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Abstract: The arc sound signal is one of the most important aspects of information related to pattern
identification regarding the penetration state of ship robotic GMAW; however, arc sound is inevitably
affected by noise interference during the signal acquisition process. In this paper, an improved
wavelet threshold denoising method is proposed to eliminate interference and purify the arc sound
signal. The non-stationary random distribution characteristics of GMAW noise interference are
also estimated by using the high-frequency detail coefficients in different domains after wavelet
transformation, and a mode of measuring scale that is logarithmically negatively correlated with the
wavelet decomposition scale is created to update the threshold. The gradient convergent threshold
function is established using the natural logarithmic function structure and concave–convex gradient
to enable the nonlinear adjustment of the asymptotic rate. Further, some property theorems related
to the optimized threshold function are proposed and theoretically proven, and the effectiveness and
adaptability of the improved method are verified via the denoising simulation of speech synthesis
signals. The four traditional denoising methods and our improved version are applied in the
pretreatment of the GMAW arc sound signal, respectively. Statistical analysis and short-time Fourier
transform are used to extract eight-dimensional time and frequency domain feature parameters from
the denoised signals with randomly time-varying characteristics, and the extracted joint feature
parameters are used to establish a nonlinear mapping model of penetration state identification for
ship robotic GMAW using the pattern classifiers of RBFNN, PNN and PSO-SVM. The simulation
results yielded by visual penetration classification and the multi-dimensional evaluation index of the
confusion matrix indicate that the improved denoising method proposed in this paper achieves a
higher accuracy in the extraction of penetration state features and greater precision in the identification
of pattern classification.

Keywords: ship robotic GMAW; penetration state identification; arc sound sensing; wavelet denoising;
adaptive threshold; threshold function optimization

1. Introduction

During ship robotic gas metal arc welding (GMAW), the penetration state of welded
joints is the most intuitive standard that can be used to evaluate the welding quality, and the
quality requirement of the welding specification states that one must obtain flat and fully
penetrated welded joints. However, due to various factors, such as the welding process,
weldment materials, etc., defects of partial penetration and excessive penetration are easily
generated in the actual production site, which means watertight integrity and the overall
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structural strength of ships cannot be guaranteed, thus further leading to hull leakage,
structural fractures, and even sinking accidents during ship navigation [1,2]. Hence, the
monitoring of the GMAW penetration state is particularly important in order to ensure
the reliability of ship welding. However, traditional monitoring methods employed at
shipyards include ultrasonic and X-ray testing, which encounter problems such as high
labor costs, low detection accuracy, and poor real-time performance. With the development
of large-scale ships, the welding process and workpiece shaping of ship structures have
become more complex, particularly in the harsh welding environment that pertains during
ship repair and construction. Consequently, there is a pressing requirement for simple and
effective means of information collection via sensing that adhere to the aforementioned
welding advancement conditions. As it employs a non-contact microphone, arc sound
sensing has loose placement environment requirements, employing simple and lightweight
equipment that is not affected by the shape of the workpiece. The arc sound signal can be
equated to the welder’s sensory function, mimicking their knowledge, skill, and decision-
making behavior models. All of this demonstrates the potential application of arc sound
sensing in ship robotic GMAW.

However, traditional monitoring approaches encounter the problems of high labor
costs, low detection accuracy, poor real-time performance, etc. However, intelligent welding
with integrated multi-sensors [3] can acquire and analyze information during welding,
identify the penetration state online, and provide real-time control feedback, thus effectively
improving welding quality and production efficiency, and greatly reducing construction
cost. Realizing intellectualization in ship robotic GMAW will allow us to obtain welding
information that effectively represents the penetration state. Currently, the most widely
employed techniques for penetration detection include the use of vision, arc voltage, and
weld pool oscillation. Gao et al. [4] designed a biprism passive stereo visual system that
utilizes a single camera to obtain three-dimensional images of the weld pool, and relied on a
deep learning stereo matching network to achieve penetration classification. Zhang et al. [5]
proposed that the fluctuation amplitude of arc voltage during the peak duration (Delta
U-k) indicates the weld penetration state in a single-weld location. Ebrahimi et al. [6,7]
analyzed the impacts of process parameters on the oscillation behavior of the weld pool, and
developed a high-fidelity 3D model through numerical simulation to predict the frequency
and amplitude of weld pool oscillation, which allows the identification of the penetration
state. Compared to the methods mentioned above, arc sound information [8], as a non-
contact vibration source signal, has the advantages of minimal placement requirements,
convenient information collection, a high degree of freedom of use, etc., and has always
been regarded as a very applicable and valuable form of feature information that can be
derived in real time during online welding quality monitoring in the welding industry.
Gao et al. [9] employed short-term Fourier transform to obtain time–frequency spectral
images of arc sound signal, which were then fused with a convolutional neural network
to enable the identification of the weld penetration state. Wu et al. [10] presented a novel
method for identifying penetration based on time and spectrum images of arc sound using
deep learning for DC GTAW. Ren et al. [11] proposed the log–spectral interpretation of
raw arc sound data in order to develop an optimized convolutional neural network (CNN)
model that could be used for the classification of penetration state. The outcomes of these
investigations suggest that it is feasible to identify the weld penetration state using arc
sound signals.

The excitation source of arc sound is the change in arc energy and the oscillation of
the weld pool, and the arc sound signal acquired in a non-closed field not only yields the
process information of the whole ship robotic GMAW process, but is also easily interfered
with by various highly nonlinear noise sources [12–14]. These noises are mainly divided
into sensor noise [15], impulse noise [16] and environmental noise [17,18]. Among these,
sensor noise is mainly produced by the drift noise generated by DC components, including
sound sensors. This noise causes the arc sound signal to deviate from the zero-base line.
Usually, methods of de-averaging, DC negative feedback intervention and differential
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amplifier circuit can be adopted to suppress this interference. Impulse noise is a noisy
signal generated by the periodic characteristics of the working current of a welding machine;
it is closely related to the formation process of quality welding, and the information it
contains includes the partial change laws of the penetration state. Environmental noise is
mainly composed of two random signals, i.e., the movement of mechanical equipment and
the voices of operators. This part of the noise is integrated into the data set of arc sound that
represents the characteristics of weld formation, which undoubtedly increases the difficulty
of determining the penetration state. Therefore, the development of a denoising method to
be applied to environmental noise in sound sensing is one of the most essential research
objectives in solving the problem of penetration state identification for ship robotic GMAW.

Particle filters [19,20], ICA blind signal separation [21–23] and band-pass filters [24,25]
are commonly used for denoising at present, but have limitations when applied to ship
arc information interpretation. Particle filters must establish a state space model of the
prior characteristics of unknown noise in the process of denoising. ICA blind signal
separation [26,27] requires that the components of the signal source be statistically uncorre-
lated, and the band-pass filter significantly weakens the useful information present in the
cutoff frequency, resulting in the serious distortion of the arc sound signal. However, the
noise interference that arises during ship robotic GMAW is unknown, shows multiple types
of coupling, is highly nonlinear, and is widely distributed across the whole frequency band,
which means the above traditional denoising methods cannot be effectively applied. The
wavelet threshold denoising [28–30] method has good local time–frequency characteristics,
and has obvious advantages in the denoising of the arc sound signal with random and non-
stationary characteristics. Given its own multi-scale wavelet decomposition characteristics,
the low-frequency and high-frequency parts of a noisy signal are analyzed bidirectionally,
and the signal energy contained in the wavelet coefficients at each decomposition scale
is used as the weight to quantitatively measure useful signal and noise signal. Ma [31],
Liu [32], Huang [33] and Wu [34] each applied wavelet threshold denoising to an arc sound
signal interfered with by external noise under different welding modes, such as carbon
dioxide arc welding, MIG, MAG and aluminum alloy VPPAW. The results indicate that the
signal “glitch” was filtered out, the waveform distortion was small, and the signal-to-noise
ratio was improved; Yu [35] took the splash noise in the MIG welding arc sound as the object
of denoising, and designed examples of the application of different types of wavelet basis
functions. By comparison, it was concluded that the signal-to-noise ratio of Daubechies
series wavelet processing was notably higher than that of Symlets; Shi and Bi et al. [36,37]
denoised the arc sound at different stages of droplet transfer. The denoised signals can
be used to separate the abrupt parts of useful signals and noise information, and identify
the power spectral density distribution at different stages. Therefore, it was concluded
that the wavelet threshold denoising method is effective in arc sound signal preprocessing
for GMAW. However, the algorithm itself displays the shortcomings of being a singular
estimation method and yielding fixed corresponding values of different decomposition
layers, which cannot be effectively used to identify the boundary threshold of the GMAW
penetration state information and noise interference signals at different decomposition
scales; further, when simultaneously adding the inherent defects, such as discontinuity
and constant deviation, of the hard and soft threshold functions, the distribution law of
the wavelet energy of noise interference at the decomposition scale cannot be met. As
a result, the effects of denoising the arc sound signal are greatly reduced, and as such,
effective arc sound information for the feature extraction and classification identification of
the penetration state for ship robotic GMAW cannot be derived.

