Communication (DSRC), cellular networks, and satellite
communications or upcoming 5G networks are only some of the technologies used by
these networks [20,21]. Having access to SPaT provides a number of benefits. Green
Light Optimal Speed Advisory (GLOSA) [7] or Green Light Optimal Dwell Time Advisory
(GLODTA) [22] are two driver assistance systems that may be implemented and integrated
with this upgrade to the regular Transit Signal Priority [23].

3. Methodology for Combined Platooning and Dynamic Traffic Light Control

In this part, the detailed methodology for combined control of platooning and TLS
is provided.

3.1. Test Bed for Algorithm Development and Testing: SUMO and TraCI

Throughout our research, a validated simulation test bed was applied. SUMO (Simulation
of Urban Mobility) [24] is an open-source, microscopic traffic simulation software, which also
provides a flexible extension for customizable interfacing with the simulation, called TraCI
(Traffic Control Interface). SUMO and TraCI enable realistic, simulation-based analysis. In a
SUMO simulation, each car is considered as individual agent with the so-called car-following
(microscopic) driving behaviour. SUMO together with TraCI allows users to set the vehicle
parameters, the road network, and the simulation during run time. These software tools provide
an efficient method for simulating and analyzing a wide range of potential road conditions
that platooning cars may experience. Our investigation of SUMO and TraCI’s fundamental
capabilities will shed light on how these tools might be used to model platooning systems in
simulation. We intend to provide a holistic view of how various simulation settings aid in our
knowledge of and progress toward platooning technology through our investigation.
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3.2. Platooning Realization Using PID Control

We provide a summary of the platooning realization with a PID controller using SUMO
TraCI programming. In a platoon, a number of vehicles move in close proximity to each other
in a synchronized fashion, which can be regulated by a properly designed PID controller.
In order to perform smooth dynamics, vehicles within the platoon must coordinate their
speed, location, and distance compared with the others. In real-world realization, detecting
obstacles, keeping appropriate distances, or enabling coordinated actions are all supported
by the use of cutting-edge sensors and automated systems. The PID controller is designed
by assuming these technologies as available and generally following the workflow shown
in Figure 2. This figure illustrates the formation and management of platooning on the
road. The process begins with a vehicle scanning the road for a suitable leader based on
specific criteria, including a matching destination and an acceptable gap distance. When
these criteria align, the vehicle transitions into a follower role, gradually closing the gap to
the leader. Subsequently, a PID controller assumes control to maintain a consistent distance
between the follower and the leader. Alternatively, if the vehicle cannot identify a suitable
leader, it can take on the role of a leader, guiding other followers in the platoon.

Figure 2. Platooning PID algorithm flowchart.
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3.2.1. Target Vehicle Selection

In platooning, target vehicle selection refers to the process by which a platooning
system identifies and selects a certain vehicle to operate as the platoon’s leader or target.
This decision is critical for getting and keeping a platoon of cars on the road. The chosen tar-
get vehicle usually contains particular characteristics or satisfies certain requirements that
qualify it to lead the platoon. These criteria may include elements such as the destination
being the same as that of the follower vehicles, the vehicle’s speed, its ability to maintain a
consistent pace, and its compatibility with the platoon’s objectives. Target vehicle selection
is an important part of platooning technology since it affects the platoon’s overall perfor-
mance and cooperation on the road. The algorithm shall select a target vehicle for each
of the followers by applying certain conditions. First, the logic checks if the leader and
follower are in the same lane. Then, the distance between them will be calculated. In the
controlled case, the software will instruct the follower to move at a predetermined speed.

3.2.2. The Applied PID Controller

In control engineering, the Proportional–Integral–Derivative (PID) controller is a well-
known and effective method for influencing the system behavior in a feedback control
system. In our platooning approach, the PID controller considers the target vehicle’s speed
and acceleration, as well as the distance between the leader and the follower, to deter-
mine the appropriate reference velocity for the followers at all times. If the controller
detects a target vehicle, the follower’s speed is determined with the controller function (see
Equation (1)). In the SUMO simulation test bed, vehicle data (including locations, lanes,
speeds, and distances) were all retrieved via specific TraCI methods. Based on the retrieved
data, the implemented PID controller provides the controlled speed function as follows:

vcont = vi + min[0.8, Kp · ∆v + Ki ∗ (∆d − H) + Kd · ∆acc] (1)

