
Citation: Calegaro, D.; Mariani, S.

Truss Metamaterials: Multi-Physics

Modelingfor Band GapTuning.

Machines 2023, 11, 913. https://

doi.org/10.3390/machines11090913

Academic Editor: Fengming Li

Received: 2 August 2023

Revised: 11 September 2023

Accepted: 15 September 2023

Published: 17 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Truss Metamaterials: Multi-Physics Modeling for Band GapTuning
Daniel Calegaro * and Stefano Mariani

Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci, 32,
20133 Milano, Italy; stefano.mariani@polimi.it
* Correspondence: daniel.calegaro@polimi.it

Abstract: Periodic elastic metamaterials (EMMs) display the capability to forbid the transmission of
elastic waves for certain frequency ranges, leading to band gaps. If topology optimization strategies
are exploited to tune the band gaps of EMMs, the said band gaps cannot be modified in real-time.
This limitation can be overcome by allowing for active materials in the design of EMMs. In this work,
a hyperelastic piezoelectric composite was considered to assess the coupled effects of material and
geometric nonlinearities on the behavior of sculptured microstructures featuring a three-dimensional
periodicity. Specifically, it was assumed that the composite material is obtained by embedding piezo
nanoparticles into a soft polymeric matrix. In this way, piezoelectricity and instability-induced
pattern transformation could be fully exploited to actively tune the band gaps. A thermodynamically
consistent multi-physics model for the active composite material is discussed and implemented in a
general-purpose finite-element code. The reported results of the simulations showed how the band
gaps are affected by the aforementioned nonlinearities and by a feature of the architected periodic
cell linked to its topology.

Keywords: elastic metamaterials; hyperelasticity; piezoelectricity; buckling

1. Introduction

Waves represent a pervasive form of motion in nature. The study of wave propagation
and tuning based on material properties may substantially contribute to the advancement
of science and technology. In particular, tailoring the propagation of sound and elastic
waves is of main concern in fields such as medical [1], military [1], automotive [2], and
civil engineering [3,4]. More specifically, the propagation of elastic waves can be forbidden
within specific frequency ranges, called band gaps, thanks to the absorption of the elastic
wave energy.

Many natural materials possess the ability to control waves and prevent their propaga-
tion. However, these materials alone cannot be used for the purpose of reaching the desired
acoustoelastic properties, due to poor control of their physical properties; new artificial
materials look, therefore, necessary to solve this problem. Taking advantage of composites
with architected unit cells at the microscale, a new class of man-made materials has been
devised, the so-called elastic metamaterials (EMMs). As far as the materials are concerned,
a number of studies investigated the effects induced by the contrast in Young’s modulus,
Poisson’s ratio, and the density between the matrix and inclusions in the case of a binary
composite [5,6]. On the other hand, as far as the topology is concerned, which indeed
represents one of the most-important features affecting the band gap properties, research
has been conducted at the unit cell level, focusing on the lattice parameters to attain an
optimal design [7–9] through topology and parametric optimization techniques [10–13].
For instance, in [14,15], an optimization method was proposed on the basis of a closed-form
estimation of the band gap width and of the starting frequency as a function of a number
of key geometric parameters; such an approach resulted in being useful in obtaining the
optimal bang gap and the material design, to achieve better properties.
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In order to extend even more the tunability of the EMM properties, active materials
have been proposed so that the band gaps can be modulated by the application of external
non-mechanical stimuli. Recent works include the exploitation of material nonlinearities
and geometrical nonlinear effects, such as buckling instabilities, to tune the band gaps by
switching the pattern of deformation [16–19]. Furthermore, the adoption of multi-field
couplings was studied to understand the effect of different modulation techniques related
to electric and magnetic biasing [20,21], temperature [22], and piezoelectricity [23–25].

Within the realm of piezoelectric materials, a promising solution involves the use of
three-dimensional periodic architected truss cells, in place of the more-common two-dimensional
periodic structures. This method may entail the manufacturing of architected periodic
cells with piezoelectric nanoparticles embedded in a polymeric matrix [26]. By tuning the
topology of the unit cell, a range of piezoelectric properties can be achieved, even larger
than those obtained by bulk piezoelectric materials, supplemented by increased flexibility.