To resolve the application limitations of the wavelet threshold denoising method, an
improved method of adaptive threshold estimation and threshold function optimization is
proposed, which considers the highly nonlinear characteristics of arc sound noisy signals in
ship robotic GMAW as well as the inherent defects of threshold estimation and hard and soft
threshold functions. A measure of scale that is logarithmically negatively correlated with
the decomposition scale is introduced to update the adaptive threshold boundary between
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the useful signal and noise interference in different wavelet domains. The natural logarith-
mic function structure with concave–convex gradient adjustment is selected to optimize
the threshold function, allowing it to conform with the changes in the laws of the wavelet
energy distribution of noise interference with decomposition scale. At the same time, a
related property theorem of the improved threshold function is proposed and proven, and
the effectiveness and adaptability of the improved denoising method are verified via the
simulation of specific speech synthesis signals. This improved method and four traditional
denoising methods are applied in the arc sound preprocessing of ship robotic GMAW. Sta-
tistical analysis and Fourier transform are used to extract the time and frequency domain
feature parameters of the denoised signals, and their combined feature parameters are
input into the identification models of three penetration state classifiers, i.e., RBFNN, PNN
and PSO-SVM. The multidimensional evaluation index of visual penetration classification
and the confusion matrix indicates that the improved denoising method achieves better
accuracy in feature extraction and penetration identification, showing that the improved
method is obviously superior in the denoising of random non-stationary signals.

In this paper, a novel methodology for weld penetration monitoring is proposed based
on arc sound sensing via wavelet denoising in ship robotic GMAW. The remainder of this
paper is structured as follows. Section 2 discusses the background theory of wavelet-based
threshold denoising. Section 3 proposes an improved denoising method and proves the
relevant theorems. Section 4 presents the GMAW monitoring platform and experimental
design. Section 5 demonstrates different wavelet denoising methods with applicability
in penetration state identification for ship GMAW. Finally, Section 6 summarizes the
main conclusions.

2. Denoising Principle Based on Wavelet Threshold

The wavelet threshold denoising method has the advantages of a simple algorithm
structure, low calculation costs and remarkable denoising effects, and is widely used for pro-
cessing various random non-stationary signals. The noisy signal is decomposed by wavelet
transform to obtain low-frequency approximation and high-frequency detail coefficients.
In accordance with the propagation characteristics of different types of signal coefficients
in the decomposition scale domain, the high-frequency detail coefficients are quantified by
estimating thresholds based on noise distribution characteristics and selecting reasonable
threshold functions, while the low-frequency approximation coefficients and quantified
high-frequency detail coefficients are reconstructed by inverse wavelet transformation to
obtain the denoised signal [38,39].

The mathematical model of a one-dimensional noisy signal f (n) is:

f (n) = s(n) + σe(n), n = 1, 2, . . . , N (1)

where s(n) is a useful signal, e(n) is a noise signal with standard deviation σ, n is the time
series, and N is the total number of sampling points.

The process of denoising the noisy signal f (n) using the wavelet threshold denoising
method involves filtering out the noise component e(n) contained in the signal to the
greatest extent, so as to obtain a denoised signal f̂ (n) that is indistinguishable from s(n).
The process of the wavelet threshold denoising method is shown in Figure 1, and the
specific steps of its implementation can be expressed as follows:

• Wavelet decomposition. An appropriate wavelet basis function φj,k and the maximum
decomposition scale J are selected. The discrete wavelet transformation is performed
on the noisy signal f (n) via the Mallat algorithm [40] to sequentially obtain the low-
frequency approximation coefficients Aj,k and the high-frequency detail coefficients
Dj,k of layers 1 to J through low-pass and high-pass filtering:

Aj,k = ∑m∈Z h(m− 2k)Aj−1,m (2)
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Dj,k = ∑m∈Z g(m− 2k)Aj−1,m (3)

where h(∗) and g(∗) are low-pass and high-pass filters, respectively, k is the serial number
of the wavelet coefficients, m is the wavelet length, j = 1, 2, . . . , J, and Z is an integer set;

• Threshold processing. The approximation coefficients AJ,k of the decomposition scale
layer J are retained. On the premise of keeping the tree structure of the wavelet de-
composition coefficients unchanged in accordance with the distribution characteristics
of the noise wavelet coefficients in the wavelet domain, through threshold λ and a
comparison with the high-frequency detail coefficients Dj,k, an appropriate threshold
function is selected to quantify the classification coefficients. Accordingly, the updated
and corrected detail coefficients D∗j,k are obtained;

• Signal reconstruction. The modified detail coefficients D∗j,k and the approximation
coefficients AJ,k of layer J are subjected to inverse discrete wavelet transformation
through the reconstruction filter bank, and the denoised signal f̂ (n) is obtained,

Aj−1,m = ∑k∈Z h(m− 2k)Aj,k + ∑k∈Z g(m− 2k)D∗j,k (4)

where h(∗) and g(∗) are the conjugate operations of h(∗) and g(∗), respectively.
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Through the analysis of wavelet threshold denoising, it can be concluded that the
selection of threshold estimation methods and the structures of threshold functions are the
two key factors that determine the denoising effects. Accordingly, if the threshold is too
large, some useful signals will be filtered out, resulting in useful signal loss and deviation;
if the threshold is too small, the wavelet coefficients of some noise signals will be preserved,
resulting in incomplete denoising [41]. The selection of the most commonly used threshold
formulae can be performed via

λ = σ
√

2lnN (5)

where the estimated value of standard noise deviation σ = median
(∣∣D1,k

∣∣)/0.6745, and
median

(∣∣D1,k
∣∣) is the median of the set of detail coefficients with decomposition scale j = 1.

Threshold functions are primarily hard and soft, as proposed by Donoho et al. [42,43].
The hard threshold function (HTF) equates all the detail coefficients below the threshold
with noise and returns them to zero, while all the detail coefficients beyond the threshold
remain unchanged. The soft threshold function (STF) is the same as the HTF, except that
the wavelet coefficients greater than or equal to the threshold are uniformly reduced, in
accordance with the fixed threshold λ.
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The HTF is defined as:

D∗j,k =

 Dj,k,
∣∣∣Dj,k

∣∣∣ ≥ λ

0,
∣∣∣Dj,k

∣∣∣ < λ
(6)

The formula of STF is:

D∗j,k =

 sgn
(

Dj,k

)(∣∣∣Dj,k

∣∣∣− λ
)

,
∣∣∣Dj,k

∣∣∣ ≥ λ

0,
∣∣∣Dj,k

∣∣∣ < λ
(7)

where sgn(∗) is the sign function.

3. Improvement Analysis for Wavelet Threshold Denoising

The wavelet threshold denoising method shows some limitation in threshold estima-
tion and determining the threshold function structure, which directly affects the denoising
effect. By introducing the measure of scale to update the threshold formula and establish
an optimized threshold function, the denoising effect is improved, and the relevant charac-
teristics of the improved threshold function are theoretically proven. At the same time, a
simulated denoising experiment can be undertaken using speech synthesis signals with dif-
ferent noise intensities to verify the effectiveness and adaptability of the improved method.