The control input function, provided by Equation (1), requires four parameters and
three coefficients that have been carefully selected to ensure the best platooning perfor-
mance and to maintain a smooth formation, i.e., larger values may result in automatic
emergency braking, AEB, while smaller values lead toward less efficient controller algo-
rithm, where ∆ always represents the difference between a given parameter at the leader
and that of the follower. vi denotes the follower car’s current velocity. ∆v represents the
difference in vehicles’ speeds, which is weighted by the proportional term Kp (Kp = 0.4
was chosen to provide a reasonable response to changes in ∆v). ∆d is the actual headway
distance (difference between the front bumpers of the leader and follower), while H is
the target headway distance to be achieved. We use headway and not clearance in this
equation, since we are dealing with TraCI language programming, which only measures the
headway but not clearance. For example, if we want to keep the clearance at 6 m, then we
should add the vehicle length to it, so we can obtain the desired total headway H; now, we
are able to subtract it from ∆d. In this way, the clearance was kept at 6m. The integrator part
of the PID controller multiplies the difference between the target and the current distance,
i.e., the term Ki · (∆d − H) modifies the control input by eliminating the steady-state error
(Ki = 0.02 was chosen to minimize steady-state errors and to maintain system stability).
∆acc is the acceleration difference between the leader and follower vehicles. The derivative
term Kd of the PID controller weights ∆acc so that the control input is also influenced by the
acceleration difference of the vehicles. On the other hand, Kd intends to stabilize the system
response (Kd = 0.1 was chosen to reduce overshoot and improve transient response).

The min(0.8, . . .) function ensures a practical constraint so that the speed adjustments
never go above a specified threshold (maximum 0.8 m/s).

3.2.3. Choosing an Appropriate Clearance Parameter

The desired safety level, traffic circumstances, and vehicle characteristics and the
intended use of the platooning system all play important roles in defining the optimal
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clearance value for platoon formation (Figure 3). This diagram illustrates a standard platoon
on the road, with the leader designated in green and the followers indicated in yellow.
When setting up a platoon, the clearance parameter determines the desired clearance
distance or time gap (if it is measured as time) between the leader’s tail and the follower’s
front in the platoon. The clearance must ensure the safe dynamics of the platoon even in
the case of sudden maneuvers, i.e., rapid braking or steering. The optimal clearance is to
be adaptable depending on the traffic volume and average velocity on the given road link.
For instance, bigger clearance is needed in the case of heavy traffic together with higher
speed. Furthermore, the specific features of the cars (acceleration/deceleration capability or
reaction time) must be considered in the platoon. Besides the vehicle-specific characteristics,
the general objective of the platooning also influences the applied clearance, e.g., if traffic
flow maximization is the top priority, smaller headway is preferred so that as many cars
as possible may leverage the given road capacity. Furthermore, guidelines or regulations
for the minimum allowable headway parameter may be provided by local legislation or
industry standards in the future. Figure 4 is a result of testing platooning performance
where it experiences different clearance values at 1 m, 6 m, or 15 m. So, at each clearance
value, we have conducted two experiments, a controlled scenario (platooned) and non-
controlled one (traditional human driving). We measured the performance metrics (travel
time, fuel consumption, and CO2 and NOX emissions) in each case and then calculated
the percentage change as platooning was applied. Equation (2) was used to calculate the
relative change.

PercentageChange = (platoonedValue − nonPlatoonedValue)/nonPlatoonedValue (2)

What this study suggests is that applying different clearance values will result in
different performance outcomes. Overall, clearance distance is a very crucial part of
platooning, and choosing the best value will be affected by numerous factors regarding
each road trip. It can be experienced and then tested, so we can always start with the
smallest achievable clearance and then increase it gradually, and by using optimization, we
can obtain the best clearance distance to achieve the best results.

Figure 3. Example for internal clearance distance.

3.3. Dynamic Traffic Light System (Dynamic TLS)

In order to further develop classical platooning, it is combined with a dynamic traffic
light control where the TLS phases are adjusted according to the location, velocity, and ac-
celeration of approaching cars. The designed system is also tested and evaluated in the
SUMO TraCI framework.
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Figure 4. Effect of clearance to the platoon performance metrics.