Here, we propose the use of an EMM composite, truss-like, periodic unit cell to
appropriately tune its band gaps. Owing to the soft (compliant) nature of the composite
due to its polymeric matrix, we move from the work of Guo [27], where a generalized
framework for an electro-mechanical coupling in the presence of finite deformations was
developed, to model the response of the composite cell. By including a hyperelastic
energy contribution into the electric enthalpy density function, a thermodynamically
consistent multi-physics model was implemented in the finite-element software COMSOL
Multiphysics® [28]. The proposed tuning of the band gap properties was obtained by
taking advantage of the interplay of: (1) geometric nonlinear effects, in terms of buckling
instabilities; (2) material nonlinearities, arising from the hyperelastic piezoelectric model;
(3) the tuning of the lattice parameters of the unit cell, or representative volume. Such a
strategy is revealed to be effective in largely increasing the number of available degrees of
freedom to control the propagation of the elastic waves in the EMM.

The remainder of this paper is arranged as follows. In Section 2, the thermody-
namically consistent multi-physics formulation to model the soft piezoelectric material is
provided; as this model has been ad hoc implemented in COMSOL Multiphysics®, the
details are given in order to understand how it can cope with all the nonlinearities allowed
for in the study. Results regarding a specific architected unit cell are discussed in Section 3,
to see how band gaps can be tuned also by means of the triggered microscopic instabilities.
Some concluding remarks and foreseen future work directions are finally discussed in
Section 4.

2. Materials and Methods

To properly introduce the coupled electro-mechanical model adopted for piezoelec-
tricity in finite deformations, a Lagrangian description is proposed departing from the
conservation of energy. In rate form, the electro-mechanical power per unit volume in the
reference configuration [29,30] reads:

U̇ = Sij ε̇ij + EiḊi, (1)

where an indicial notation has been adopted; therefore, indices i, j, k, l, m = 1, 2, 3 are used to
represent the components of the tensors coming into play in a three-dimensional orthonormal
reference frame, and a superposed dot stands for the time rate. In Equation (1): U is the stored
energy density; Sij the second Piola–Kirchhoff stress tensor; εij the Green–Lagrange strain
tensor; Ei the electric field; and Di the electric displacement field. By defining the electric
enthalpy density H as:

H = U − EiDi, (2)

its time rate is obtained from Equation (1) as:

Ḣ = Sij ε̇ij − Di Ėi. (3)
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Hence, H is a function of the Green–Lagrange strain tensor and of the electric field, namely
H = H(εij, Ei). The stress and electric displacement relations, thus, read:

Sij =
∂H
∂εij

, (4)

Di = −
∂H
∂Ei

, (5)

where, as implicitly assumed in Equation (1), the measure of stress and strain considered in
the formulation is conjugate in energy. The piezoelectric constitutive relations can be then
obtained by defining a specific form of H. It can be assumed to be [27,31]:

H = ΨME(Cij
)
− EiklεklEi −

1
2

ξ JC−1
ij EjEi, (6)

where: ΨME(Cij
)

is the stored mechanical energy density; Cij = 2εij + δij is the right
Cauchy–Green tensor; δij is the Kronecker delta; Eikl is the piezoelectric coupling tensor; ξ
is the dielectric permittivity constant; and J is the determinant of the deformation gradient.
In this specific case, the second Piola–Kirchhoff stress tensor and the electric displacement
field become, respectively:

Sij =
∂ΨME

∂εij
− EkijEk −

1
2

ξ J
(

C−1
kl C−1

ij − 2C−1
ki C−1

l j

)
EkEl , (7)

Di = Eiklεkl + ξ JC−1
ij Ej. (8)

