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Abstract: This paper presents the new synthesis models of spatial linkages for designing measurement
motion functions and ranges and identifying the actual dimension parameters. The spatial five-bar
linkage is first introduced for the kinematic model of a double ball bar test of a two-axis rotary table.
To design the ideal measurement motion and motion range of the double ball bar test, a novel saddle
synthesis model of a spatial four-bar linkage RRSS is readily presented. Based on the output data
measured from the double ball bar test, a new saddle synthesis model of a spatial five-bar linkage
RRSPS is logically proposed for identifying their actual dimensions. Finally, three test cases and their
results indicate that the new synthesis models presented in the paper can conveniently and efficiently
calculate the measurement motion function and range and accurately identify the actual dimensions
of the double ball bar test, which provides a suitable mathematical model for improving the accuracy
of the double ball bar tests of a two-axis rotary table of machine tools.

Keywords: spatial linkage; kinematic synthesis; identification; double ball bar; two-axis rotary
table; mechanism

1. Introduction

The kinematic synthesis of mechanisms is a classical topic in the field of mechanism
and machine theory, providing a theoretical foundation for machine design, particularly
kinematic design. While there are many methods for kinematic analysis and synthesis of
mechanisms in the literature [1,2], which support the applications of mechanism design,
there are still many problems to be solved, in both theory and practice, in mechanical
engineering. For instance, the synthesis of spatial linkages and the accuracy of actual
mechanisms are ongoing challenges in the field.

Double ball bar (DBB) tests are widely used for the accuracy testing of machine
tools [3,4]. According to the current standards [5,6] and references [7,8], DBB tests are
typically used for circular tests of linear axes, where the moving ball rotates around the
fixed ball on an assumed circle. For two-axis rotary tables, the motion trajectory is more
complex, and cradle-type rotary tables have motion range restrictions, making it necessary
to design the measurement motion function and ranges of the DBB test. The existing
method [9,10] for designing the test trajectory involves defining the circular test path as the
intersection of a test plane and the spherical work space, allowing for the calculation of the
motion of both rotary axes.

The accuracy of the DBB test is crucial for ensuring the precision of the measurements
obtained. This accuracy is influenced by several factors, including the trajectories of the
DBB as well as the mounting and structural errors of the object being measured [11,12]. For
a circular test, deviations in the measured data caused by mounting position errors can be
corrected by circle fitting [13–15]. However, this approach is not applicable for complex
spatial curves, and it is difficult to determine the structural errors of the machine tool.
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From the kinematic viewpoint, a DBB test of a two-axis rotary table can be regarded as
a spatial five-bar linkage SPS-RR with two DOFs: the SPS theoretical kinematic chain plus
the R-R actual kinematic chain with geometrical errors and elastic deformations [16,17].
Generally, the pair P has displacement as the output of RR-SPS during the DBB tests, whose
values vary and reveal the change in the geometrical error. But the output of the DBB
test has a theoretical variation function as the installation positions, even though R-R are
ideal kinematic pairs with non-errors. Fortunately, all of these are the kinematic topics of
mechanisms. To improve the accuracy of DBB tests, it is necessary to plan the motion of the
five-bar linkage RR-SPS and precisely identify its actual dimensions. This highlights the
need for theoretical and experimental research into the kinematic design of DBB tests.

For the kinematic synthesis of a spatial five-bar linkage for DBB tests of a two-axis
rotary table, it is the first topic for the spatial linkage to have two reasonable motions and
suitable motion ranges, such as a crank with a rocker and the full work space. Secondly,
the dimensions of the spatial linkage are closer to an actual one and as precise as possible,
especially the mounting positions of the DBB, which are precisely identified. Therefore,
the topics of the kinematic design for DBB tests of a two-axis rotary table are to synthesize
a spatial five-bar linkage that has a crank, rocker, the full work space, and precise, actual
dimensions during the DBB test in practice.

While there have been many approaches to designing different mechanisms for vari-
ous applications in recent years, synthesizing a spatial five-bar linkage with these given
conditions is a new topic. These approaches include Kinematic Sensitivity Analysis and
Dimensional Synthesis [18], Exact Path Synthesis [19], Advanced Motion Synthesis [20],
and Inverted Modeling [21,22]. Based on kinematic analysis and the synthesis of linkages
for both spherical and spatial motion, this paper presents saddle point program models
for the analysis and synthesis of spatial linkages, RRSPS and RRSS. These models are
discussed in detail for both planning the motion function and identifying the actual param-
eters of a double ball bar test of a two-axis rotary table based on the data measured with
machine tools.

2. The Spatial Five-Bar Linkage of Double Ball Bar Tests of a Two-Axis Rotary Table

The double ball bar instrument is used to measure the accuracy of a two-axis rotary
table of a machine tool; two precision balls are mounted on the spindle and the worktable of
the machine tool, respectively, and the distance between the two balls is sensed during the
DBB test. For this study, the accuracy of the DBB test and the kinematic model of a spatial
five-bar linkage for the DBB test of a two-axis rotary table have to be set up according to
the application cases.

2.1. Double Ball Bar Test of a Two-Axis Rotary Table

The A and C two-axis rotary worktable is taken in this paper, shown in Figure 1a, and
the double ball bar is shown in Figure 1b.

The spatial motion of the worktable can be expressed in the fixed coordinate system
{Of, Xf, Y f, Zf} established on the machine tool frame, and each coordinate axis is along the
corresponding machine tool linear axis direction. A moving coordinate system {Om, xm,
ym, zm}, is set up on the worktable, and the axis zm is defined along the worktable rotation
axis direction. A point P of the worktable can be expressed as a point vector RPf in {Of, Xf,
Y f, Zf}:

RP f = ROm f + [MAC]rPm (1)

where ROmf is the position vector of Om in {Of, Xf, Y f, Zf}, rPm is the position vector of point
P in {Om, xm, ym, zm}, and [MAC] is the transformation matrix of two coordinate systems
and expressed as follows:

[MAC] =

1 0 0
0 cos θ1A − sin θ1A
0 sin θ1A cos θ1A

 ·
cos θ2C − sin θ2C 0

sin θ2C cos θ2C 0
0 0 1

 (2)
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where θ1A and θ2C are the machine tool A-axis and C-axis rotation angles, respectively.
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Figure 1. A and C two-axis rotary table and double ball bar: (a) A-C two-axis rotary table; (b) the
double ball bar.