3.3.1. Methodology

In the developed methodology, each simulated car may interact with the next traffic
light to determine its phase in advance. The vehicles also know the location of the subse-
quent traffic light along their route. In the TLS phase (red, yellow, or green), the amount
of time left before the light changes, the vehicle’s current speed, and acceleration are all
retrieved based on control logic. The suggested adaptive traffic light control system exploits
the V2I’s ability to enhance traffic flow and to lessen the number of instances where vehicles
must wait for green signals. Significant potential exists for this approach to be implemented
in real-world settings, where it has the ability to improve energy efficiency and to decrease
traffic congestion.

First, the controller program retrieves the list of currently active vehicles on the road
using. If there are vehicles in the platoon, then the program enters a loop to perform
platoon control for each vehicle. Inside the loop, if we have active vehicles, it proceeds
with the platoon control logic. The program retrieves the lane ID of the current vehicle
and determines the upcoming traffic light ID based on the vehicle’s lane using a custom
function. If a traffic light ID is found, the program retrieves the program logic for the traffic
light. It then proceeds to extract various information related to the current state of the traffic
light, the remaining time until the next switch, vehicle position, and traffic light position.
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Next, the algorithm calculates the remaining distance until the upcoming traffic light. If the
distance is less than a certain threshold, the condition is applied; therefore, the sequence
turns off the green light from the opposite lane and goes through a yellow phase and then
ultimately switches to a green phase for our target vehicle.

3.3.2. Retrieving the Actual Traffic Signal Phase

Initially, the program looks for where the green phase is, which allows platoon vehicles
to proceed. Retrieving the green phase is achieved with the following algorithm sequence.

• Retrieve TLS-controlled lanes and the current vehicle lane;
• Loop over the TLS-controlled lanes and match the position (index) of the current

vehicle lane;
• Retrieve this index, and store it;
• Retrieve the TLS complete logic program and then go through all available phases;
• Check where we have the green phase using the current vehicle lane index.

Figure 5 demonstrates an example of the TLS information retrieval with the SUMO
TraCI code.

Figure 5. TraCI TLS logic information example.

3.3.3. Situation Awareness

The situation awareness algorithm task is to recognize the whole intersection situation.
In our case, we were dealing with TraCI commands, but in general, the task’s purpose is to
identify for each vehicle approaching the traffic light the current traffic light state (more
specifically to learn which phase has a green light, and in which phase the opposite lane
has both red and yellow lights. Figure 6 represents the generated intersection configuration
map for each approaching vehicle.

The algorithm’s output is comprehensive knowledge of the intersection’s traffic light
conditions for the platoon’s lane and all other lanes. The platoon’s movements may be
coordinated, and traffic flow may be optimized with the use of this data.

3.3.4. Calculating Distance Threshold

The primary procedure begins with the determination of a vehicle’s distance threshold
in a simulated traffic environment. As a safety measure in the event of failed V2I commu-
nication, this threshold can be utilized to ascertain whether a vehicle can completely stop
before approaching a red traffic light. Distance threshold represents the safest distance a
car needs to perform a full stop in case of V2I communication failure. The first step is to
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obtain the current vehicle motion parameters, speed, and deceleration. Figure 7 represents
the threshold distance calculation based on vehicle speed.

Figure 6. Generated intersection configuration map—V2I.

Figure 7. Effect of vehicle speed on threshold distance.

3.3.5. Traveled Distance (1)

Traveled distance (1) is the distance the vehicle would travel during the yellow light
phase tyellow of the other lanes (the specific lane that we want to change its state from
(green–yellow–red), depending on its speed vveh:

TraveledDistance(1) = vveh · tyellow (3)

3.3.6. Traveled Distance (2)

Traveled distance (2) is related to the distance a vehicle would travel during the mo-
ment when the driver starts to hit the brake pedals (we assume that the current deceleration
is 0) until reaching maximum deceleration. Now, the generative deceleration value must
be defined.

It is a “GENERATIVE VALUE” because it creates a value that an intelligent TLS needs
to assist the intersection situation and to determine which vehicle takes priority in going
through the intersection first.