3.1. Estimation Update and Function Optimization of Threshold

In accordance with the theory of wavelet analysis [44–46], after the wavelet decompo-
sition of a noisy signal, the wavelet coefficients of the useful signal and noise signal will
show different distribution characteristics in the wavelet domain at different decomposi-
tion scales. Wavelet coefficients can be used to infer the time–frequency characteristics of
the extracted signal, in which the wavelet coefficients of the useful signal are large and
mainly concentrated in the large-scale wavelet space, while the wavelet coefficients of
the noise signal are small, and are distributed in the whole wavelet domain but mainly
concentrated in the small-scale wavelet space; they will also gradually decrease with the
increase in decomposition scale. However, the estimated value of the traditional threshold
at each decomposition scale remains unchanged, and denoising failures will occur during
quantization, such as incomplete noise filtering caused by the small decomposition scale
and excessive losses of useful signal caused by the large decomposition scale.

To reduce the defects of the wavelet threshold denoising method related to the single
threshold estimation method used and the fixed value [47], in this paper, an adaptive
threshold estimation method is proposed. Giving full play to the advantages of traditional
threshold estimation by using multi-dimensional independent normal joint distribution,
the differences in the distribution characteristics of the corresponding wavelet coefficients
of different signals in the decomposition scale domain can be scientifically identified, and
traditional threshold estimation is thus updated by introducing a measure of scale
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where the concave–convex gradient 𝜛𝜛 > 0. 
Based on the above analysis, threshold estimation can be updated and improved to 

ensure the adaptability of the threshold to different decomposition scales, and the 
structure of the threshold function can be optimized to avoid the phenomena of oscilla-
tion and distortion in the reconstructed signal. Via the above two improvements, the 
effectiveness of the wavelet threshold denoising method can be comprehensively im-
proved. The improvement measures and denoising process are shown in Figure 2. 

j with a
logarithmic negative correlation with the decomposition scale j, such that the threshold λj
decreases with the increase in the decomposition scale j. The adaptive ability of threshold
estimation is in this way greatly increased, while fully conforming to the law of variation of
the noise signal as the decomposition scale j changes, which reduces the threshold deviation
and improves the denoising effect. The formula for estimating the adaptive threshold is
as follows:

λj =
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where the concave–convex gradient 𝜛𝜛 > 0. 
Based on the above analysis, threshold estimation can be updated and improved to 

ensure the adaptability of the threshold to different decomposition scales, and the 
structure of the threshold function can be optimized to avoid the phenomena of oscilla-
tion and distortion in the reconstructed signal. Via the above two improvements, the 
effectiveness of the wavelet threshold denoising method can be comprehensively im-
proved. The improvement measures and denoising process are shown in Figure 2. 

jσj
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2lnN (8)
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j = 1/ln
(

j + ej+2), noise variance σj = median
(∣∣∣Dj,k

∣∣∣)/0.6745,
Dj,k is the decomposition scale, and j is the median of the high-frequency detail coefficient set.
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The selection of threshold functions is essential in ensuring the denoising effect. HTF
has the advantage of preserving the local characteristics of the signal edges, but because of
the existence of a discontinuity point of the first kind at the threshold ±λ, the reconstructed
signal manifests a pseudo-Gibbs phenomenon [48], causing additional oscillation in the
reconstructed sequence, as a result of which the signal’s smoothness is greatly reduced.
The consistent continuity of STF can make up for some of the defects of HTF, and the
overall trend of the denoised signal is relatively smooth. However, continuous processing
causes constant systematic deviations of the quantization results [49], resulting in the loss of
too much high-frequency information, which directly affects the degree of approximation
between the reconstructed signal and the real signal.

By analyzing this principle, the advantages and disadvantages of hard and soft thresh-
old denoising methods can be inferred, and they can be optimized to improve the denoising
effect. In addressing the inherent defects of HTF and STF, following the basic principle
that the threshold function is continuous and high-order-derivable in a specific wavelet
space domain, this paper designs a gradient convergent threshold function (GCTF) with
asymptotic, continuous, non-constant deviation and high-order differentiability, as shown
in Formula (9). Taking into account the advantages of the integrity and smoothness of HTF
and STF signal extraction, it should be considered that the asymptotic property overcomes
the defect of the over-smoothing and blurring of the signal edge in STF, and continuously
solves the problem of the poor denoising effect related to the pseudo-Gibbs phenomenon
caused by the local intermittent oscillation of HTF. At the same time, the concave–convex
gradient introduced to characterize the change trend and asymptotic rate of the GCTF is
used to adjust the approximation degree, so as to achieve the goal of eliminating constant
deviation, and comprehensively improving the self-adaptability and signal fidelity of GCTF.

D∗j,k =


sgn
(

Dj,k

)∣∣∣Dj,k

∣∣∣− λj(
ln
(√

D2
j,k−λ2

j +e
)) 1

v

,
∣∣∣Dj,k

∣∣∣ ≥ λj

0,
∣∣∣Dj,k

∣∣∣ < λj

(9)

where the concave–convex gradient v > 0.
Based on the above analysis, threshold estimation can be updated and improved to

ensure the adaptability of the threshold to different decomposition scales, and the structure
of the threshold function can be optimized to avoid the phenomena of oscillation and distor-
tion in the reconstructed signal. Via the above two improvements, the effectiveness of the
wavelet threshold denoising method can be comprehensively improved. The improvement
measures and denoising process are shown in Figure 2.
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3.2. Theoretical Proof of the GCTF

After the threshold for the determination of noise in the wavelet domain is assigned,
the threshold function is selected to respectively filter and retain the equivalent noise
and the useful signal. In giving play to the advantages of HTF and STF, the optimized
threshold function constructs a GCTF while satisfying the threshold characteristics, such
as being asymptomatic, continuous, etc., and introduces a concave–convex gradient v to
characterize the rate at which HTF is approached so as to adjust the changing trend, as
shown in Figure 3, which reduces the influence of constant deviation on the denoising effect.
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The GCTF is between HTF and STF, as shown in Figure 3. When the amplitudes of
the wavelet coefficients are not less than the threshold λj, it is determined that they are
mainly generated by a useful signal, and the function amplitude is subjected to reserved
shrinkage processing on the original coefficients. The degree of shrinkage decreases with
the increase in wavelet coefficients and the decrease in concave–convex gradient v, and
when v → 0/ + ∞ , the GCTF is equivalent to HTF/STF. When the amplitude of the
wavelet coefficients is less than the threshold λj, all the wavelet coefficients are reset to
zero, thus realizing the separation of useful and noise signals in the wavelet transform
domain. At the same time, the theoretical proof of the related properties of the GCTF can
be given as:

Definition 1. Referring to Formula (9) of the GCTF, we suppose that Ψ is a wavelet domain space
and R+ represents a set of positive real numbers. The low-frequency approximation coefficient set A
and high-frequency detail coefficient set D are obtained after the wavelet transformation of the noisy
signal f (n), while A,D = Γ(Ψ), Dj,k is the kth wavelet coefficient of the decomposition scale j, and
Dj,k ∈ D. D∗j,k is the quantized wavelet coefficient, and λj is the adaptive threshold that varies with
the decomposition scale j, v is a concave–convex gradient, and v, λj ∈ R+.

Proof of Lemma 1 Continuity. When the high-frequency detail wavelet coefficient Dj,k
approaches the adaptive threshold λ+

j to an infinite dgree, the limit on the left and the limit

on the right can be obtained, respectively. When Dj,k → λ+
j ,

lim
Dj,k→λ+

j

D∗j,k = lim
Dj,k→λ+

j

Dj,k −
λj(

ln
(√

D2
j,k − λ2

j + e
)) 1

v

 = 0 (10)
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Similarly, when Dj,k → λ−j ,

lim
Dj,k→λ−j

D∗j,k = 0 (11)

and compared with the function value,

lim
Dj,k→λ+

j

D∗j,k = lim
Dj,k→λ−j

D∗j,k = D∗j,k
∣∣∣
Dj,k=λj

= 0 (12)

That is, the D∗j,k of the GCTF is continuous at Dj,k = λj. Similarly, D∗j,k is continuous
at Dj,k = −λj. It is concluded that D∗j,k is continuous in the whole wavelet domain of
Dj,k ∈ D.