Due to its intrinsic characteristics, the piezoelectric effect is usually investigated under
infinitesimal deformations. In fact, crystals and some ceramics are the most-widespread
piezoelectric materials, so elastic constitutive equations in the small deformation range
prove sufficient to model the mechanical backbone of the piezoelectric effect. By borrowing
the relevant linear relation, in the finite deformation range, a Kirchhoff-like strain energy
density can be assumed for ΨME, which reads:

ΨME =
1
2

Kijklεijεkl , (9)

where KE
ijkl is the elasticity tensor. Hence, the sole mechanical stress SME

ij takes the form:

SME
ij =

∂ΨME

∂εij
= Kijklεkl . (10)

This relation, together with Equations (7) and (8), provides a generalization to the consid-
ered deformation regime of the standard e-form of piezoelectric constitutive equations [30].
In view of the piezoelectric nanoparticles embedded in a soft matrix, in the present in-
vestigation, we instead employed a form of the internal mechanical energy density more
appropriate for polymeric materials, i.e., a nonlinear hyperelastic one. Specifically, the
Neo-Hookean strain energy density is assumed for simplicity:

ΨME =
1
2

µ
[
tr
(
Cij
)
− 3
]
− µ ln J +

1
2

Λ(ln J)2, (11)

where Λ and µ are the relevant Lamé constants. Hence, the mechanical stress relation
becomes:

SME
ij =

∂ΨME

∂εij
= 2

∂ΨME

∂Cij
= µδij + (Λ ln J − µ)C−1

ij . (12)
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This phenomenological piezoelectric constitutive model has been implemented in COMSOL
Multiphysics® through the MEMS module, to investigate the band gap properties of the
architected unit cell shown in Figure 1. Specifically, the model implementation has been
made possible by enabling the Equation View COMSOL Multiphysics® option, in order to
access and modify the equations and variables used internally by the software.

(a) (b)

Figure 1. (a) Three-dimensional model of the unit cell structure, and (b) cross-section with the
principal dimensions characterizing its geometry.

By varying the applied uniaxial compression in the z direction, the said interaction
among the material and geometric nonlinearities in the model may provide a means to
tune the band gaps and, therefore, exploit the architected composite for different real-
world applications. The unit cell, depending on the angle θ denoting the slope of the
internal out-of-plane beams, may result in displaying an auxetic response. The entire
numerical investigation includes four steps: (1) a Bloch–Floquet instability analysis, (2) a
linear buckling analysis, (3) a post-buckling analysis, and (4) a final wave propagation
analysis in the buckled configuration.

The Bloch–Floquet instability analysis is carried out to determine at which level of the
macroscopic average compressive strain an instability can be encountered. Depending on
the strain level, two main types of mechanical instabilities can emerge [17]: the microscopic
one, with a wavelength comparable to the dimension of the unit cell; the macroscopic one,
with a wavelength much larger than the size of the unit cell. In the analyses, two steps
are necessary to define the wavelength, and so the size, related to the instability. First,
general periodic boundary conditions are imposed on the unit cell in order to statically
deform it, and periodic boundary conditions in terms of the electric potential are assumed
at the boundary. Second, Bloch periodic boundary conditions in terms of displacement and
electric field are imposed on the unit cell to solve the eigenfrequency problem for a specific
set of wave vectors. Such Bloch boundary conditions take the form:

ui(x + r, t) = ui(x, t)eγk·r, (13)

where: ui is the displacement field; x is the spatial coordinate vector; r is the distance
vector in the current configuration between pairs of nodes placed on the opposite sides
of the unit cell; t is the time; k is the Bloch wave vector; γ is the imaginary unit; and
ui(x, t) = ũi(x)e−γωt, ω being the relevant angular frequency. The compressive strain,
concretely enforced in the z direction by means of a macroscopic or effective strain in the
same direction is gradually increased until the eigenfrequency becomes zero, meaning
that a transition between a stable configuration (characterized by real eigenfrequency
values) to an unstable configuration (characterized by complex eigenfrequency values) has
occurred [17,32].