According to Equations (1) and (2), the orientation of the worktable can be located by
adjusting the rotation angles θ1A and θ2C of the two rotary tables. In the practical use of the
two rotary tables, the C-axis will rotate full-circle while the A-axis does a non-circle. The
motion ranges of θ1A and θ2C are defined as follows:{

θ1A ∈ [θ1Amin, θ1Amax]
θ2C ∈ [0, 360)

(3)

In kinematic geometry, the motion of the two-axis rotary table can be viewed as the
complex of two rotational motions, an open kinematic chain R-R. Two-axis A and C of the
rotary table are independently driven by two motors, respectively.

The DBB is composed of two precision balls and a high-precision displacement sensor.
The two precision balls are put on the magnetic ball seats that are fixed on the measured
parts. Both precision balls can be viewed as two spherical kinematic pairs S. The high-
precision displacement sensed is a prismatic pair P. Therefore, the kinematic chain of DBB
is essentially viewed as SPS. The distance between the two precision balls, the relative
displacement between points E (xE,yE,zE) and F (xF,yF,zF) of the DBB, is measured by the
sensor, shown in Figure 1b. The vector connecting the two ball centers can be expressed by

REF = ROF −ROE (4)

where ROE and ROF are the position vectors of the two points E and F, respectively.
The length d of DBB is

d = |REF| =
√
(xF − xE)

2 + (yF − yE)
2 + (zF − zE)

2 (5)

Usually, the length d of the DBB test of a two-axis rotary table is designated to be a
constant for an ideal motion, but it is not so, even though it is an ideal motion in R-R.

2.2. The Mechanism Model for the DBB Test of a Two-Axis Rotary Table

In the field of kinematics, the DBB test for a two-axis rotary table is composed of two
kinematic chains: RR and SPS. These chains are interconnected in a sequential manner,
culminating in the formation of a closed-loop spatial five-bar linkage, referred to as RRSPS.
Consequently, the kinematic geometry of the DBB test for a two-axis rotary table can be
represented by an RRSPS spatial five-bar linkage, as shown in Figure 2.
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Figure 2. RRSPS linkage of DBB test of two-axis rotary table.

The spatial five-bar linkage RRSPS has five links, namely frame 0 and links 1, 2, 3, and
4, with the link lengths represented by s0, a0, a1, s2, a2, and α12, as shown in Figure 2. This
spatial linkage is driven by two input variables or motors that control the rotation angles θ1
and θ2 of links 1 and 2, respectively, wherein the output parameter ‘d’ is an independent
variable representing the distance between the centers of the two balls. Pay attention to the
variation of the output parameter ‘d’, which is confined to a small range in millimeters as
dictated by the DBB instrument.

As per the Denavit–Hartenberg convention [23], the coordinate systems of three com-
ponents of the spatial five-bar linkage are established. These include the fixed coordinate
system {A′, x0, y0, z0} for frame 0, the coordinate system {C, x1, y1, z1} for link 1, and the
coordinate system {C′, x2, y2, z2} for link 2. Two ball centers point F (a2 cosθC0, a2 sinθC0,
s2) and E (s0, −a0 sinθA0, a0 cosθA0) are, respectively, expressed in terms of the parameters
of the linkage. A closed-loop vector equation is formulated to articulate the geometric
relationships within the spatial five-bar linkage.

REF = RA′A + RAC + RCC′ + RC′F −RA′E (6)

where, each vector denotes the position vector of the corresponding component in the fixed
coordinate system, which can be expressed as follows:

RE f =
[

XE f YE f ZE f
]T

=
[

s0 −a0 sin θA0 a0 cos θA0
]T

RFm =
[

xFm yFm zFm
]T

=
[

a2 cos θC0 a2 sin θC0 s2
]T

RAC = [M10] ·
[

a1 0 0
]T

RCC′ = [M10] ·
[

0 0 s2
]T

RC′F = [M10] · [M21] ·
[

a2 0 0
]T

(7)

where the coordinate transformation matrix is

[M10] =

cos θ1 − cos α12 sin θ1 sin α12 sin θ1
sin θ1 cos α12 cos θ1 − sin α12 cos θ1

0 sin α12 cos α12

[M21] =

cos θ2 − sin θ2 0
sin θ2 cos θ2 0

0 0 1


By taking modulus on both sides of Equation (6) and substituting Equation (7) into (6),

the basic displacement equation of the spatial five-bar RRSPS is obtained.
d =

√
(u2 + v2 + w2)

u = a1 cos θ1 + s2 sin α12 sin θ1 + a2 cos θ1 cos θ2 − a2 cos α12 sin θ1 sin θ2 − a0
v = a1 sin θ1 − s2 sin α12 cos θ1 + a2 sin θ1 cos θ2 + a2 cos α12 cos θ1 sin θ2
w = −s0 + s2 cos α12 + a2 sin α12 sin θ2

(8)

In Equation (8), there are a total of eleven parameters of the RR-SPS linkage, (s0, a0, θA0,
s2, a2, θC0, a1, α12, θ1, θ2, d), in which eight ones correspond to the constructure parameters



Machines 2023, 11, 919 5 of 19

of the two-axis rotary table, one is the output parameter, while two are the input parameters.
The parameters for the coordinates of the two balls’ positions are (s0, a0, θA0, s2, a2, θC0),
and the constructure parameters of the A-axis and C-axis are (a1 and α12), the distance and
angular between the A-axis and C-axis. The input angles θ1 and θ2 of the spatial five-bar
linkage are the independent variables, and the output displacement d of the RR-SPS linkage
can be solved by Equation (9). For the given parameters (s0, a0, θA0, s2, a2, θC0) of the
coordinates of the two balls’ positions, the length d of the spatial five-bar linkage RR-SPS
varies or outputs different values.