Proof of Lemma 2 Asymptotic Property. When the high-frequency detail wavelet coeffi-
cient Dj,k is infinitely close to +∞, the asymptote is found:

lim
Dj,k→+∞

D∗j,k
Dj,k

= lim
Dj,k→+∞

1−
λj

Dj,k

(
ln
(√

D2
j,k − λ2

j + e
)) 1

v

 = 1 (13)

Similarly, when Dj,k → −∞ ,

lim
Dj,k→−∞

D∗j,k
Dj,k

= 1 (14)

it can be concluded that
lim

Dj,k→∞
D∗j,k = Dj,k (15)

When the oblique asymptote of GCTF is D*
j,k = Dj,k, it converges to HTF.

Proof of Lemma 3 Non-constant Deviation. We assume that the deviation between GCTF
and HTF is ∆ =

∣∣∣Dj,k − D*
j,k

∣∣∣. When Dj,k ∈
[
λj,+∞

)
in the wavelet domain, it can be

inferred that

∆ =
λj(

ln
(√

D2
j,k − λ2

j + e
)) 1

v

(16)

On the premise that threshold λj and the concave–convex gradient v are known and

determined, ∆
(

Dj,k

)
shows the characteristics of a decreasing function.

When Dj,k → λj ,

lim
Dj,k→λj

∆ = lim
Dj,k→λj

λj(
ln
(√

D2
j,k − λ2

j + e
)) 1

v

= λj (17)

When Dj,k → +∞ ,

lim
Dj,k→+∞

∆ = lim
Dj,k→+∞

λj(
ln
(√

D2
j,k − λ2

j + e
)) 1

v

= 0 (18)

It can be concluded that the deviation ∆ between the GCTF and HTF is reduced with
the increase in wavelet coefficient Dj,k until it tends to 0, and the deviation fluctuation range
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is (0, λ j

]
. Similarly, when Dj,k ∈

(
−∞, λj

]
is in the wavelet domain, the above conclusion

is also satisfied.

Proof of Lemma 4 Approximation Rate of Concave–Convex Gradient. We assume that
the GCTF D*

j,k

(
Dj,k, v

)
is a binary function related to the wavelet coefficients Dj,k and

concave–convex gradient v. When Dj,k ∈
[
λj,+∞

)
is in the wavelet domain, the first-order

partial derivative is as follows:

∂D∗j,k
∂Dj,k

= 1 +
λj

(
ln
(√

D2
j,k − λ2

j + e
))− 1

v−1

v
√

D2
j,k − λ2

j

(√
D2

j,k − λ2
j + e

) > 1 (19)

Similarly, by calculating the second-order partial derivative
∂2D*

j,k

∂D2
j,k

< 0, it can be

inferred that D*
j,k

(
Dj,k, v

)
is a monotone increasing function and convex function related

to Dj,k.
When v ∈ R+ is within this domain,

∂D∗j,k
∂v

= −
λjln

(
ln
(√

D2
j,k − λ2

j + e
))

v2
[
ln
(√

D2
j,k − λ2

j + e
)] 1

v

< 0 (20)

It can be concluded that D*
j,k

(
Dj,k, v

)
is a monotonic decreasing function related

to v; that is, the smaller v is, the faster the GCTF approaches HTF. Similarly, when
Dj,k ∈

[
−λj,−∞

)
is in the wavelet domain, the above conclusions are also satisfied.

Obviously, the concave–convex gradient v does not affect the threshold characteristics
of the GCTF, such as monotonicity, concavity–convexity, continuity, etc. However, the
approximation degree can be changed by adjusting the size of the value, so as to improve
the denoising effect.

3.3. Verification of Speech Signal Denoising

To verify the denoising effect of the improved method proposed in this paper, a speech
signal with sampling frequency of fs = 8 kHz and signal length N = 17, 000 is selected as
the research object. At the same time, it is assumed that the signal is interfered with by
Gaussian white noise at different degrees, and it is synthesized into a noisy signal in the
MATLAB environment for denoising. During wavelet decomposition, db4 is selected as
the basis function, the decomposition scale is set to J = 5, and Gaussian white noise with
an input SNR of 14 dB is added. Between Figure 4a,b, the time and frequency domains
of the noisy signal are compared. Employing the same parameter settings, but with the
selection of different global/universal thresholds [50,51] and HTF/STF, five methods (soft
threshold function-based wavelet global threshold denoising (WGTD-S), hard threshold
function-based wavelet global threshold denoising (WGTD-H), soft threshold function-
based wavelet universal threshold denoising (WUTD-S), hard threshold function-based
wavelet universal threshold denoising (WUTD-H) and gradient convergence threshold
function-based wavelet adaptive threshold denoising (WATD-GC) (as proposed in this
paper)) are applied in the simulated test to achieve information comparisons between
the time and frequency domains in the process of obtaining denoised signals, as shown
in Figure 4.
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signals: Time domain information of the useful and (a) noisy signals, as well as the signals denoised
by (c) WUTD-H, (e) WUTD-S, (g) WGTD-H, (i) WGTD-S and (k) WATD-GC. Frequency domain
information of the useful and (b) noisy signals, as well as the signals denoised by (d) WUTD-H,
(f) WUTD-S, (h) WGTD-H, (j) WGTD-S, and (l) WATD-GC.

Compared to the useful signal, the time domain information of denoised signals can
be used to intuitively judge the denoising effects of different methods, while the frequency
domain information can be used to evaluate the reliability of the denoising methods. From
the results regarding the influence of noise on the useful signal in the time and frequency
domains shown in Figure 4a,b, it can be concluded that the noise is distributed in the whole
time domain, and the frequency spectrum curve waveform of the noisy signal is changed,
while the amplitude is slightly reduced compared with the useful signal. Figure 4c–l show
comparisons of five types of denoised signals with useful signals, in terms of both time and
frequency domain information. Compared with other methods, the WATD-GC method
basically retains the same trend as the denoised signal and useful signal waveforms in
the time domain, and reduces the level of “glitch” without distortion; the range of energy
regions corresponding to peaks and valleys in the frequency domain is not changed, while
the high-frequency band containing concentrated noise shows obvious denoising and little
difference in amplitude, and the main frequency characteristics of useful information are
kept relatively intact.

In this paper, signal-to-noise ratio (SNR), root mean square error (RMSE), smoothness [52]
and normalized cross-correlation (NCC) [53] are introduced as the indexes to evaluate the
denoising effects of the five methods. Accordingly, SNR can be used to represent the power
proportional relationship between useful signal and noise signal, while RMSE reflects the
reconstruction error of the signal after denoising, smoothness is the ratio of the difference
between the squares of the denoised signal f̂ (n) and the useful signal s(n) (representing
the local mutation degree of the signal after denoising), and NCC refers to the similarity
between the denoised signal f̂ (n) and the useful signal s(n). The larger the SNR is, the



Machines 2023, 11, 911 14 of 33

smaller the RMSE is, and the closer the smoothness and NCC are to 1, indicating that
the denoised signal is less distorted and closer to the useful signal. Table 1 shows the
expressions of four evaluation indexes, and comparisons of the indexes after denoising
using different methods when the input SNR of the noisy signal is 14 dB.

Table 1. Denoising effects of various methods on speech signal with an SNR of 14 dB.