Once the size of the microscopic instability has been identified through the aforemen-
tioned Bloch–Floquet instability analysis, a linear buckling analysis is performed on an
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enlarged unit cell to obtain the geometry of the first buckling mode. Such an enlarged
unit cell is set according to Bertoldi et al. [17]. On the basis of the deformed pattern, a
post-buckling analysis is carried out by imposing a further effective deformation up to the
desired strain level. By setting the path of the wave vector, a series of wave propagation
analyses was finally conducted at different strain levels, to see how the band gaps may
change by varying the deformation.

The dimensions used to characterize the primitive periodic unit cell in Figure 1 are
a = 1.55 cm, b = 6.43a, and c = 4.84a. The electromechanical properties of the composite
material were taken from the work of Cui et al. [26], so they read: Lamé constants of the
Neo-Hookean model Λ = 65,792 MPa and µ = 257 MPa; non-vanishing components
of the stress–charge coupling tensor E113 = E123 = 0.0336 C/m2, E311 = 0.00310 C/m2,
E322 = 0.00850 C/m2, and E333 = 0.0291 C/m2; dielectric permittivity constant
ξ = 0.2576× 10−9 C2/(Nm2); mass density ρ = 1360 kg/m3. As concerns the mesh
adopted for the analyses, hexahedral elements were used with a characteristic size small
enough to address the nonlinear response of the architected unit cell, as observed with a
convergence analysis at varying mesh density.

3. Results and Discussion

The results of the Bloch–Floquet instability analysis are reported in Figure 2. Specifi-
cally, Figure 2a shows how the values of the critical stretch λcr at the onset of the microscopic
and macroscopic instabilities are affected by the angle θ in the range 0◦–45◦. It can be seen
that, moving from the undeformed configuration characterized by λ = 1, microscopic
instability (red line) always occurs before the macroscopic one (blue line). This means
that, for this specific architected cell, the band gap properties can be adjusted through a
compression-induced microstructural modification. Conversely, if the macroscopic instabil-
ity took place first, the microstructure would not change and, so, even the properties of the
band gaps. It is also interesting to note that the plane in which the microscopic instability is
preferentially activated is the y-z one; see Figure 2f. This outcome is basically ruled by the
difference in the magnitudes of the entries E311, E322, and E333 of the stress–charge coupling
tensor. In the results, the two components E322 and E333 with a larger amplitude enforce
the said plane in which the instability has to occur.

Figure 2b shows instead an exemplary nominal stress vs. the applied stretch response,
as obtained with the post-buckling analysis of the periodic cell featuring θ = 30◦. Looking
at the pattern evolution in Figure 2c–f, the trusses or beams in the unit cell can be classified
as follows, on the basis of their deformation. External beams of length b, which are referred
to as elastic ligaments, connect adjacent primitive unit cells and display a lower rigidity
against the type of deformation pattern induced by the triggered microinstability. Internal
beams of length c, which are considered as masses, display instead a higher stiffness against
the instability-induced deformation pattern. The pattern evolution testifies to the fact that
the initial cell response is characterized by uniform compression up to the critical stretch
that triggers the microscopic instability. Next, as a consequence of the aforementioned
microscopic instability, the deformation gets localized in the elastic ligaments, while the
masses show a tendency to rigid body-like rotations only. A remarkable softening is, thus,
observed, as evidenced by the change in the slope of the stress–strain curve in Figure 2b.

We now focus on the overall effects of microscopic instability and nonlinear polymer
behavior on the band gap properties. Two different tuning methods were investigated,
by varying the applied stretch along the z direction and the angle θ; the results obtained
through the eigenfrequency analysis are reported in Figure 3 in terms of the band gap plots
for θ = 35◦, considering both the undeformed state (λ = 1) and the deformed one (λ = 0.9).
In these diagrams, the normalized frequency f̃ = ωL/(2πct0), where ct0 =

