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Abstract: The teleoperation feature of a leader–follower robot is used to operate the robot in a
working environment that is dangerous to the operator. This paper proposes a method for estimating
the intended operation of the operator of the leader–follower robot and generating behaviors for the
follower robot. By generating partially autonomous robot behavior, our proposed method decreases
the burden on the operator and realizes a safe controller that is robust against misoperation or
disturbances. Owing to the impact of misoperation on estimation and the potential for unintended
movement of the follower robot, our proposed estimation method relies on historical values of
intended operation. The proposed method was verified through simulation using real operation
inputs to the leader system based on practical scenarios, including misoperation.

Keywords: manipulation; teleoperation; leader–follower robot; robustness

1. Introduction

Leader–follower robots, which are also known as master–slave robots, and their
related technology, can be used in various areas, including rehabilitation or computer-
assisted surgery [1–5]. When the circumstances and/or situation are unknown or complex,
autonomous robots are not suitable because they are incapable of carrying out the corre-
sponding advanced assessments according to the situation. However, a leader–follower
robot is appropriate for work under unknown conditions because it is operated by a person
who can adapt their decisions accordingly. The operation of the follower robot corresponds
to input from the leader robot, which is a characteristic of leader–follower systems.

Many studies on leader–follower robots aim at achieving “human-machine integration”
control [6–14]. This approach emphasizes mirroring human motion in robot actions, which
enables precise control. However, in long-term work at an actual workplace, the following
issues exist: (i) When performing remote operation, the operator must verify various
sensor information to ensure safety. Although the operator can obtain many types of
information in typical situations, limited information is provided to the operator by the
leader system. The operator has to manipulate the follower robot based on this limited
information, leading to an escalation in the information load that the operator needs to
handle or speculate about. Consequently, this raises the overall burden on the operator
during extended periods of work [15,16]. (ii) Under the influence of fatigue, it is hard for
the operator to maintain the required posture or predetermined motion inside the cockpit of
the leader system for a long time [16–18]. (iii) If the operator reacts to a disturbance in their
immediate surroundings (including greetings from colleagues), because these reactions
are unexpected, the follower robot’s behavior will deviate from the original intention,
according to the characteristics of the leader–follower system [19]. (iv) Involuntary motions
caused by the operator’s body (such as sneezing and wobbling) will also result in different
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follower robot behavior. When a follower robot does not behave as the operator intended,
it may damage the surrounding environment [17,20].

Giving partial autonomy to the follower robot or switching autonomous operation
modes is an effective solution for reducing the burden on the operator. When considering
the degree of autonomy as shown in Figure 1, the degree of autonomy gradually proceeds
from left to right, where direct operation is on the left and pure autonomous operation is
on the right.

Manual Autonomy

CONTROLLER

Fo
llo

w
er

Le
ad

er

Figure 1. Degrees of autonomy.

The explicit design of the controller in the middle position is desirable. This ensures
that, when the system is operated according to the operator’s original intention, there
is limited autonomy with bias toward the left side of the figure. Conversely, when the
system is operated in a manner that deviates from the operator’s original intention, there
is increased autonomy with bias toward the right of the figure. This design also solves a
human interface design issue that occurs when the shapes and degrees of freedom of the
leader system and follower robot, or those of the operator and follower robot, are different.
However, few studies have addressed operation estimation in this context.

In this study, the term “original intention” refers to the operator’s initial assessment of
the situation and intended actions to complete the assigned task based on real-time condi-
tions. However, because of various reasons, the operator’s judgment may be compromised,
and the operator may inadvertently carry out an unexpected operation, which is defined
as misoperation.

Mghabghab et al. [21] employed a convolutional neural network to estimate the ma-
nipulating intention during drone operations, and used it to generate the drone’s motion.
The teleoperated-autonomous shared control framework has been considered as a potential
approach toward enhancing precision by changing the ratio between the master operation
and autonomous motion [22]. By modifying the haptic assistance ratio, Corredor et al. [23]
proposed an operation approach based on the operator’s intention. Among studies on
the control of follower robots equipped with partial autonomy, Lee et al. [24] translated
a single operating motion into each motion of several vehicle robots. Kawano et al. [25]
controlled an underwater vehicle through autonomous control to maintain stable orien-
tation regardless of the operator’s commands. These systems estimated the intention of
motion directly, but did not estimate a higher-order intention such as behavior, which is
more complex and strategic. Huang et al. [26] introduced a hierarchical-level intention
tracking system aimed at mitigating collisions between collaborative robots and human
operators during operational tasks and facilitating human intervention in the event of
failures. However, within this framework, estimations of both high-level and low-level
intentions are employed to deduce the selection of predetermined tasks. Bowman et al. [27]
proposed a multi-task robot grasping model and an intent-uncertainty-aware grasp planner,
which implemented complex operation intention estimation for generating robust grasp
poses to reduce the operator’s workload, but this system lacks the response to misoperation.
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Other studies have attempted to model human decision-making procedures [28,29], but
treated the estimation of future choices using game theory, which is different to estimating
the current intention to perform a robot operation.