The idea of the generative deceleration value refers to the amount of deceleration that
a vehicle produces in response to particular driving circumstances. It stands for a vehicle’s
ability to slow down quickly and effectively, which affects things like stopping distance,
driver comfort, and overall safety. The braking system, tire traction, weight distribution,
and other aspects unique to each vehicle all play a role in determining the generative
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deceleration value. The maximum deceleration the vehicle is capable of achieving during
braking maneuvers is affected by all of these variables taken together. Controlled testing
is carried out, sometimes on specialized tracks or controlled settings, where the vehicle’s
braking ability is assessed under defined conditions in order to determine the generative
deceleration value.

Driver errors are a common occurrence and must be considered, but it is challenging
to predict the exact types and sources of these errors. The ability of a vehicle to slow down
depends on both the driver’s skills and the vehicle’s capabilities. One practical solution
to address this challenge is to measure deceleration based on historical records. Vehicles
can keep records of a driver’s past behavior, including their typical deceleration when
performing a full stop. By calculating the driver’s average deceleration in such situations,
we can use this value as a reliable estimate. For the sake of simplicity, in this study, we
have assumed that maximum deceleration is −4.5 m/s2.

Now, let us find the rate of change in deceleration ∆acc (the situation where a driver
decided to stop the moving vehicle car from a certain speed; in case the vehicle does not
undergo either acceleration or deceleration, then accinitial = 0 m/s2):

∆acc =
accmax − accinitial

t
=

−4.5 − 0
1

= −4.5 m/s3 (4)

The deceleration function is as follows:

a(t) = accinitial + ∆acc · t (5)

where accinitial = 0 is assumed. Now, we need to calculate traveleddistance(2) starting
from applying deceleration until hitting the max deceleration, given the time period. It is
assumed that normally, it will take 1 s to reach a maximum deceleration value (−4.5 m/s2),
starting from 0 deceleration. It may look like the one-second calculations are not needed,
but when we are talking about the dynamic traffic model for speeding up vehicles and
considering a large network where we need to calculate precisely which vehicle takes
priority in passing the intersection first, then this one-second time is very significant.

In order to calculate the traveled distance in this phase, where the vehicle undergoes
a continuously changing deceleration (from 0 to −4.5 m/s2). First, we need to find the
velocity function during this period by integrating the deceleration function, taking into
account the initial (current) velocity:

v(t) =
∫

a(t) dt =
∫

accinitial + ∆acc · t dt =
∫

∆acc · t dt (6)

v(t) =
−1
2

· ∆acc · t2 + C (7)

Given that the initial speed vinit at time 0 (m/s) is

v(0) = vinit =
−1
2

· ∆acc · 02 + C, (8)

C = vinit (9)

the velocity function is as follows:

v(t) =
−1
2

· ∆acc · t2 + vinit

Now, we can find the reduced speed after reaching the maximum deceleration at
t = time_period s, where we assumed t = 1:

v(t) =
(
−1

2

)
· ∆acc + vinit (10)
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Now, we integrate the velocity function to find the distance function “Used for Trav-
elled Distance (2)”:

TraveledDistance(2) =
∫

v(t) dt =
∫ (

−1
2

)
· ∆acc + vinit dt (11)

TraveledDistance(2) =
(
−1

6

)
· ∆acc · t3 + vinit · t + D (12)

The constant D is irrelevant since we are interested in the traveled distance, as at time
0, the traveled distance is zero, so D = 0 (we still have not applied the deceleration yet).

3.3.7. Traveled Distance (3)

From max deceleration until full stop: After reaching the maximum deceleration
value, we will assume the perfect case; the vehicle will undergo a fixed deceleration value
(applying the maximum = −4.5 m/s2), so this value will not change during the remaining
stopping distance and will remain fixed. To calculate the traveled distance required for the
vehicle to stop, we can use the following equation:

u2 = v2 + 2as (13)

where

• u is the final velocity (0 m/s, as the vehicle stops);
• v is the reduced speed (m/s);
• a is the deceleration (Max_Deceleration_change m/s²);
• s is the traveled distance.

We want to find s, so we can rearrange Equation (13):

TraveledDistance(3) = s =
u2 − v2

2a
(14)

Thus, the vehicle would need to travel approximately traveleddistance(3) meters to
arrive at a complete stop given u = 0 m/s, a = −4.5 m/s2. And finally, we can calculate
the threshold distance for each moving vehicle:

DistanceThreshold = TraveledDistance(1) + TraveledDistance(2) + TraveledDistance(3) (15)

3.4. Initiating Green Traffic Light Phase (Main Algorithm)

If one of these conditions is met, then we can initiate the sequence of turning the green
light on, where a complex condition in the “if-statement” compares two possibilities (TLS
logic-gate-based decisions, see Figure 8: Making decisions based on which conditions are
applied (TLS logic-gate-based decision).