The displacement d of the DBB test is measured for the actual motion of the A-axis
and C-axis. In a theoretical case, both the A-axis and the C-axis have ideal motions or they
rotate around their axis only, and the length of the DBB remains a theoretical function of
the input angles θ1 and θ2. In particular, d is a constant in two cases: (1) both the A-axis
and the C-axis are the ideal orthogonal intersected axes, and two balls are specially located
on the theoretical positions, and (2) the motion of the two input angles θ1 and θ2 has to be
planned as a theoretical function relationship. Generally, case 2 is easy to be realized by
designating the two input parameters θ1 and θ2, which can be solved by the kinematics of
a spatial four-bar RRSS linkage degenerated by RRSPS.

3. Motion Design of Spatial Four-Bar Linkage for the DBB Test of a Two-Axis
Rotary Table

The DBB test of a two-axis rotary table is viewed as a spatial five-bar linkage RRSPS
with two degrees of freedom, whose motions of two input parameters θ1 and θ2 must be
designed for the DBB test, and the dimensions of the links must also be determined. In
fact, the motion plan of the RRSPS is to determine the relationship between the two input
parameters θ1 and θ2. The design of the dimensions for the RRSPS involves determining
the installation positions of both precision balls in order to measure the full workspace
of the two rotary axes. Specifically, the A-axis has its own workspace with two extreme
positions, while the C-axis can achieve a full rotation.

It is clear that designing both the motion and dimensions of the RRSPS involves
obtaining two input motions that allow for variation in the output parameter d within a
given range, while covering the full workspace of the two-axis rotary table during a DBB
test. That is, a spatial four-bar linkage RRSS (crank-rocker) is synthesized, where link 2 is a
crank with an input angle θ2, while link 1 is a rocker with an input angle θ1 corresponding
to its two extreme positions. The variation in displacement d during a DBB test remains
zero in cases where there is an ideal motion for RR when both input angles θ1 and θ2 follow
a theoretical function.

3.1. Motion Function Design for the DBB Test

A spatial five-bar linkage RRSPS accurately describes the kinematics of the DBB test
for a two-axis rotary table during the measuring process. However, the motion function of
the A-axis and C-axis must first be assigned, as the output length d of the DBB test varies
with the rotation of the two axes. Specifically, the spatial five-bar linkage RRSPS of the DBB
test for a two-axis rotary table can be simplified as a spatial four-bar RRSS linkage. In this
case, the angles θ1 and θ2 have a theoretical function, and the output length d of the DBB
test remains constant when the A and C axes have ideal motion.

A spatial four-bar linkage RRSS with one degree of freedom is shown in Figure 3,
where frame 0 is converted into link 1 for a convenient angle relationship calculation.

This kinematic model is used to design the measurement motion of the two-axis rotary
table or to determine the ideal motion function between the A and C axes. In practice, each
axis is independently driven by a motor, but their rotation follows the function calculated
by the spatial four-bar linkage RRSS.
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The spatial four-bar linkage RRSS also has eleven parameters (s0, a0, θA0, s2, a2, θC0, a1,
α12, θ1, θ2, d), which are the same as those of RRSPS, shown in Figure 3. The parameters of
two balls’ positions coordinates are (s0, a0, θA0, s2, a2, θC0), and the constructure parameters
of the A-axis and C-axis are (a1 and α12). The length d of link 3, the distance between two
balls, is a constant. The rotational angle θ1 of link 1 is defined as the independent variable,
or the input parameter, while the output angle θ2 of link 2 is the dependent variable or a
function of angle θ1. Based on Figure 3 and Equation (8), the motion relationship between
the dependent variable θ2 and the independent variable θ1 can be derived as follows:

A sin θ1 + B cos θ1 + C = 0
A = 2a0a2 cos α12 sin θ2 − 2a0s2 sin α12
B = −2a0a2 cos θ2 − 2a0a1
C = a0

2 + a1
2 + a2

2 + s0
2 + s2

2 − d2 − 2s0s2 cos α12 − 2a2s0 sin α12 sin θ2 + 2a1a2 cos θ2

(9)

On the other hand, θ1 is expressed as the dependent variable while θ2 is designated as
the independent variable.

L sin θ2 + M cos θ2 + N = 0
L = 2a0a2 cos α12 sin θ1 − 2a2s0 sin α12
M = 2a1a2 − 2a0a2 cos θ1
N = a0

2 + a1
2 + a2

2 + s0
2 + s2

2 − d2 − 2a0a1 cos θ1 − 2a0s2 sin α12 sin θ1 − 2s0s2 cos α12

(10)

Equations (9) and (10) reveal the relationship between the input parameter θ1 and the
output parameter θ2 of the spatial four-bar linkage RRSS. The rotational angles θ1 of link 1
and θ2 of link 2 are expressed in the coordinate system of RRSS, which can be converted
into the coordinate system of the machine tool, and the angle θ1A of the A-axis and the
orientation angle θ2C of the C-axis of a two-axis rotary table can be expressed, respectively,{

θ1A = θ1 + θA0 + 90◦

θ2C = θ2 − θC0
(11)

In Equation (11), θA0 and θC0 have the geometrical meanings of the installation initial
angles of the spherical joints SE and SF in the coordinate system of the machine tool.

By substituting the calculation results of either Equations (9) or (10) into Equation
(11), two motion relationship between the orientation angles θ1A and θ2C of the two-axis
rotary table for the DBB test can be calculated. For a general RRSS linkage, the orientation
angles θ1A and θ2C only belong to a part of the workspace of the two-axis rotary table.
It is necessary to design both the reasonable installation parameters of the DBB and the
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corresponding functions of θ1A and θ2C, that is to say, for the length of the DBB test to have
a full work space, a crank, and a rocker.