Indexes Reference Formulas WATD-GC WUTD-H WUTD-S WGTD-H WGTD-S

SNR 10lg
(

∑N
n=1 s2(n)

∑N
n=1(s(n)− f̂ (n))2

)
17.2869 11.5179 6.9584 13.3629 8.9772

RMSE
√

∑N
n=1(s(n)− f̂ (n))

2

N
0.0184 0.0358 0.0605 0.0290 0.0480

Smoothness ∑N−1
n=1 ( f̂ (n+1)− f̂ (n))2

∑N−1
n=1 (s(n+1)−s(n))2

0.9334 0.8811 0.3843 0.8828 0.4418

NCC ∑N
n=1 s(n) f̂ (n)√

(∑N
n=1 s2(n))(∑N

n=1 f̂ 2(n))
0.9934 0.9639 0.9254 0.9764 0.9528

By addressing Table 1, it can be seen that the WATD-GC method has the highest SNR
and the lowest RMSE after denoising. Compared with the other methods, the SNR is
increased by 30–150%, and the RMSE is decreased by 37–70%. The smoothness and NCC
are closer to 1, indicating that the WATD-GC method yields the fewest noise components
in the denoised signal, the smallest signal reconstruction error, the lowest degree of local
mutation, and the highest similarity with the useful signal, while retaining much of the
disturbance characteristics. At the same time, to further verify the denoising effect of
the WATD-GC method with different input SNRs, five different denoising methods are
assessed via simulation by adding Gaussian white noise (with an input SNR of 5–30 dB) to
the speech signal when the wavelet decomposition scale is 5. The results of the comparison
of the output SNR and RMSE after denoising are shown in Figure 5.
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Figure 5 shows that the output SNR (RMSE) and the corresponding deviation of
the five methods increase (decrease) with the increase in the input SNR, and the overall
denoising effect of the soft threshold method is poor, while the hard threshold method
has a certain denoising effect within a limited range. Compared with other methods, the
WATD-GC method has a denoising effect in the SNR range employed in the example;
further, the output SNR and corresponding positive deviation are here the largest under
different input SNR conditions. The SNR is increased by 3–16 dB, the positive deviation
is increased by 1–12 times, the output RMSE and the corresponding negative deviation
are the smallest, the output RMSE is reduced by 0.006–0.056, and the negative deviation is
reduced by 1–9 times, indicating that the WATD-GC method has a clear denoising effect
with different input SNR signals.

4. GMAW Monitoring Platform and Experiment Design

A penetration monitoring platform for ship robotic GMAW is the foundation of
the hardware required for welding process tests, arc sound information acquisition and
penetration features analysis. In this paper, an arc sound sensing system is built and
integrated into the experimental platform of a welding intelligent robot in order to acquire
information during welding, and assist the welding seam tracking system in completing
the established test tasks. At the same time, based on the mechanism of arc sound analysis
using an arc sensing system, the welding penetration state is classified and defined, and
samples are selected, windowed and framed, so as to make technical preparations for the
subsequent denoising of the arc sound signal.

4.1. Arc Sound Sensing for Ship Robotic Welding

The arc sound sensing system is integrated into the automatic welding platform of ship
robotic GMAW. By adjusting and calibrating the position, pointing angle and acquisition
mode of the microphone, the sound signal can be acquired, converted and processed. The
main components are the Kuka Arc5 robot, the pulsed GMAW power supply system, the
arc sound sensor, the wire feeder, the Hall sensor, the laser seam tracker and the industrial
personal computer (IPC), as shown in Figure 6. Among these, the welding seam tracker
scans and identifies the weld trajectory via a laser, and guides the robot to adjust the
position and posture of the welding gun in real time and to move autonomously, so as
to ensure accurate and efficient welding. The Hall sensor monitors the welding current
and arc voltage in real time monitor the steady process of welding short-circuit transition.
The arc sound sensor consists of a microphone, preamplifier and signal conditioner, and
can be used for the acquisition, amplification, filtering and multi-channel transmission of
the arc sound signal. The sampling frequency of the data acquisition card is set to 40 kHz,
such that the acquired analog sound signal can be converted into a digital signal and sent
to the data analysis module of the IPC to establish knowledge modeling, which enables
penetration state identification in the ship robotic GMAW and provides technical support
for future quality monitoring research.

The arc sound signal is caused by the vibration of the plasma current generated by the
strong electric field between the anode and cathode, and it is transmitted to the microphone
through the medium of air. The film is compressed and converts the vibration into an electri-
cal signal, which is amplified and filtered by the amplifier and regulator, then transmitted to
the data acquisition card for A/D conversion, and finally sent to the IPC to provide the data
input for welding detection. The spatial propagation of the pulsed GMAW arc sound signal
during welding conforms to the distribution of a double dipole sound source model [54],
and the direction of sound signal radiation can be made equivalent to that of the cosine
waveform of the dipole model. By adjusting and fixing the universal clamp, the acquisition
angle and position distance of the microphone can be tested and calibrated. Under the
same welding process conditions, when the included angle between the microphone and
the working platform is 75◦ and the distance is kept at 20 cm, the acquired value of the arc
sound pressure is the largest, and the information is the most abundant. In this case, the
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experimental arc sound sensor employed is an MP251 1/2-inch pre-polarized pressure field
microphone (including MA231 Preamplifier) and an MC102 signal conditioner produced by
Beijing Shengwang ACOUSTIC-ELECTRIC Technology Co., Ltd., Beijing, China. (BSWA
Technology Co., Ltd.), along with the improved denoising processing module (refer to
Table 2 for specific parameters).
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Table 2. The main technical indicators and parameters of arc sound sensing.

Microphone Preamplifier Signal Conditioner

Thermal noise 23 dBA Diameter 1/2 inch Crosstalk −120 dB
Dynamic range 23–158 dBA Attenuation <0.1 dB Output noise <3 µV

Polarization voltage 0 V Inherent noise 3 µV Protection voltage 35 Vp
Frequency response 3–20 kHz Output connector BNC Output impedance 10 µF

Capacitance (typical) 13 pF Max output voltage 5 Vrms Input/output channel 2*BNC
Open-circuit sensitivity 12.5 mv/Pa Power requirement ICCP Constant current source 4 mA

4.2. Welding Process Information Acquisition and Preprocessing

GMAW is a process in which the welding wire and the solid metal of the workpiece
are melted and condensed by the heat generated by arc discharge. The weld pool is formed
via four stages of heating, melting, cooling, and solidification, ultimately resulting in a
weld. However, in actual welding, both the welder and the machine are unable to perceive
in real time the internal situation of the welded joint. Therefore, the penetration state is
widely used as the most intuitive and effective characteristic for judging the surface quality.
In accordance with the morphological characteristics of weld formation, the most common
penetration states can be classified as partial penetration (partial forming), full penetration
(standard forming), and excessive penetration (defect or non-forming). The penetration
state varies during the welding process as the properties of the materials and the welding
parameters change. The physical properties of the base metal and the welding material,
such as chemical compositions and mechanical properties (see Table A1 in the Appendix A),
influence the welding process. Orthogonal tests can be optimized to yield the most suitable
welding parameters, as specified in Table 3, thus ensuring the stability of the weld quality.
Therefore, welding production simulation tests were conducted on typical hull structures to
establish a comprehensive database related to welding materials and process management,
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which can provide input parameters for penetration state identification, thereby enhancing
the adaptability of methods of quality monitoring for ship robotic GMAW.

Table 3. The welding conditions for feature extraction in penetration monitoring.

Process Variables Parameters Values Process Variables Parameters Values

Plate size 300 × 150 × 3 mm3 Welding material Q235 steel 1

Shielding gas 80%Ar + 20%CO2 Filler wire material H08MnSiA 1

Welding speed v 78–95–108 cm/min Gas flow Q 20 L/min
Butt joint gap δ 0.2 mm Arc length l 3.0 mm

Welding current I 200 A Arc voltage U 24.2 V
Filler wire diameter φ 1.2 mm Dry extension ζ 10.0 mm

Forming-welding process Single-layer, single-pass CTWD h̄ 2 13.0 mm
1 Material properties are shown in detail in Table A1 of Appendix A. 2 Contact tip to workpiece distance.