• (Remaining distance < threshold) and (TLS buffer memory is empty).
• (Remaining distance < threshold) and (TLS buffer memory has the same ID as the

vehicle).

The sequence of switching to the green light will be proposed considering the follow-
ing procedure:

• If we have a yellow light, then initiate a green light.
• If we have a red light, then turn the traffic light of the other lanes to yellow immediately.
• After the yellow light is complete for the other lanes, then turn them immediately

to red.
• Turn our traffic light to green if we meet all the possibilities.
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Figure 8. The flowchart of the TLS logic.

3.5. Introducing TLS Memory Buffer

TLS memory buffer is responsible for keeping only one vehicle in an active regulator
state for the traffic light, i.e., no other vehicles can control the traffic light while there is
active communication between the TLS and the given vehicle (see example in Figure 9).
TLS memory buffer works according to the logic as follows:

• If a vehicle has initiated a V2I communication and it can control the TLS logic, then
any other communication is blocked.

• If the vehicle has successfully passed the intersection, then the memory is wiped
to allow other communication.

• If the actual communication has been lost, then then the memory is wiped to allow
other communication.

Figure 9. TLS memory buffer information example.
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4. Discussion

In this part, we discuss the test network configuration as well as the simulation-based
performance testing.

4.1. Configuring Test Traffic Network

Budapest’s District XIV has been selected as the region of demonstration for assessing
traffic characteristics and has been generated as a SUMO network. This area was chosen
due to its suitability for researching traffic patterns and analyzing transportation systems.
This is an urban environment that experiences significant vehicular and pedestrian traffic.
In addition, this district has a complex road system with both major arterials and residential
roads. This highly variable network topology permits the study of numerous traffic scenar-
ios and the evaluation of traffic performance under varying environmental circumstances.
The chosen area for testing is 2.3 km2, where the total road link length is 123.93 km, the total
number of lanes is 1398, the total number of nodes 654 (we refer to intersections as nodes as
we follow SUMO conventions; also, this number includes the network entrances and exits).
Regarding traffic flow, vehicles generally maintain a smoother and more consistent pace,
with decent levels of congestion and reduced delays compared with that at peak hours.
Drivers can often travel at or near the posted speed limits, and there is generally a medium
density of vehicles on the road, but allowing for convenient lane changes and merging, the
number of signalized intersections is 16. In this test, we simulated 2135 vehicle trips.

4.2. Results

The main results of the simulations are tabulated into Tables 1 and 2. Table 1 shows a
significant improvement in the overall network testing parameters. Testing 2135 successful
trips in a chosen network area, firstly by applying the dynamic traffic control algorithm,
an improvement is obtained ranging from 14.7% to 36.11% in the performance metrics.
These promising results are mainly due to the solution of a typical traffic problem, i.e., why
should a vehicle stop at a traffic light waiting for its green light turn, while there are no
other cars in the intersection? To resolve this issue, we applied the V2I technology, allowing
the traffic signal to change to the green phase, in accordance with the discussed algorithm.
In the second half of the table, more promising outcomes were achieved by applying both
network platooning and Dynamic TLS. These results were obtained using the car dynamics
to obtain higher speed to catch up to the platoon with the vehicles ahead. Thus, a faster
overall network speed was obtained, such that the Dynamic TLS can allow for more cars
to pass the green light, in contrast to the non-platooned cars that were driving separately,
and waiting longer for their corresponding green light phase. With both platooning and
Dynamic TLS, an improvement of 18.78% to 40.56% in performance metrics was achieved.
Table 2 shows the accumulated average number of vehicles that were idling at the traffic
light, meaning that those vehicles were caught by the red light and waiting for their green
phase. We can see that in the uncontrolled case, an average of 6.8 vehicles were waiting
at a red light, while in the controlled Dynamic TLS case, an average of 0.68 vehicles were
waiting for the red light. Furthermore, every vehicle managed to pass the intersection in
an organized way without waiting for the green light phase, i.e, the algorithm detected
every vehicle moving towards the intersection and had an appropriate green phase to allow
vehicles to pass the intersection effectively depending on its speed without delaying other
vehicles in the intersection.