The objective of this study was not to aim for the high level of precision of remote
robot control by integrating humans and machines, but to estimate the intended operation
based on the operator’s original intention, and generate follower robot behaviors such that
the follower robot behaves with partial autonomy. Thereby, this study aimed to decrease
the burden on the operator and realize a safe controller that is robust against misoperation
and disturbances. The main contribution of our proposed method is a solution to issues
(iii) and (iv) mentioned above. Moreover, our proposed method also solves issues (i) and (ii).

In [30], the authors proposed a method for estimating and representing the operator’s
intention based on the operation inputs and environmental information. However, because
the method anticipates the intended operation at each sampling, misoperation still affects
the estimation and makes the follower robot move in a way that the operator did not intend.
In this paper, an estimation method using historical values of the intended operation is
proposed. Our proposed method was verified by simulation using real operation inputs to
the leader system under different practical scenarios, including misoperation.

2. Leader-Follower Robot
2.1. Outline of the Control System

The overall view of the controller in this study is shown in Figure 2. Direct operation,
as used in conventional teleoperated robots, calculates the desired travel distance and
velocity according to the sensor values measured at the leader and follower, and then
controls the follower robot. In this study, the element of operation and the element of
movement do not simply correspond. In other words, there is no direct correspondence
between the force sensor and the arm operation, or between the leg-tracking camera and
the locomotive unit. Instead, the intention estimator determines the operation intention
and the motion generator uses the results of the operation intention estimated and the
values of each sensor to determine the speed and the amount of movement. However, in
this paper, the details of the motion generator are omitted because this paper focuses on
the overall view of the controller and the processing in the intention estimator.

Operation
input

Intention
estimator

Motion
generator

Motion
controller

Feedback

Environment
input

Figure 2. Outline of proposed control system.

2.2. Leader System and Follower Robot

A leader–follower robot that can lift an object, transport it, and lower it was considered.
To verify the proposed control system, the leader system is shown in Figure 3. Figure 4
shows the follower robot, whose specifications are listed in Table 1.

The leader system consists of an aluminum frame, and is equipped with a six-degrees-
of-freedom force sensor (FFS055YA501, Leptrino Inc., Nagano, Japan) and web camera
(CMS-V31SETBK, Sanwa Supply Inc., Okayama, Japan). Additionally, to create an envi-
ronment that is not prone to fatigue, the leader system is equipped with a car seat suitable
for long-distance driving (SR-7F KK100, Recaro Inc., Shiga, Japan). The operator sits on
the chair at the center of this system and operates the robot by applying force using a grip
attached to the force sensor. The camera detects the foot movement, which is used as input
to operate the robot.
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Figure 3. Leader system.
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Figure 4. Follower robot.

Table 1. Specifications of follower robot.

Dimensions (mm) 200 [W] × 250 [D] × 450 [H]

Weight (N) 18.62

Degrees of freedom 4

The follower robot consists of an arm unit to lift an object, a lift unit to move the arm
horizontally and vertically, and a locomotion unit. A linear actuator (SKR2602AE, THK
Co., Ltd., Tokyo, Japan) moves the arm vertically. A stepper motor (PKP243D15A, Oriental
Motor Co., Ltd., Tokyo, Japan) extends the arm by 7 mm, as shown in Figures 5 and 6.
Two driving wheels are arranged on the opposing sides of the locomotion unit and con-
nected to stepper motors (PKP233D15A, Oriental Motor Co., Ltd.). Additionally, outriggers
are attached in front of the locomotive unit to prevent overturning when the robot trans-
ports heavy objects [31], and stepper motors (PKP233D15A and PKP213D05A, Oriental
Motor Co., Ltd.) are used to drive them. To prevent the follower robot from colliding with
obstacles such as pedestrians and walls, the locomotive unit is equipped with distance
sensors (VL53L0X, Strawberry Linux Co., Ltd., Tokyo, Japan) on all sides.