In this case, the low-carbon steel used in ships is selected as the test workpiece, and
the welding method is flat butt welding. The quality specifications require one-sided
welding and double-sided forming. Figure 7 shows the GMAW results for the topside
and backside of an I-shaped plate, as well as the welding process information acquired in
real time (including welding current, arc voltage and arc sound signals), the penetration
cross-sections of three typical penetration states, and a color temperature map representing
the quality of the formed welding. It can be seen that different sensing systems can
yield welding process information in a stable and synchronous manner. Following a
comparison of the fluctuation trends of arc voltage, welding current and sound signals, it
can be concluded that the sound source excitation of the arc sound signal is mainly caused
by the change in arc energy. At the same time, the real position of the weld pool at a
corresponding time is determined by using the conversion relationship between the weld
length and welding speed, so as to identify the different penetration states corresponding
to welding process information. In relation to the directional characteristics of welding
heat conduction, the formation quality and heat-affected zone change with changes in
the type of penetration state. In addition, the weld pool volume is related to the arc heat
input and heat accumulation in the base metal, while the topside and backside width,
and the reinforcement and penetration depth of the weld, are also increased or decreased
regularly. Sections a-g in Figure 7 correspond to the various weld features observed under
the three penetration states, which include the heat-affected zone, the forming effect, the
topside weld width, the topside weld reinforcement, the backside weld width, the backside
weld reinforcement, and the penetration depth. The degree of brightness in the color
temperature map reflects the changing formation laws of the weld characteristics under
different penetration conditions.

The arc sound signal of ship robotic GMAW is a non-stationary time-varying signal; it
is generated by the oscillation of the weld pool caused by changes in the arc energy, and the
oscillation speed of the weld pool state is slower than that of arc sound vibration. Therefore,
the arc sound signal is regarded as a short-term quasi-stationary process that takes place
over a short time (10–30 ms), and the frequency domain and physical characteristics are
relatively stable [55]. In view of this, with the help of the short-term analysis of the speech
signal, it can be inferred that the time series of the sound signal corresponds one-to-one
with the penetration state related to windowing and framing, and the smoothness of the
transition between frames is increased by ensuring the continuity of the framing signal.
Considering the influence of frequency domain energy leakage, caused by signal framing
truncation, a Hamming window with a length of L = 512 (12.8 ms) is specifically selected
to frame the arc sound signal x(n), and the sound signal yi(m) of the ith frame is obtained
by framing the window function ω(m):

yi(m) = ω(m) ∗ x((i− 1) ∗ inc + m), 1 ≤ m ≤ L, 1 ≤ i ≤ fn (21)
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where frame shift inc = 256, n is the number of sampling points of the arc sound signal,
and fn is the total number of frames after framing.
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5. Wavelet Denoising with Application to Penetration State Identification

For the GMAW welding process, the arc sound is a non-stationary random signal
generated by air resonances that occur during the welding process, which originates
from the energy changes of the welding arc and the oscillatory fluctuations of the weld
pool, including short-circuiting transitions between the electrode and the base material,
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partial splashing into the weld pool, and gas vibrations caused by rapid changes in the
temperature of the shielding gas. According to safety guidelines and site requirements,
welding experiments are usually conducted in a semi-open environment, and the sound
signals collected during the process of ship robotic GMAW in an open environment not
only contain quality information related to the entire welding process, but they are also
highly susceptible to noise interference with highly nonlinear characteristics. The types of
noise interferences are mainly divided into certain and uncertain noise. The certain noise
information shows some correlation with the quality of weld forming, which is related to
the partial characteristics of the variations in the penetration states, including sensor DC
noise and welding machine pulse noise. It can be suppressed by software and hardware
alterations, such as de-averaging processing and the inclusion of a differential amplifier
circuit. The uncertain noise primarily originates from highly random environmental noise,
which includes that caused by the operation and movement of robotic equipment, wire feed
mechanisms, and circulating water tanks. Additionally, considering the actual environment
of a ship manufacturing site, uncontrollable interferences such as those caused by the
voices of construction workers and the impacts of material processing are also incorporated
into the arc sound signal data set. Therefore, a reasonable and efficient denoising scheme
is designed to provide real acoustic information for the accurate identification of the
penetration state. In this case, several methods are used to denoise the preprocessed signal;
the corresponding time and frequency domain feature information is extracted, and then
different machine learning algorithms can be used for pattern classification modeling to
verify the effectiveness of the improved denoising method as applied to the arc sound
penetration state during ship robotic GMAW. Refer to Figure 8 below for the specific
application and verification process.

5.1. Wavelet Threshold Denoising of Arc Sound Signal

The arc sound signal acquired during ship robotic GMAW contains extensive informa-
tion regarding the penetration states. However, the welding process does not take place in
a closed environment, and the process of non-contact information acquisition employed is
easily disrupted by various noises, such as those caused by equipment operation, sensor
transmission and the background environment. These interference signals will seriously
affect the effective extraction of information regarding the forming features, which will
lead to difficulties in ensuring the precision of the relationship model between the arc
sound signal and penetration states. Therefore, the wavelet threshold denoising method
is selected to separate useful information representing different penetration states from
arc sound noisy signals. This method has obvious advantages in view of the random
non-stationary characteristics of the arc sound noisy signal. The useful signal is extracted
by threshold estimation and by exploiting the threshold function that quantifies wavelet
coefficients representing distributed energy. However, the fixed threshold and the selection
of the threshold function in traditional methods do not conform to the change trends of
penetration state information and noise interference, as they change in relation to the
decomposition scales in the GMAW process, leading to the filtering of useful information in
the high-frequency part of the arc sound signal or the retention of noise interference. This
means this approach cannot improve the SNR and spatial resolution of the signal. There-
fore, on the basis of the wavelet threshold denoising framework, the estimation mode and
function selection of the threshold are improved by introducing a measurement of the scale
and a concave–convex gradient. Through the analysis of the methods of classification of
noise interference affecting the arc sound signal, the advantages of the improved denoising
method, with the adaptive adjustment of thresholds and the nonlinear gradient characteris-
tics of threshold functions, enable it to adapt to the changes in wavelet energy distribution
at different decomposition scales. This results in a reduction in signal distortion probability,
and a significant improvement in denoising effect, thus offering technical support in the
precise identification of the penetration state during ship robotic GMAW.
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In this case, the wavelet base db4 in the Daubechies wavelet family is selected as the
basic function, and then the arc sound signal is subjected to four-layer wavelet decompo-
sition. In accordance with the wavelet coefficients, an adaptive threshold varying with
the decomposition scales is set, and the high-frequency detail coefficients are quantified
by the GCTF; then, the approximation coefficients and quantized detail coefficients are
reconstructed to achieve denoising. The arc sound signal is denoised by selecting different
global/universal thresholds and HTF/STF. Figure 9 shows a comparison of the results
in the time, frequency and time–frequency domains of a specific sound signal subjected
to different denoising methods in the same penetration state, wherein the lower graph
illustrates the time domain waveform of the denoised signal, the left-hand graph illustrates
the power spectral density distribution in the frequency domain, the middle graph shows
the time-varying acoustic spectrum in the frequency domain, and the right-hand graph
shows the change in the frequency domain energy spectrum after wavelet reconstruction.
Compared with the other four denoising methods, the advantages of the WATD-GC method
are as follows:
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1. The tiny “glitch” superimposed on the arc sound signal in the time domain is ef-
fectively filtered out. The abrupt waveform part containing the welding process
information remains intact and the signal contour trend is more clear;

2. The power spectral density waveform of the denoised signal in the frequency domain
is similar to that of the arc sound signal, the energy distribution is more uniform, and
the fluctuation range of the peaks and valleys is small and presents characteristics of
irregular change;

3. The high-frequency detail coefficients D̂j,k(j = 1, 2, 3, 4) processed by quantization
at different decomposition scales are correctly decomposed into four different corre-
sponding frequency bands (the effective frequency ranges are 10–20 kHz, 5–10 kHz,
2.5–5 kHz and 1.25–2.5 kHz) after wavelet reconstruction, thus effectively avoiding
the phenomenon of frequency aliasing and frequency band dislocation;