3.2. Motion Range of the DBB Test of an Ideal Two-Axis Rotary Table

The RRSPS linkage of the DBB test for a two-axis rotary table, when in ideal motion,
can be simplified to a spatial four-bar RRSS linkage, as shown in Figure 4. A spatial crank-
rocker four-bar linkage needs to be synthesized, which has the motion range when link
2 rotates its angular θ2 (0,360) and link 0 occupies its extreme positions, or θ1 (θ1min and
θ1max). According to Section 3.1, the output parameter θ1 and the input parameter θ2 of
the four-bar linkage RRSS correspond to their extreme values or locations. Based on the
relationship between θ1 and θ2, Equation (10) can be rewritten as

(M− N) tan2 θ2

2
− 2L tan

θ2

2
− (M + N) = 0Machines 2023, 11, x FOR PEER REVIEW 8 of 20 
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The condition for the above equation to have a unique solution for the input parameter
θ2 is expressed as

L2 + M2 − N2 = 0 (12)

Additionally, when rocker 0 of the spatial four-bar linkage RRSS locates at the extreme
position while crank 2 does at the dead point position, the instantaneous change rate
(instantaneous velocity) of θ1 relative to θ2 is zero, expressed by

dθ1

dθ2
= 0 (13)

Taking the differential of both sides of Equation (10), and then substituting Equation
(13) into the resulting differential equation, we can achieve the expression of θ1 when rocker
0 is at the extreme position.

θ2 = arctan
s0 sin α12 − a0 cos α12 sin θ1

a0 cos θ1 − a1
(14)

Similar to the co-linearity condition of the crank and link in a planar four-bar linkage
when the planar crank-rocker linkage is at the extreme position, the spatial position rela-
tionship between crank 2, link 3, and the rotation axis z1 of the spatial four-bar linkage
RRSS is discussed when rocker 0 is located at the extreme position. That is, three vectors,
direction vector x1 of crank 2, direction vector z1 of its rotation axis, and vector REF of link
2, will be coplanar, as shown in Figure 4, and their inner product is zero:

(z1, x2, REF) = a0 cos θ1 sin θ2 − a1 sin θ2 − s0 sin α12 cos θ2 + a0 cos α12 sin θ1 cos θ2 = 0 (15)
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Equation (15) indicates that when rocker 0 of spatial linkage RRSS is at the extreme
position, the output angle velocity of θ1 is zero instantaneously.

The extreme positions of the A-axis corresponding to link 0 can be expressed as the
rotational angles as {

θ1
(1) = θ1Amin − θA0 − 90◦

θ1
(2) = θ1Amax − θA0 − 90◦

(16)

And link 2 occupies the corresponding positions with the angles θ2, calculated by
Equation (15), that is

θ2
(i) = arctan

s0 sin α12 − a0 cos α12 sin θ1
(i)

a0 cos θ1
(i) − a1

, i = 1, 2

For the given parameters (s0, a0, θA0, s2, a2, θC0, a1, and α12) of a spatial four-bar
linkage RRSS, the motion range of the angles θ1 and θ2 can be calculated.

3.3. Kinematic Synthesis of a Spatial Four-Bar Linkage for the DBB Test

Drawing upon the motion range and function of the DBB test for a two-axis rotary
table, as discussed in the previous two sections, it becomes necessary to synthesize the
spatial four-bar linkage RRSS to realize these motion parameters. That is, the extreme
positions of rocker 0 corresponding to the extreme rotation angles of A-axis have to be
calculated. Subsequently, the dimensions of the synthesized RRSS linkage are determined
to illustrate the installation positions of the two precision balls used in the DBB test. As
such, the motion design for the DBB test for a two-axis rotary table is translated into a
kinematic synthesis of an RRSS linkage under several specified conditions, as shown in
Figure 5.
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For synthesizing the spatial four-bar linkage RRSS, which has two extreme positions
and where link 2 achieves a full circle, there are few additional positions of link 2 to be
added by the DBB test process as θ1

(i), θ2
(i), i = 3, . . .. . ., n.

According to the above-mentioned information, the RRSS linkage contains the ideal
kinematic chain S-S and the actual kinematic chain R-R, while the dimensions of the R-R
are firstly given by the constructure of the two-axis rotary table of the machine tool, and
the dimensions with positions of S-S are to be determined. The kinematic synthesis of the
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RRSS linkage finds out the two sphere centers, the moving sphere point F (xFm, yFm, zFm) of
link 2 and the fixed sphere point E (xEf, yEf, zEf) of the frame link 0, respectively.

Based on the coordinate systems above, the moving point F (xFm, yFm, zFm) of link 2
traces a spatial trajectory ΓF: RF(i), i = 1, . . .. . ., n in the frame link 0, as link 1 and link 2
rotate θ1

(i), θ2
(i), which can be expressed as follows:

xF f
yF f
zF f
1

 = [M10] · [M21] ·


xFm
yFm
zFm

1

 (17)

where

[M10] =


cos θ1 − cos α12 sin θ1 sin α12 sin θ1 −a0
sin θ1 cos α12 cos θ1 − sin α12 cos θ1 0

0 sin α12 cos α12 0
0 0 0 1

[M21] =


cos θ2 − sin θ2 0 0
sin θ2 cos θ2 0 0

0 0 1 0
0 0 0 1


Hence, the kinematic synthesis of RRSS sets up the optimization model to locate the

moving point F (xFm, yFm, zFm), whose trajectory ΓF is the closest spherical curve.
We introduce the conception of the saddle spherical surface and its error in treatise [24],

that is, for the given discrete point set {RF
(i)}, a spherical surface adaptively determined

by letting the maximum fitting error be minimum, whose spherical surface is the saddle
spherical surface and the error is defined as the saddle spherical surface error. Based on the
definition, we set up the mathematics model of a saddle spherical surface fitting as

∆ss = min
x

max
1≤i≤n

{
∆(i)(x)