In general, smart intersections are complex systems whose effects may be felt in many
areas of city life. The impact on traffic performance, congestion, road safety, environmental
and economic considerations, and other areas must be evaluated for a whole picture of
these crossings. Smart intersections help improve road safety by facilitating effective
interaction among infrastructure elements, moving cars, and even pedestrians. Smart
intersections may help the environment and the economy by decreasing emissions and
fuel use by easing congestion at intersections. Progress towards smart intersections is
challenging due to compatibility problems across systems and the high price tag of updating
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current infrastructure, i.e., technological and infrastructural obstacles must be overcome.
Complicating matters even more are policy and legal concerns such as data privacy and
liability in case of accidents. The future has many promising opportunities. There is a
promise of improved traffic systems by leveraging artificial intelligence technology. Smart
intersections will play an increasingly important role in controlling traffic flow as the
prevalence of autonomous cars increases. Despite the challenges, adopting these high-tech
solutions is crucial for creating safer and more efficient roads for everyone.

Table 1. Test results.

Simulation Statistics

UNCONTROLLED CASE
The traveling time of the platoon is 8578 [s]
The overall fuel consumption is 866,626,097.28 [mL]
The overall CO emission is 71,042,916.87 [mg]
The overall CO2 emission is 2,717,031,380.17 [mg]
The overall NOx emission is 1,110,266.32 [mg]
The total absolute acceleration is 811,577.89 [m/s2]

Percentage Saving %
CONTROLLED CASE (Dynamic TLS control Only)
The traveling time of the platoon is 7315 [s] 14.72%
The overall fuel consumption is 717,236,540.47 [mL] 17.24%
The overall CO emission is 45,389,785.52 [mg] 36.11%
The overall CO2 emission is 2,248,682,109.77 [mg] 17.24%
The overall NOx emission is 893,782.28 [mg] 19.50%
The total absolute acceleration is 683,700.15 [m/s2] 15.76%

CONTROLLED CASE (Network Platooning + Dynamic TLS)
The traveling time of the platoon is 6967 [s] 18.78%
The overall fuel consumption is 707,217,302.56 [mL] 18.39%
The overall CO emission is 42,226,608.01 [mg] 40.56%
The overall CO2 emission is 2,217,274,631.53 [mg] 18.39%
The overall NOx emission is 880,294.35 [mg] 20.71%
The total absolute acceleration is 696,407.48 [m/s2] 14.19%

Table 2. Average network speed and halt index.

Average Network Speed
Average Number of Stopped

Vehicles/Intersection
(Halt Index )

Uncontrolled Speed 33.52 km/h 6.8
Controlled Speed 37.22 km/h (+9.2%) 0.68

+90% Improvement

5. Conclusions

Our paper provided a technology to be implemented in future smart intersections.
However, there are a number of technological and infrastructure issues that must be cleared
before smart intersections can be put into real-world operation. The sophisticated tech-
nologies (sensors, communication devices, and data analytics platforms) utilized in these
systems are very complicated to be implemented, integrated, and managed. Retrofitting
old infrastructure with these new technologies might also provide significant financial
and organizational challenges. The necessity for standardization to ensure interoperability,
the deterioration of infrastructure, and maintenance problems are all major challenges.
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Abbreviations
The following abbreviations are used in this manuscript:

CACC Cooperative Adaptive Cruise Control
C-V2X Cellular vehicle-to-everything
DSRC Dedicated Short Range Communication
AEB Automatic emergency braking
GLODTA Green Light Optimal Dwell Time Advisory
GLOSA Green Light Optimal Speed Advisory
ITS Intelligent Transport Systems
I2I Infrastructure-to-infrastructure
Kp Proportional gain parameter
Ki Integral gain parameter
Kd Derivative gain parameter
LIDAR Light Detection and Ranging
PID Proportional–Integral–Derivative
SPaT Signal Phase and Timing
SUMO Simulation of Urban Mobility
TLS Traffic light system
TraCI Traffic Control Interface
V2I Vehicle-to-infrastructure
V2V Vehicle-to-vehicle
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