4. The arc sound energy in the time–frequency domain is widely distributed across the
whole domain, the process feature information in the high-frequency band is not lost,
the distribution features of “intermittent–continuous–intermittent” are presented, and
the time-varying energy distribution of the denoised signal in frequency domain is
closer to the arc sound signal.
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5.2. Feature Extraction and Identification Verification of Penetration State

To further verify the effectiveness of the WATD-GC proposed in this paper, the de-
noised signal is applied to the feature extraction of the penetration state during ship robotic
GMAW. Through the acquisition and analysis of dynamic information during welding, the
sound signal extraction features and welding penetration state are quantified, identified
and modeled, which enables us to realize the real-time online closed-loop monitoring of
welding quality. At present, the methods employed to extract the feature information rep-
resenting the penetration state in the arc sound signal mainly include the following: time
domain and frequency domain feature analysis. The sound signal yielded after wavelet
denoising has the characteristics of stationarity and randomness, while the time domain
waveform can be directly statistically analyzed and the corresponding feature parameters
can be extracted via speech signal analysis methods. At the same time, the weld quality
information contained in the arc sound, which can be regarded as the vibration signal, is
mostly reflected in the regular changes in the feature parameters with frequency changes
in the frequency domain. The sensitive frequency band (4.0–7.5 kHz) is selected as the
region of interest by introducing the mechanism of “auditory attention” [56], and the arc
sound signal is converted into the time–frequency domain by means of the short-term
Fourier transform (STFT), which is used to extract the features of the frequency domain
in the region of interest. Meanwhile, the correlation coefficient is employed to gauge the
degree of similarity between the extracted features of the arc sound signal (input variables)
and the weld penetration state (output results). It plays a crucial role in feature selection,
thereby influencing the accuracy of the penetration identification model. In this study,
correlation analysis using the Pearson correlation coefficient is adopted to measure the
extracted features and the weld penetration state, thus providing a scientific basis for the
selection of the eight-dimensional feature parameters. For details on the feature information
and correlation analysis, please refer to Table 4. The results demonstrate that the correla-
tion coefficients between each extracted feature and their corresponding weld penetration
conditions are all above 0.4. In pursuing feature selection, it is necessary to fully utilize the
collective advantages of the multidimensional joint feature vectors. In addition, the use of
nonlinear mapping identification models can facilitate the monitoring of weld penetration
through arc sound sensing.

Table 4. The feature parameters of the time and frequency domains of the arc sound signal.

Parameter Types Detailed Formulas Physical Implications Correlation Coefficients

Short-time energy SEi = ∑L
m=1 y2

i (m) Energy change 0.4095

Average zero-crossing rate AZRi =
1
2 ∑L

m=1 |sgn(yi(m + 1) − sgn(yi(m)))| Frequency classification characteristics 0.7901

Waveform factor WFi =
√

L ∗∑L
m=1 y2

i (m)/∑L
m=1 |yi(m)| Distortion degree of waveform 0.7027

Zero energy ratio ZERi = AZRi/SEi Attenuation degree of strength 0.7203
Peak-to-peak POPi = max(yi)−min(yi) Distribution statistics characteristics 0.4966

Root mean square RMSi =
√

∑L
m=1 y2

i /L Effective energy level 0.5571
Mathematic expectation MEi =

1
Ti

∑Ti
f=1 Fi( f ) 1 Average amplitude 0.6008

Average logarithmic energy ALEi =
1
Ti

∑Ti
f=1 lg(F2

i ( f )) Auditory perceptual degree 0.6076

1 Fi( f ) is the spectrum amplitude of the arc sound signal yi(m) in the ith frame after STFT processing, and Ti is
the spectrum length in the frequency band of interest.

The actual penetration state during ship robotic GMAW can be quantitatively iden-
tified using the above statistical features. Figure 10 shows the penetration identification
results corresponding to time and frequency domain feature extraction with different arc
sound denoised signals, in which the blue, green and red curves represent partial, full
and excessive penetration states, respectively. In accordance with the figure, the overall
change trends of the statistical features of the time and frequency domains extracted from
different denoised signals are obvious, and so they basically reflect the change laws of
the welding penetration state. Comparatively speaking, the feature value is more sen-
sitive to changes in the excessive penetration state, and the corresponding main feature
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parameters are short-time energy (SE), peak-to-peak (POP), root mean square (RMS) and
mathematical expectation (ME). The feature parameters representing the penetration state,
such as average zero-crossing rate (AZR), waveform factor (WF), zero energy ratio (ZER)
and average logarithmic energy (ALE), roughly reflect the transition from steady a state in
the weldments to incomplete penetration and excessive penetration. This indicates that the
arc sound signal contains important information about the quality of the welding process,
while the above acoustic parameters can be regarded as statistical features affecting the
trend transition of the welding penetration state.
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The time and frequency domain features of different denoised signals are associated
with better rates of identification for the three different penetration states. However,
each statistical feature exhibits varying degrees of state overlap, making it difficult to
ensure the accurate classification of different penetration states. Therefore, based on
the eight-dimensional joint feature parameters extracted by wavelet threshold denoising,
this paper selects the three pattern classifiers of the radial basis function neural network
(RBFNN) [57,58], the probabilistic neural network (PNN) [59,60] and the particle swarm
optimization–support vector machine (PSO-SVM) [61,62] to construct the penetration state
identification model with nonlinear mapping for ship robotic GMAW, and compares the
identification results of four traditional wavelet denoising methods to show the advantage
of the WATD-GC method. Sixty frames of feature samples for each penetration state have
been selected as the model’s input data. A ratio of 2:1 has been randomly selected to
divide the training and test sets, and the corresponding output results have been compared
with the true penetration states using labels. In addition, all feature data sets have been
normalized to reduce the detrimental influence of different data measurement dimensions
on the model’s identification accuracy. For PNN, the number of neurons in the input layer
is eight, which corresponds to the eight-dimensional statistical features. The number of
neurons in the pattern layer is 120, which corresponds to the 120 training sample groups.
In the summation layer, the number of neurons is determined to be three, based on the
three types of penetration states. To output one, two or three penetration states, the output
layer requires three neurons. For RBFNN, similarly to PNN, the numbers of neurons in
the input and output layers are 8 and 3, respectively, while the number of neurons in
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the hidden layer is set to 40 based on the minimum mean square error obtained during
the training iteration process. Therefore, the network structures of PNN and RBFNN are
8-120-3-3 and 8-40-3, respectively, as shown in Figure A1 of Appendix A. At the same time,
because the arc sound acquired in the dynamic process of ship robotic GMAW is interfered
with by noise of unknown types and sizes, it is impossible to verify the denoising effects
of different denoising methods using SNR and RMSE. Therefore, to address the multi-
classification problem of the identification model, with reference to the architecture mode
of the binary confusion matrix, a three-dimensional confusion matrix has been designed
for evaluating the penetration state identification model used for ship robotic GMAW, as
shown in Figure 11. The three-dimensional confusion matrix [63] used in the welding
penetration classification analysis is a 3-by-3 table that tells us the number of NUMi−j for
the classification results of the identification model. Many statistical indices can be obtained
from the confusion matrix, such as accuracy, precision, recall rate, F1-score, and Kappa
coefficient [64], and these can comprehensively reflect the model’s performance. Accuracy
assesses the overall classification capacity of the identification model, precision and recall
rate both represent the ratio of the number of correct classifications to the number in the
true state under different conditions, the F1-score can be regarded as the harmonic mean of
the accuracy and recall rate of the model, and the Kappa coefficient is used to evaluate the
classification performance of the model by checking its statistical consistency based on the
confusion matrix.
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Figure 11. Confusion matrix of three-dimensional penetration identification: IP, IF, and IE represent
the identification of partial, full, and excessive penetration states by the classifier model. TP, TF, and
TE represent true states of partial, full, and excessive penetration. NUMi−j indicates the number of
samples in which the true classification is i, the identification classification is j, and i, j ∈ (P, F, E).
K =

∑ NUMP−j∗∑ NUMi−P+∑ NUMF−j∗∑ NUMi−F+∑ NUME−j∗∑ NUMi−E

(∑ ∑ NUMi−j)
2 .