}
= min

x
max

1≤i≤n

{∣∣∣∣∣
√(

xE f − xF f
(i)
)2

+
(

yE f − yF f
(i)
)2

+
(

zE f − zF f
(i)
)2
− d

∣∣∣∣∣
}

s.t. gj(x) ≤ 0, j = 1, · · · · · ·

x =
(

xE f , yE f , zE f , d
)T

(18)

where the objective function {∆(i)(x)} is the normal fitting error of the discrete point set
{RF

(i)} and a fitting spherical surface, the optimization variables x = (xEf, yEf, zEf, d) are the
saddle sphere center’s coordinates (xEf, yEf, zEf) of link 0 and its diameter d, respectively; n
is the number of discrete points {RF

(i)} and ∆ss is the saddle spherical surface fitting error
for {RF

(i)},which is called the first saddle program.
Obviously, one moving sphere point F (xFm, yFm, zFm) of link 2 is firstly chosen in

link 2, which corresponds to a saddle sphere with its center’s coordinates (xEf, yEf, zEf) and
diameter d. For the moving link 2 with given discrete parameters (x(i)

omf, y(i)
omf, z(i)

omf,
θ1

(i), θ2
(i)), there certainly exists a point F (xFm, yFm, zFm) whose trajectory corresponds to a

saddle spherical surface error, which achieves a minimum value with respect to the other
points in its neighborhood, which is called the saddle sphere point of link 2. On the other
hand, the spatial RRSS linkage has to meet not only the kinematics but also non-geometrical
inference, etc. We present the optimization mathematic model of a saddle synthesis of
RRSS linkage for the DBB test as follows:

δss = min
x

∆ss(Z)

s.t. gj(Z) ≤ 0, j = 1, · · · · · ·
Z = (xFm, yFm, zFm)

T
(19)

where ∆ss (Z) is the objective function or the saddle spherical surface error for any point tra-
jectory {RF

(i)}, obtained by Equation (17), Z = (xFm, yFm, zFm) are the optimization variables.
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δss is the saddle sphere point error. It is called the second saddle program. The constraint
equations are given as follows according to the DBB test device and process.

(1) The moving bounds of the spherical pair: the ball bar rotates around the sphere
center, which must be constrained in the bounds of DBB construction: g1(x) = arccos REF ·(−x0)

|REF |
− αEF ≤ 0

g2(x) = arccos RFE ·z2
|REF |

− αEF ≤ 0
(20)

(2) Interference conditions of the ball bar and the rotary table:

g3(x) = {rLEF(tL) ∩ rS(tS, ϕS)} = ∅ (21)

where rLEF is the vector function of the ball bar

rLEF(tL) = RE + tL ·
REF

|REF|
, tL ∈ [0, d]

rS is the edge vector function of the rotatory bale and can be written as

rS(tS, ϕS) = RT + tS · ez2(ϕS), tS ∈ [0, rt], ϕS ∈ [0, 2π)

RT is the center position vector of the rotatory bale; rt is the radius of the table; ez2(ϕs) is
the unit circle vector; ϕs is the rotational angles.

(3) The bounds of the sphere point: the fixed sphere point E is attached on the spindle
and moves with three linear axes, which locate in the table plane, that is

g4(x) = xE f min − xE f ≤ 0, g5(x) = xE f − xE f max ≤ 0

g6(x) = yE f min − yE f ≤ 0, g7(x) = yE f − yE f max ≤ 0

g8(x) = zE f min − zE f ≤ 0, g9(x) = zE f − zE f max ≤ 0

g10(x) =
√

xFm2 + yFm2 − rt ≤ 0

g11(x) = zFmmin − zFm ≤ 0, g12(x) = zFm − zFmmax ≤ 0

(22)

(4) The length of ball bar: the length of ball bar has been made in series with several lengths:

g13(x) = d ∈ {d1, d2, · · ·} (23)

where d1, d2. . .. . . are the dimensional series of the ball bar.
According to the above kinematic synthesis model of RRSS, by substituting the given

positions (x(i)
omf, y(i)

omf, z(i)
omf, θ1

(i), θ2
(i), i = 1, . . .. . ., n) into Equation (19), we can obtain

the parameters (xEf, yEf, zEf, xFm, yFm, zFm, d) of RRSS. For installing two balls on the table
and the spindle, the parameters of RRSS have to be transformed into the coordinate system
of the machine tool, that is XE f

YE f
ZE f

 =

0 0 −1
0 1 0
1 0 0

 ·
xE f

yE f
zE f

 (24)

And the installation parameters of RRSS are
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a2 =
√

xFm2 + yFm2

s2 = zFm

θA0 = arctan yFm
xFm

a0 =
√

xE f
2 + yE f

2

s0 = zE f

θC0 = arctan
yE f
xE f

(25)

As the results of the kinematic synthesis of RRSS are two extreme positions and
constraint conditions, we mount the two precision balls at the solved positions, and the
DBB test of the two-axis rotary table will cover the full workspace.

4. Actual Parameter Identification of Spatial Five-Bar Linkage for the DBB Test

As previously mentioned, the motion function, range, and dimensions of the spatial
RRSS linkage have been determined for the ideal case of the DBB test for a two-axis rotary
table. However, the actual dimensions of the RRSS linkage depend on the precise positions
of the two balls or the mounting operations on both the table and the spindle, which can
cause variations in the RRSS motion. Mounting errors for the two balls can also affect the
accuracy of the DBB test. To improve accuracy, it is necessary to identify the installation
position errors for the spatial RRSPS linkage.

The spatial five-bar linkage RRSPS for the DBB test of a two-axis rotary table has
two degrees of freedom. The angles θ1 and θ2 are independently driven by two motors as
theoretical input values for the RRSS linkage. In practice, both the two-axis rotary table
and the ball positions may have errors, such as geometric errors and elastic deformations.
These errors are revealed by the output values of the DBB test, specifically by variations in
the length d* of the RRSPS linkage, as shown in Figure 6.
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Figure 6. Actual spatial five-bar linkage RRSPS for the DBB test.