√
µ/ρ is the

speed of shear waves in the bulky polymer, is reported as a function of the wave vector
k, which is varied along the path Γ− X−M− Γ− Z− R− A− Z, depicted in Figure 3a.
As can be seen, the width and position of the band gaps are constant along the entire path
connecting the high symmetry points, at varying values of the stretch λ. Therefore, in
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the following analysis, where the stretch and the angle θ were, respectively, varied in the
range 0.9–1 and 0◦–45◦, the wave vector k was considered to change only along the path
Γ− X−M− Γ. The corresponding results of the analyses are shown in Figure 4a–j.
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Figure 2. Pattern evolution and microscopic/macroscopic instability at the unit cell level: (a) critical
stretch λcr for microscopic and macroscopic instabilities at varying beam slope θ; (b) macroscopic
nominal stress vs. applied stretch response of the enlarged unit cell (θ = 30◦), where the vertical
dotted line corresponds to the inception of microscopic instability and the red circles denote the states
reported in (c–f), to gain insights into the microscopic instability-induced pattern evolution.



Machines 2023, 11, 913 7 of 10

(a)

(b)
! X M ! Z R A Z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

F
re

q
u
en

cy
,

!
L

2:
c t

0

(c)
! X M ! Z R A Z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

F
re

q
u
en

cy
,

!
L

2:
c t

0

Figure 3. (a) First irreducible Brillouin region. Band gap plots of the enlarged unit cell with a beam
slope θ = 35◦ and loaded in the z direction, for (b) λ = 1 and (c) λ = 0.9.
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Figure 4. (a–j) Joint effects of the stretch λ and beam slope θ on the band gaps (shaded light-blue
regions) of the enlarged unit cell loaded in the z direction. As in Figure 2, the vertical dotted lines
denote the critical stretch at the inception of microscopic instability.

At fixed beam slope θ, the sole effect produced by the pattern-induced instability on
the band gap properties can be observed. Such an effect becomes more relevant after the
critical stretch for the microscopic instability has been attained, and the major band gap
typically increases in size. If the angle θ is instead increased, at fixed applied stretch λ, all
the reported band gaps shift toward higher frequencies since the overall stiffness of the
structure increases as well. When both θ and λ grow, the average frequency of the lower
band gap tends to decrease, as clearly visible in the figure for the cases featuring θ = 35◦,
θ = 40◦, and θ = 45◦. Moreover, for these high θ values, the low-frequency band gaps are
less prone to be split into smaller band gaps; the other way around, additional band gaps
appear at higher frequencies.
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4. Conclusions

In this paper, we investigated the exploitation of material and geometric nonlinear-
ities, together with the multi-physics modeling of smart materials, to tune the band gap
properties of architected periodic elastic metamaterials.

The present model was developed in a fully thermodynamically consistent way,
moving from the electric enthalpy density of a piezoelectric material to account for finite de-
formation effects (nonlinear geometrics). The mechanical contribution to the said enthalpy
was selected in a form appropriate for compressible Neo-Hookean materials, due to the soft
hyperelastic behavior of the considered polymer matrix. The tunability of the frequency
band gap properties was analyzed, allowing for instability-induced pattern transformations
that occur at increasing compressive strains applied to the primitive unit cell of the truss
metamaterial. A specific geometric feature of the architected cell topology, namely the slope
θ of the internal beams, was varied to to assess the effects on the mentioned tunability.

The results showed an expansion of the band gaps with the increase of the applied
compressive strain. Furthermore, for high θ values, the mid-frequency of the lower band
gaps decreased. On the other hand, by increasing θ at fixed applied strain, the band gaps
shifted toward higher frequencies. These findings demonstrate the potential benefits of
jointly exploiting geometric and material nonlinearities to dynamically adjust the frequency
band gaps.

In conclusion, the results presented in this work open up new avenues for further
research and development in the field of active metamaterials. The findings will be further
developed to consider poling-induced anisotropy in the response of the architected unit
cell and verified through laboratory tests on 3D-printed prototypes of the proposed active
metamaterials. It is foreseen that more-effective and -versatile active metamaterials, with
improved tunability and functionality, can be the backbone of innovative applications in
various fields.
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