Figure 5. Distance of arm (flexion).
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Figure 6. Distance of arm (extension).

2.3. Controller Hardware

Figure 7 shows an outline of the controller hardware. The left part of Figure 7
corresponds to the right part of Figure 3, the “Force Sensor” and the “Camera” in this
figure constitute the “Operation input” unit in Figure 2, and “Leader PC” in this figure is
responsible for the data collection of the “Operation input” unit and the calculation of the
“Intention estimator” unit in Figure 2. The right part of Figure 7 corresponds to the follower
robot in Figures 2 and 4. The computer (PC) of the leader system obtains the operation
inputs from the force sensor and the web camera, and sends them to the follower robot.
Basic arm control is performed according to the force direction and magnitude. The details
of the control method are provided in the following section. Locomotion control is based on
the measured force and step length, and the step length is detected using a simple method,
as follows. A colored marker with a diameter of approximately 30 mm is attached to each
toe as shown in Figure 8. The web camera images are transformed such that the marker
pixels are white and the background pixels are black. The distance between each detected
marker center is used as the step length.

Follower

Leader PC Follower PC
(Arduino)

Force Sensor

Motor Driver
Camera

Leader

Distance Sensor

Figure 7. System configuration.

The follower robot is equipped with a microcomputer (Arduino Mega 2560 R3,
Arduino, Monza e della Brianza, Italy) for the motor drivers and a distance sensor from
which the relative distance and velocity of the obstacle are calculated as environmental
inputs. The desired motion values are generated by the microcomputer using the oper-
ation inputs sent from the leader and the environmental inputs. Serial communication
is used between the leader and the follower. The desired values of the generated mo-
tion are sent to the motor controllers. Each stepper motor has a motor driver (L6470,
Strawberry Linux Co., Ltd.), and the linear actuator has a servo driver (TLC-005-024DC,
THK Co., Ltd.).
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Figure 8. Step length calculation. The center frame shows the movement of the operator’s feet. The
left and right frames show the result of the image processing of the logos on the operator’s feet which
will be used to calculate the step length. The red line in the center frame means the step length.

3. Intention Estimator
3.1. Behavior Map [30]

A behavior-based tree is occasionally used to describe and design the actions of non-
player characters in video games [32]. In contrast to a state-based tree, actions can be
described directly at the end of the behavior-based tree.

In this study, this idea was applied to create a “behavior map” to fit the potential
actions of the follower robot with respect to the evaluation indices as its axes. As an
example, the degrees of risk, movement (locomotive operation), and arm operation are
selected as the evaluation indices and form the three axes of the behavior map, as shown in
Figure 9. The degree of risk represents how dangerous it is to operate the follower robot.
The reason why the degree of risk is proposed as an evaluation index is to reduce the overall
burden on the operator during extended periods of work. The degree of risk is calculated
based on the relative distance and relative velocity between the follower robot and the
obstacle measured by distance sensors. By analyzing the value of the degree of risk, it can
be judged whether the follower robot has the risk of colliding with the obstacle to ensure
the safety of work. With this evaluation index, the operator does not need to constantly
pay full attention to the distance sensor data, thereby reducing the overall burden on the
operator during extended periods of work. Also, the degree of movement indicates whether
the operator intends to perform a movement operation, and the degree of arm operation
indicates whether the operator intends to operate the robot’s arm. Each evaluation index
is obtained by simplified fuzzy inference, as explained in the next subsection. The three
degrees are scalars ranging from −1 to 1, with the values going from negative to positive
to indicate the risk intensity or the intention from weak to strong. The follower robot can
perform five behaviors, as presented in Table 2. These actions are assigned to each quadrant
of the behavior map to form the intended operations corresponding to the figure and table.

The behavior map is a method of expressing behavior. The values of the evaluation
indices become the coordinates of a point, and the quadrant in which the point is located
determines the intended operation.

Degree of Arm Operation

Degree of Moving

Degree of Risk

Figure 9. Behavior map (refer to Table 2).
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Table 2. Behavior for each quadrant.