According to Equation (8), the RRSPS linkage has eight parameters: six installation
position coordinates and two construction parameters. The output value d* of the DBB
test reflects the total error caused by these eight parameters, which can be divided into
three types: link parameter errors or installation position errors, construction errors, and
kinematic pair errors caused by manufacturing. Kinematic pair errors result in error motion
of the moving links with six degrees of freedom [25], but this is a complex topic and is
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not discussed in this paper. The first two types of errors can be directly calculated by
substituting the actual link lengths into Equation (8) instead of the designated values,
which will correspond to the output values d* of the DBB test.

Conversely, the output data d* of the DBB test for a two-axis rotary table include the
total error caused by eight link parameters and kinematic pair errors. Equation (8) indicates
the theoretical relationship between the link parameters and the output value d of the RRSS
for the DBB test, providing clues to identify eight-parameter errors from the output data
d* of the DBB test, except for kinematic pair errors. Therefore, we set up a mathematical
model, a saddle point programming [24], to identify the actual lengths of the links by letting
the maximum error between the measuring values di

* and the theoretical calculating values
di be minimum during a period of DBB test, that is

∆MA = min
x

max
1≤i≤n

{∣∣δi
MA(x)

∣∣} = min
x

max
1≤i≤n

{∣∣∣∣d∗i −√(ui
)2

+
(
vi
)2

+
(
wi
)2
∣∣∣∣}

ui = a1 cos θi
1 + s2 sin α12 sin θi

1 + a2 cos θi
1 cos θi

2 − a2 cos α12 sin θi
1 sin θi

2 − a0

vi = a1 sin θi
1 − s2 sin α12 cos θi

1 + a2 sin θi
1 cos θi

2 + a2 cos α12 cos θi
1 sin θi

2

wi = −s0 + s2 cos α12 + a2 sin α12 sin θ2

θi
1 = θi

1A − θA0 − 90◦

θi
2 = θi

2C + θC0

s.t. a0, a1, a2, s0, s2 ∈ (−∞,+∞)

α12 ∈ [0, 2π) θA0, θC0 ∈ [−π, π)

x =
(
a0, a1, a2, s0, s2, α12, θA0, θC0

)T

(26)

where the objective function {δMA(x)} is the corresponding error between the measured
value di

* of the DBB test and the calculated output value di of the RR-SPS linkage for all
instances i = 1,2,. . .n, the optimization variables x = (s0, a0, θA0, s2, a2,θC0, a1, α12) T are the
eight parameters of RR-SPS linkage, respectively; n is the number of discrete points {di

*}
measured by the DBB test, and ∆MA is the saddle optimization error for {di

*},which is the
unidentified errors caused by manufacturing, such as the kinematic pairs errors.

After obtaining the measured data d*, it is incorporated into the identification model
as per Equation (26). The design values of the mechanism are used as initial values for this
computation. This process allows for the calculation of the actual dimensions (s0, a0, θA0,
s2, a2, θC0, a1, α12) of the mechanism. Subsequently, we can determine the installation error
of the ball bar and the structural error of the machine tool under testing.

5. Experiments of the Double Ball Bar Test of the Two-Axis Rotary Table

The new saddle synthesis models for the spatial linkages of a two-axis rotary table,
as presented in the previous sections, are designed to measure the motion function and
range and identify the actual dimension parameters. These models can be verified through
several experiments, in which data from the DBB tests are measured in various cases. The
results demonstrate that this approach is effective in improving the accuracy of DBB tests
for machine tools.

A five-axis vertical machining center with an A and C two-axis rotary table is used as
the test subject for these experiments. The spindle has a linear feed motion in the X, Y, and
Z directions. The structure of the machine tool is shown in Figure 7, and its main technical
parameters are listed in Table 1.
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Table 1. Design constructure parameters of five-axis vertical machining center.

Technical Parameters Value Unit

X/Y/Z travel 650/650/450 mm
A-axis motion range −130~+130 ◦

C-axis motion range 0~360 ◦

Table diameter Φ650 mm
Distance from spindle end face to table 90~540 mm

Perpendicular distance of AC axis line (a1) 0 mm
Included angle of AC axis line (α12) 270 ◦

The Renishaw QC-20W is chosen as the DBB for testing, whose measuring range is
±1 mm. The five-axis vertical machining center has a compensation range for the A-axis
with −110◦~+110◦, despite its original motion range within −130◦~+130◦.

Based on the kinematic synthesis models of linkages mentioned above, the measure-
ment motion function and ranges can be designed, and the actual dimension parameters
need to be identified for the DBB test of the two-axis rotary table, respectively, which are
verified by the several experiments designed as follows.

5.1. Measurement Motion Function and Range of the DBB Test

The first experiment is designed to verify the measurement motion function and
motion range, which are critical aspects of the spatial linkages of a two-axis rotary table.
The experiment is conducted with known conditions, assigned tasks, and requirements, as
described below.

Known conditions: The design construction parameters (a1 = 0, α12 = 270◦) of the A
and C two-axis rotary table are known. The rotational angle θ1 of the A-axis has bounds of
±110◦, and the rotational angle θ2 of the C-axis has bounds of 360◦, as shown in Table 1.

Assigned tasks: The measurement motion function and motion range are calculated
and verified by DBB tests of the two-axis rotary table of a five-axis vertical machining
center, based on the saddle synthesis models of spatial linkages established in this paper.

Requirements: The installation of two balls for the DBB test must be performed only
once to cover the entire motion range of the two-axis rotary table efficiently. Interference
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between the rod of the DBB and the rotary table must be avoided when the A-axis moves
within ±110◦. This means that link 2 rotates its angle θ1 (0–360◦) while link 0 has values θ1
(−110◦, 110◦).