To compare the results of the identification of arc sound signal features processed
by different threshold denoising methods applied to different welding penetration states,
the process of dimensionality reduction via high-dimensional vector mapping to low-
dimensional space has been used for reference. Different feature parameters from each of
the three dimensions are selected to enable the visual penetration classification, and the
corresponding confusion matrix results of the RBFNN identification method are evaluated,
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as shown in Figure 12. In accordance with the figure, it can be seen that, compared with the
other four methods, the feature parameters extracted from the arc sound signal denoised by
the WATD-GC method form three clusters with regular distribution in the low-dimensional
space, and only a few items in the feature data show inter-class mode aliasing between
adjacent penetration states; however, the degree of intra-class dispersion in different state
intervals is small, and there are clear boundaries distinguishing the three penetration states
encountered in ship robotic GMAW. The results of the confusion matrix indicate that the
arc sound feature parameters extracted by the WATD-GC method correspond to the largest
number of positive identifications in each penetration state, with the highest accuracy and
recall rate, and the fewest misjudgments arise between the two adjacent states of incomplete
penetration and penetration, while the excessive penetration state is accurately identified.

In this case, three commonly used pattern classifiers, i.e., RBFNN, PNN and PSO-SVM,
are used to identify the penetration state during ship robotic GMAW. At the same time,
five statistical indexes are included in the confusion matrix shown in Figure 11 to help
us further judge the advantages and disadvantages of the arc sound feature parameters
extracted via different denoising methods (refer to Figure 13 for details). It can be seen
that the identification results corresponding to the WATD-GC method are obviously dom-
inant, and their statistical indices are slightly different under the conditions of different
identification methods. However, all the indexes remain within the 0.85–0.95 range, thus
enabling the high-precision classification of the penetration state during actual welding.
Compared with other denoising methods, here, the ACC, MAP, MRR, F1-score, and KAC
of penetration identification are significantly higher; the ACC of the WATD-GC method is
better than those of other methods (by about 6–30%), the MAP is higher (by about 5–26%),
the MRR is about 6–28% greater, and the F1-score and the KAC are improved by 6–27%
and 10–54%, respectively. Moreover, the WATD-GC method combined with the RBFNN
classifier achieves better penetration state identification, and under this method, all five
statistical indexes are greater than those of the other four denoising methods combined
with three different classifiers, and all of them maintain a high identification rate range of
0.92–0.95.
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6. Conclusions

In this paper, an improved wavelet threshold denoising method is proposed to effec-
tively solve the problem according to which arc sound acquisition is easily disrupted by
environmental noise during ship robotic GMAW, which affects the accuracy of penetration
state identification. The threshold estimation method is updated by introducing a mea-
sure of scale, which is logarithmically negatively correlated with the decomposition scale
and follows the change trend of the noise signal in the wavelet domain while increasing
adaptive estimation ability. Meanwhile, the advantages of the asymptotic and continuous
HTF and STF are taken into account, and a GCTF with high-order differentiability and
non-constant deviation characteristics is constructed; this is achieved using the natural
logarithmic function structure, and exploits the concave–convex gradient to adjust the
asymptotic rate, enabling it to ameliorate the denoising failure phenomenon, which is in-
voked by single-mode threshold estimation and the additional oscillation of reconstructed
signal. Accordingly, we can reasonably estimate the threshold and adjust the parameters of
the function architecture to meet the distributed propagation characteristics of penetration
state information and noise interference signals in the wavelet scale domain. This improved
strategy is applied in the signal denoising of arc sound in ship robotic GMAW, and the
results of the feature extraction and identification of penetration states are compared with
those of the traditional methods of WUTD-H, WUTD-S, WGTD-H, and WGTD-S to verify
the effectiveness of this model. The main conclusions are as follows:

1. We have proposed and theoretically proven the related property theorems of GCTF,
such as continuity, an asymptotic property, non-constant deviation, the approximate
rate of the concave–convex gradient, etc. By comparing the results of the simulation
of speech synthesis signals with different noise intensities, it can be concluded that
the signal denoised by the WATD-GC method is basically consistent in terms of
waveform amplitude and fluctuation trend with the useful signal in the time and
frequency domains, while the frequency band range corresponding to the peak–valley
energy region remains unchanged. The indices used for denoising evaluation, which
include the SNR increasing by 30−150%, the RMSE decreasing by 37−70%, and the
smoothness and NCC approaching 1, are higher under conditions of constant input
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noise (SNR = 14 dB). This reveals that the denoising effect of the WATD-GC method is
both better and more adaptable;

2. In the denoising of arc sound signals for ship robotic GMAW, compared to the tradi-
tional denoising methods, the “glitch” in the time domain of denoised signals obtained
by the WATD-GC method is effectively filtered out, and the waveform mutation and
signal outline are made clearer. The power spectral density waveform of the denoised
signal in the frequency domain is the most similar to that of the arc sound signal, and
the irregular fluctuation of peak–valley is more reflective of the actual welding situa-
tion. The high-frequency detail coefficient of quantization processing is accurately
allocated to the effective frequency band, thus maximizing the avoidance of frequency
aliasing and frequency band misalignment, and providing a pure and high-quality
arc sound signal for the accurate extraction of GMAW penetration state features;

3. The mechanism of “auditory attention” is employed to select the sensitive frequency
band (4.0–7.5 kHz) as the region of interest. Applying this principle involves ana-
lyzing the correlation between extracted features and weld penetration. The eight-
dimensional statistics of the time and frequency domains are adopted to extract
the penetration features of different denoised arc sound signals, with correlation
coefficients maintained within the range of 0.40–0.79. The three pattern classifiers,
i.e., RBFNN, PNN, and PSO-SVM, are utilized for state identification modelling by
inputting the extracted features. The feature parameters extracted from the denoised
arc sound by the WATD-GC method are regularly distributed, with clustering in low-
dimensional space, the statistical dispersion separating the state clusters is smaller,
and there is a clear neighborhood boundary. The results of the confusion matrix
indicate that the identification capacities of the five statistical indexes are obviously
superior under different classifier models; the precision of their identification remains
in the high range of 0.85–0.95, while ACC is improved by 6–30%, MAP by 5–26%, MRR
by 6–28%, F1-score by 6–27%, and KAC by 10–54%. Therefore, the WATD-GC method
can not only preprocess the arc sound signal to achieve the accurate identification of
the penetration state, but it can also provide a valid technological basis for quality
monitoring in ship robotic GMAW.

Although our limited experimental conditions may not fully represent the actual pro-
duction environment, we have still presented a new wavelet threshold denoising method,
demonstrating its promising practical applications in weld quality monitoring. In the
future, more extensive welding experiments will be conducted in shipyard manufacturing
workshops. In the face of increasing uncertainty, such as that related to the variety of
noise types and the strength of noise intensity, different types of interference effects will
be analyzed to construct a noise database. Simultaneously, preprocessing algorithms for
specific types of noise interference will be developed, and the corresponding wavelet basis
functions will be selected based on denoising effect comparisons. Furthermore, a new
wavelet basis function may be created, incorporating the propagation characteristics of
various wavelet energies within the wavelet domain, which can be utilized to represent the
weld formation mechanism more accurately and expand its practical applications.
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Appendix A

Table A1. The chemical compositions and mechanical properties of the base metal and welding wire.

Type

Chemical Compositions (Mass Fraction)/% Mechanical Properties

C Si Mn P S Tensile
Strength

Yield
Strength Elongation Charpy V

Impact Test 1

Base metal ≤0.20 ≤0.35 ≤1.40 ≤0.045 ≤0.045 370–500 MPa ≥235 MPa ≥26% ≥27 J
Welding wire ≤0.15 ≤0.35 ≤1.25 ≤0.025 ≤0.025 480–660 MPa ≥400 MPa ≥22% ≥27 J

1 Impact-absorbing energy (longitudinal).
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