Quadrant Behavior

1© Move
2© Avoid during movement
3© Operate arm
4© Avoid during arm operation
5© Stop

3.2. Calculation of Indices

This study used simplified fuzzy inference to obtain the coordinate location on the
behavior map from the input. The inputs provided by the leader system are the force in
the x (forward and backward), y (right and left), and z (vertical) directions, and the step
length. The inputs from the follower robot are the relative distance and velocity between the
follower robot and an obstacle. The output represents a coordinate point on the behavior
map. The degree of risk is determined from the relative distance and velocity with respect
to an obstacle. The degree of movement is determined from the input force in the horizontal
plane and the step length. The degree of arm operation is determined from the input force
in the sagittal plane and the step length.

The antecedent membership functions corresponding to the relative distance, relative
velocity, force, and step length are shown in Figures 10–13. Figure 10 shows the membership
functions for the relative distance as “VN (Very Near)”, “N (Near)”, “M (Medium)”, “F
(Far)”, or “VF (Very Far)”. Figure 11 shows the membership functions for the relative
velocity as “VSl (Very Slow)”, “Sl (Slow)”, “M (Medium)”, “F (Fast)”, or “VF (Very Fast)”.
Figure 12 shows membership functions for the magnitude of the force in each direction
(x-, y-, and z-axis in Figure 4) as “NB (Negative Big)”, “ZO (Zero)”, and “PB (Positive Big)”.
Figure 13 shows the membership functions for the step length as “B (Big)” or “S (Small)”.

Very 
Near

Very 
Far

FarMediumNear

200 300 400 500 600

Relative Distance [mm]

0

1

Figure 10. Membership functions of relative distance.

Very 
Slow

Very 
Fast

FastMediumSlow

30 60 90 120 150

Relative Velocity [mm/sec]

0

1

Figure 11. Membership functions of relative velocity.
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−15 −5 0 5 15

Figure 12. Membership functions of force magnitude.

Step Length [mm]

0

1

Small Big

280100

Figure 13. Membership functions of step length.

The consequent membership functions are constants, as presented in Tables 3–5, and
all consequent parts belong to the singleton type.

Table 3 lists the fuzzy rules for the degree of risk: a negative value indicates a safe
situation, while a positive value indicates a dangerous situation. Here, when the rela-
tive distance between the follower robot and an obstacle is “Very Near,” the values are
positive because the follower robot has a high potential for collision regardless of the
relative velocity.

Table 3. Fuzzy rules of the degree of risk.

Relative Velocity

VSl Sl M F VF

VF −1.0 −1.0 −0.5 −0.5 0.5

F −1.0 −0.5 −0.5 0.0 0.5
Relative M −0.5 −0.5 0.0 0.5 0.5
distance N −0.5 0.0 0.5 0.5 1.0

VN 0.5 0.5 1.0 1.0 1.0

Table 4 lists the fuzzy rules of the degree of movement; a negative value indicates that
the operator does not want to move the follower robot, while a positive value indicates
that the operator wants the follower robot to move. A large step length indicates the
intention to move, while a small step indicates the intention to stop moving, as illustrated
in Figure 13. Because, in a real transportation scenario, the operator will push the payload
in the locomotion direction, the force values are also considered.
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Table 4. Fuzzy rules of the degree of movement.

Magnitude of force

Direction x NB ZO PB

of force y NB ZO PB NB ZO PB NB ZO PB

Step B 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0

length S −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

Table 5 lists the fuzzy rules of the degree of arm operation. A negative value means
that the operator has no intention of manipulating the arm part. In contrast, a positive value
indicates that the operator intends to manipulate the arm part of the follower robot. The
direction and magnitude of the force are mainly related to the arm operation. Moreover, it is
assumed that the arm operation is only performed when movement has stopped. Therefore,
a large step length results in a negative degree of arm operation.

Table 5. Fuzzy rules of the degree of arm operation.

Magnitude of force

Direction x NB ZO PB

of force z NB ZO PB NB ZO PB NB ZO PB

Step B −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

length S 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0

When µj is the compatibility determined from Figures 10–13 and wj is the output from
the consequent part, the value from each fuzzy rule, that is, the coordinates in behavior
map di(t), is calculated as (1).

di(t) =
∑j µj · wj

∑j µj
(1)

where i = M, A, and R indicate the degree of movement, arm operation, and risk, respectively.

4. Incorporating Historical Values of Operation Intention

The intention estimation uses current inputs. However, while there is no issue when
the intention and action of the operator match, there may be trouble when there is a mis-
match between the intention estimated based on the operator’s actions and the operator’s
actual original intention. Notably, experienced operators will rarely perform unexpected
motions intentionally during robot operation. Hence, in this study, the transition of the
estimated intention is expressed and evaluated as a continuous function. When the operator
behaves according to a specific intention, a sudden change in the estimated intention can
be considered as unnatural, even if sudden and unexpected operational inputs cause this
change. Thus, the continuousness of the estimated intention can suppress unexpected
behavior caused by disturbances or abrupt action.