All these parameters, conditions, and requirements are incorporated into the objective
or subjective functions of the saddle synthesis models for spatial linkages of the two-axis
rotary table. By substituting them into Equations (18) and (19), along with the initial
values for optimization variables, subject function constraints, and bounds for optimization
variables, we can solve optimization Equations (18) and (19). The results provide us with
installation positions (s0, a0, θA0, s2, a2, θC0) for the two precision balls of the RRSS linkage,
as shown in Table 2, and the length d of the DBB is determined to be a nominal length of
d = 300 mm.

Table 2. The parameters of synthesized RRSS linkage.

s0/mm a0/mm θA0/
◦ s2/mm a2/mm θC0/◦

angle measurement
range as −110◦~0◦ 96.310 352.114 −55.000 80.000 30.000 −161.592

angle measurement
range as 0◦~+110◦ 96.310 352.114 55.000 80.000 30.000 −161.592

According to the parameters (s0, a0, θA0, s2, a2, θC0) of the synthesized RRSS linkage
in Table 2, we precisely locate the positions of two balls on the spindle and the worktable,
respectively. And θ2 (0, 360◦) is the independent variable, and θ1 (−110◦,110◦) is the
dependent variable calculated by Equation (10).

By incorporating the functional relationship between the mechanism size and θ1 and
θ2 into Equation (7), we can determine the position of the fixed ball point E of the DBB and
the spatial trajectory formed by the moving ball point F in the fixed coordinate system, as
shown in Figure 8. The blue grid represents a spherical surface with E as the center and
the nominal length d of the DBB as the radius. The trajectory of F is a spatial curve on this
spherical surface. The red line represents the line connecting the moving ball points and
the fixed ball point of the DBB at each moment in time.
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The motion ranges of the two-axis rotary table are measured by the DBB test, shown
in Figure 9, which is the same as that of the synthesized RRSS linkage.
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From the data presented in Table 2 and Figures 8 and 9, it is clear that the measurement
motion function and motion range of the two-axis rotary table DBB test have successfully
met the tasks, conditions, and requirements for the experiments with the A and C two-axis
rotary table. The measuring data indicate that the DBB test runs continuously within the
range of the C-axis θ2 (0–360◦) and the range of the A-axis θ1 (−110◦,110◦). These results
provide evidence that the novel optimization synthesis model of RRSS proposed in this
paper is perfectly suitable for designing the measurement motion of DBB tests for a two-axis
rotary table.

5.2. The Actual Parameter Identification of the DBB Test

This experiment, which was designed to verify the parameter identification of the
two-axis rotary table DBB test, is conducted under known conditions and specific tasks. It
is structured around three cases and four steps. The design parameters of the A and C two-
axis rotary table are given, and the mounting position coordinates of two precision balls
are listed. The task is to identify the actual parameters of the RRSS linkage corresponding
to the DBB test of the two-axis rotary table. Three cases of DBB tests are designed, and each
case involves specific adjustments to the parameters or conditions, which are described
as follows:

Known conditions: The design parameters (a1 = 0, α12 = 270◦, θ1 =−110~110◦, θ2 = 0~360◦)
of the A and C two-axis rotary table are given in Table 1. The mounting position coordinates
(s0, a0, θA0, s2, a2, θC0) of two precision balls are listed in Table 2.

Assigned tasks: The task is to identify the actual parameters of the RRSS linkage
corresponding to the DBB test of the two-axis rotary table.

Experiment cases: Three cases of DBB tests are designed as M1 to M3, shown in
Figure 10.

Case M1: The mounting positions coordinates (s0, a0, θA0, s2, a2, θC0) of two balls are
located as per Table 2.

Case M2: The parameter s0
(2) is assigned to be s0 + 0.2 mm. This is achieved by

operating the linear axis-X by CNC, while other linear axes maintain the same fixed values
as in case M1.

Case M3: The parameter s0
(3) is designated to be s0 − 0.2 mm. This is also achieved

by operating the linear axis-X by CNC, with other linear axes maintaining the same fixed
values as in case M1.
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The experiment is conducted in four steps to verify the parameter identification of the
two-axis rotary table DBB test:

Step 1: Utilizing the six parameters (s0, a0, θA0, s2, a2, θC0) of the spatial five-bar linkage
RRSPS synthesized in Table 2, the installation positions of the moving and fixed ball points
are calculated. The machine tool spindle’s X, Y, and Z linear axes are controlled to install
the ball seat at the corresponding positions. The fixed ball point is installed on the spindle,
and the moving ball point is installed on the worktable. The machine tool is controlled to
move according to the parameters designed by Formulas (10) and (11), realizing the DBB
test of the two-axis turntable. All these d1

* values are taken as the data for case M1, shown
as an orange * line in Figure 11.

Machines 2023, 11, x FOR PEER REVIEW 17 of 20 
 

 

the output data d2* of the DBB test is recorded as the data for case M2, shown as a green 
line in Figure 11. 

Step 3: The parameter s0(3) is adjusted to s0 − 0.2 mm. This means that while the posi-
tion of the moving ball point relative to the machine tool worktable remains unchanged, 
only XEf(3) of the fixed ball point’s three linear axes moves 0.2 mm in the positive direction 
relative to XEf(1). The DBB test of the two-axis rotary table is synchronously measured, and 
the output data d3* of the DBB test is taken as data for case M3, shown as a blue dashed 
line in Figure 11. 

 
Figure 11. The data of DBB test in three cases. 

Step 4: The data {d1*}, {d2*}, and {d3*} from all three cases are substituted into mathe-
matical model (26). These equations are solved with identical initial values for the optimi-
zation variables to obtain identification results. The actual eight parameters (s0, a0, θA0, s2, 
a2, θC0, a1, α12) of the five-bar linkage RRSPS for all three cases are completely identified by 
Equation (26) based on measured data case M1-M3 and are listed in Table 3. 