To suppress unexpected behavior, the evaluation indices estimated with current inputs
are modified using the moving average of historical evaluation index values. The modified
evaluation indices d′i (i = M, A, R) are calculated as follows:

d′i(t) = di(t) +
Gi
n

n

∑
k=1

di(t− k) (2)

where Gi is the correction gain and n is the number of historical values. In this study, the
gain Gi was empirically determined as follows: GM = 1.2, GA = 1.5, and GR = 1.0.
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5. Simulation Verification of Intention Estimator
5.1. Method

Three cases of the operator temporarily acting contrary to the original intended op-
eration were considered. The estimated intended operation was drawn as a locus on the
behavior map to compare the scenarios with and without historical values.

1. When the operator extends the robot arm to load an object, the operator takes a small
step length to let the system determine that the robot arm is being operated, and
apply force to the force sensor to perform the operation. If the operator’s foot slips
suddenly during operation, this will increase the step length and cause the system to
assess that the robot should be moving forward. After realizing that an unexpected
operation has occurred, the operator will move their foot to the initial position and
then input a command to operate the arm again. This scenario is consistent with issue
(iv) mentioned in the Introduction. The operator’s foot may also slip owing to an
external disturbance, such as being greeted by colleagues; therefore, this scenario is
also consistent with issue (iii) mentioned in the Introduction.

2. When the operator moves the robot forward, the operator takes a larger step length
to indicate to the system that the robot should be moving forward, and applies force
to the force sensor to perform the operation. Additionally, the operator may become
tired of maintaining the same posture during the operation and close their legs, which
makes the step length smaller, indicating to the system that the robot arm should
extend. After realizing that unexpected operation has occurred, the operator opens
their legs; thus, the operation input returns to a movement command. This scenario is
consistent with issue (ii) mentioned in the Introduction.

3. During the transport of an object, the operator commands the follower robot to move
forward, even though an obstacle exists in front of it. This scenario is consistent with
issue (i) mentioned in the Introduction.

In this study, the leader system was operated according to each considered scenario,
and the schematic of the operator during operation is shown on the right part of Figure 3.
The operation values were recorded every 0.2 s throughout the sampling period. The past
30 measurements were used to average the evaluation indices, and each misoperation was
performed for 1 s.

To visualize the results, the estimated intentions are expressed on a plane of the
behavior map, and are mapped to two dimensions. This is equivalent to omitting an axis in
the behavior map in certain cases. In scenarios 1 and 2, the degree of risk is omitted because
the working environments of these scenarios are assumed to be safe for arm operation.
Therefore, the degrees of movement and arm operation are used as the axes. In scenario 3,
because the operation of the robot arm is not involved, the degrees of movement and risk
are used as the axes.

5.2. Scenario 1

While the original intended operation was ”Operate arm”, the actual operation inputs
were “Stop”, “Operate arm”, “Move”, and “Operate arm”, in this order. The locus of
intention estimated without the historical values is shown in Figure 14, and that estimated
with the historical values is shown in Figure 15. The second and fourth quadrants in-
dicate “Operate arm” and “Move” in the behavior map, respectively. The first and the
third quadrants indicate “Stop”.
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Figure 14. Operating intention without historical values (Scenario 1).
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Figure 15. Operating intention with historical values (Scenario 1).

As shown in Figure 14, the estimated intention changed from arm operation to lo-
comotion, according to the input change. Therefore, generating motion and controlling
the follower robot without historical intention values will result in collision with the
surroundings, because the robot begins locomotion at the moment when the operator’s
input changes.

In contrast, Figure 15 shows that the estimated intention did not enter the “Move”
quadrant, even when the input changed from arm operation to locomotion. Therefore, the
intention estimation was modified by the historical intention values. Thus, the safety of the
robot and surroundings is retained even when misoperation occurs.

5.3. Scenario 2

While the original intended operation was ”Move”, the actual operation input was
“Stop”, “Move”, “Operate arm”, and “Move”, in this order. The locus of intention estimated
without the historical values is shown in Figure 16, and that estimated with the historical
values is shown in Figure 17. The second and fourth quadrants indicate “Operate arm” and
“Move” in the behavior map, respectively. The first and third quadrants indicate “Stop”.
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Figure 16. Operating intention without historical values (Scenario 2).
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Figure 17. Operating intention with historical values (Scenario 2).

As shown in Figure 16, the estimated intention changed from locomotion to arm
operation, according to the change of input. Therefore, generating motion and controlling
the follower robot without intention logs will cause the robot arm to collide with the
objects in front of it, because the robot extends its arm at the moment when the operator’s
input changes.

In contrast, Figure 17 shows that the estimated intention did not enter the “Operate
arm” quadrant, even when the input changed from locomotion to arm operation. Therefore,
the intention estimation was modified by the historical intention values.

5.4. Scenario 3

While the original intended operation was “Move”, the operation input continued
to cause the follower robot to move forward although an obstacle existed in front of it.
The locus of intention estimated without the historical values is shown in Figure 18, and
that estimated with the historical values is shown in Figure 19. The first quadrant and
second quadrant indicate “Avoid during movement”, and “Move” in the behavior map,
respectively. The third and fourth quadrants indicate “Stop”.
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Figure 18. Operating intention without historical values (Scenario 3).
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Figure 19. Operating intention with historical values (Scenario 3).

As shown in Figure 18, the estimated intention locus entered the “Move” quadrant
first, which matches the original intention. However, when the robot approached the
obstacle, the operating intention changed to “Avoid during movement”. This means that
the system cannot estimate the operator’s original intention.

In contrast, when using historical values, Figure 19 indicates that the estimated inten-
tion locus remained in the “Move” quadrant, even though the robot was relatively close to
the obstacle.

However, the estimated intention moved into the “Avoid during movement” quadrant
after the follower robot approached the obstacle. This may cause a collision with the
obstacle if the obstacle moves toward the follower robot or a sudden disturbance in the load
affects the follower robot’s motion. Therefore, the current evaluation indices for the degree
of risk are more important than expected, and a smaller gain in calculating the degree of
risk is better for the safe operation of the follower robot.

6. Conclusions

This paper presents a framework for estimating the operating intention for a leader–
follower robot. In situations where leader–follower robots are used for disaster rescue and
surgery, extended periods of work are unavoidable, and the burden placed on the operator
or physician may induce misoperation, resulting in operation failure or unnecessary injury
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to the patient. The method proposed in this study aims to suppress misoperations at a
high level such as intention estimation, thereby ensuring the safety of work and surgery.
Consequently, we proposed the idea of Figure 1 to classify the degree of automation in this
control system to handle situations of misoperations. In Figure 1, from direct operation
on the left to pure autonomous operation on the right, the degree of automation gradually
proceeds. In the case of non-misoperation, it is biased towards direct operation, but in the
case of misoperation, it is biased towards pure autonomous operation, therefore it is called
“partially autonomous”.

In order to realize the control system mentioned above, in this study, the operation
intention estimator, which is composed of simplified fuzzy inference and a behavior map,
was being used. Simplified fuzzy inference was used to estimate the operator’s original
intention from the operation inputs and environmental information. The proposed behavior
map can express the intended operation. The modification of the intended operation
using historical values of intended operation forces the behavior to follow the original
intended operation, even when the operator acts unexpectedly. Therefore, even if temporary
misoperation occurs, the follower robot does not act according to the deviated intended
operation, but maintains safe operation motion.

This study presents two main contributions:

1. The framework proposed in this study aims to estimate more complex and strategic
higher-order intention such as behavior, and suppress the impact on the estimated
intention when misoperation occurs due to fatigue or external interference to the
operator, to allow the movement to continue as expected. This is not possible with the
method that aims for high precision control by direct estimation of the motion.

2. The framework proposed in this study excels in the estimation of more generalized
behaviors, making it particularly well-suited for leader–follower robots navigating
uncertain work processes and undertaking tasks characterized by a heightened degree
of flexibility. In contrast, existing methods facilitating the estimation of higher-order
intentions do not sufficiently cater to the operational capabilities unique to leader–
follower robots.

The limitations of this study are as follows: For the degree of risk and other evaluation
indices reflecting the operation intention, heuristically-determined gains can be used to
modify the values. However, a method for designing the gain according to each feature
does not exist. For the evaluation of our proposed method in this study, the detection
of misoperation or disturbances is also necessary. Additionally, the generation of target
motion values for the estimated intended operation and other parts is also required to
perform the entire control system. The above-mentioned issues should be addressed in
future work.
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