Table 3. Parameters of RRSPS linkage identified in three cases. 

 s0/mm a0/mm θA0/° s2/mm a2/mm θC0/° a1/mm α12/° 
Case M1 96.865 351.891 −54.995 79.871 30.063 −161.531 −0.023 270.093 
Case M2 97.124 351.900 −54.996 79.904 30.080 −161.541 −0.021 270.102 
Case M3 96.682 351.951 −54.996 79.934 30.111 −161.559 −0.019 270.094 

Design value 96.310 352.114 −55. 00 80.000 30.000 −161.592 0 270.000 

In the identification results listed in Table 3, it is only the parameter s0 that shows a 
significant difference across the three cases, that is  

( ) ( )

( ) ( )

 − = − =


− = − = −

2 1
0 0

3 1
0 0

97.124 96.865 0.259

96.682 96.865 0.183

s s

s s  
(27)

According to the results in Equation (27), the parameters assigned in the three cases 
are correctly identified. The values are close to the assigned values of s0, s0−0.2 s0 + 0.2. The 
other seven parameters (a0, θA0, s2, a2, θC0, a1, α12) show only slight variations. This suggests 
that the identification process is accurate and reliable for these parameters 

By substituting the mechanism size parameters (s0, a0, θA0, s2, a2, θC0, a1, α12) identified 
in Table 3 and the mechanism input angle parameters θ1 and θ2 into Equation (8), we can 
calculate the output d of the mechanism under the identified parameters, which is the 

Figure 11. The data of DBB test in three cases.

Step 2: The parameter s0
(2) is adjusted to s0 + 0.2 mm. This means that while the

position of the moving ball point relative to the machine tool worktable remains unchanged,
only XEf

(2) of the fixed ball point’s three linear axes moves 0.2 mm in the negative direction
relative to XEf

(1). The DBB test of the two-axis rotary table is synchronously measured, and
the output data d2

* of the DBB test is recorded as the data for case M2, shown as a green
line in Figure 11.

Step 3: The parameter s0
(3) is adjusted to s0 − 0.2 mm. This means that while the

position of the moving ball point relative to the machine tool worktable remains unchanged,
only XEf

(3) of the fixed ball point’s three linear axes moves 0.2 mm in the positive direction
relative to XEf

(1). The DBB test of the two-axis rotary table is synchronously measured, and
the output data d3

* of the DBB test is taken as data for case M3, shown as a blue dashed
line in Figure 11.
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Step 4: The data {d1
*}, {d2

*}, and {d3
*} from all three cases are substituted into mathemat-

ical model (26). These equations are solved with identical initial values for the optimization
variables to obtain identification results. The actual eight parameters (s0, a0, θA0, s2, a2,
θC0, a1, α12) of the five-bar linkage RRSPS for all three cases are completely identified by
Equation (26) based on measured data case M1-M3 and are listed in Table 3.

Table 3. Parameters of RRSPS linkage identified in three cases.

s0/mm a0/mm θA0/◦ s2/mm a2/mm θC0/◦ a1/mm α12/◦

Case M1 96.865 351.891 −54.995 79.871 30.063 −161.531 −0.023 270.093
Case M2 97.124 351.900 −54.996 79.904 30.080 −161.541 −0.021 270.102
Case M3 96.682 351.951 −54.996 79.934 30.111 −161.559 −0.019 270.094

Design value 96.310 352.114 −55.000 80.000 30.000 −161.592 0 270.000

In the identification results listed in Table 3, it is only the parameter s0 that shows a
significant difference across the three cases, that is{

s0
(2) − s0

(1) = 97.124− 96.865 = 0.259

s0
(3) − s0

(1) = 96.682− 96.865 = −0.183
(27)

According to the results in Equation (27), the parameters assigned in the three cases
are correctly identified. The values are close to the assigned values of s0, s0 − 0.2 s0 + 0.2.
The other seven parameters (a0, θA0, s2, a2, θC0, a1, α12) show only slight variations. This
suggests that the identification process is accurate and reliable for these parameters.

By substituting the mechanism size parameters (s0, a0, θA0, s2, a2, θC0, a1, α12) identified
in Table 3 and the mechanism input angle parameters θ1 and θ2 into Equation (8), we can
calculate the output d of the mechanism under the identified parameters, which is the
ideal length of the DBB. A comparison of this calculated output with actual test results
provides valuable insights into the accuracy of our parameter identification process and
the effectiveness of our computational model. As shown in Figure 12, test results are
represented by colored * marks, while the corresponding mechanism output is depicted as
a black solid line.
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We can calculate the maximum deviation between the DBB measurements and the
mechanism output under the identified parameters during the three case measurement
processes, which is represented as ∆MA in the identification model (26). Its values are
shown in Table 4.

Table 4. Calculated values of ∆MA in three cases.

Case M1 Case M2 Case M3

∆MA/µm 1.587 1.607 1.674
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As per Figure 12 and Table 4, the curves representing the test data and the calculated
data in the three cases are closely aligned. The maximum deviations between the two sets
of data are also very similar. This indicates that our parameter identification method is
reliable and our computational model is robust.

The aforementioned experiments validate the accuracy and effectiveness of the real
parameter identification model for the RRSPS five-bar mechanism through three case
studies. This provides a reliable methodology for enhancing the testing precision of the
two-axis rotary table DBB in machine tools. Furthermore, it establishes a foundation
for exploring specific applications such as compensation for two-axis rotary tables in
machine tools.

6. Conclusions

Based on the theoretical derivations and experimental measurements conducted for
the DBB test of the two-axis rotary table of machine tools, we can draw the following
conclusions:

(1) The novel synthesis model of the spatial four-bar linkage RRSS, as presented in
this paper, provides an effective method for designing the measurement motion function
and motion range of the DBB test for the two-axis rotary table of machine tools.

(2) The newly proposed kinematic synthesis model of the spatial five-bar linkage
RRSPS is a precise and effective method for identifying the actual parameters in the DBB
test of the two-axis rotary table. This provides a reliable methodology for improving the
test accuracy of the DBB test for the two-axis rotary table of machine tools.

(3) The kinematic analysis and synthesis of spatial linkages offer a new theoretical basis
for the DBB test of the two-axis rotary table of machine tools, and it is a new application
field in this area.
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