
Citation: Güler, B.; Şengör, Ö.; Yavuz,
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Abstract: The tightening torque values considered in the assembly of vehicle subparts are of great
importance in terms of connection safety. The torque value to be selected is different for each bolted
joint type with respect to mechanical features. While the tightening torque value is an important
indicator, the bolt preloading value is always a more reliable parameter in terms of whether a secure
tightening can be achieved or not. For this reason, when it is desired to create reliable joints, the
preloading value that the tightening torque input will create on the connection package should
be calculated well. This study presents an integrated approach using Taguchi method (TM) and
neural network (NN) to predict the self-loosening mechanism of bolted joints in automotive chassis
engine suspension connections. External loading acting on the joints of the engine suspension was
collected from bench tests. NN was applied to establish the relationship between controlled factors
and loosening rate. The results showed that the proposed approach can be used to predict mechanism
of self-loosening and behavior of bolted joints without additional tests, and it is possible to make
predictions with very low error rates using artificial intelligence techniques.

Keywords: bolted joint; self-loosening; Taguchi method; neural networks

1. Introduction

The tightening torque and clamp loading values in the assembly of vehicle chassis
subparts are of great importance in terms of bolted joint safety. This is due to the possibility
that any loosening or unraveling situation may cause a crash. There are some examples that
are recorded due to loosening of fasteners, resulting in death and injury [1–3]. Connections
tightened with lower torque values than necessary may loosen over time due to external
axial and radial dynamic loading. Excessive bolt elongation, wear on bolt–nut threads, or
plastic deformations due to normal and shear stresses in the connected parts can be seen in
bolted joints which are tightened to higher torque values than the safety limit [4]. Therefore,
different tightening torque values should be applied for each bolted connection type with
different mechanical properties.

Fasteners are exposed to multiple repetitive vibrations throughout their lifetime. This
may cause self-loosening of the fasteners. While the behavior of bolts under static tensile
and shear forces is well understood, their behavior under dynamic loading such as vibra-
tion is not well understood. Many theories are developed to explain how a bolt and nut
interact under vibrating loads. While these theories have proven helpful in understanding
bolt–nut interaction, none are adequate to predict bolt loosening [5]. Kandreegula et al. [6]
developed a new innovative wedge washer to increase the loosening resistance of automo-
tive fasteners. Datta and Dittur [7] calculated the minimum bolt preloading required to
detect the loosening resistance of the automotive suspension links and to eliminate the bolt
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loosening tendency in the link under certain variable loads. Gürsel and Yarkın [8] calcu-
lated the tightening torque values of the chassis bolted joints, considering the lower and
upper torque control limits. They verified the robust joint structure with road test results
by tightening the connections to the most suitable torque, meeting the design criteria.

Several research studies investigating the loosening behavior of bolted connections
are given in literature. Liu et al. [9] carried out experimental tests to obtain a piecewise
function characterizing the overall shear curve of bolted joints under transverse load-
ing. The parameters of joint loosening at various stages were analyzed and discussed
on the basis of experimental results, which can assist in the design and use of bolted
connections. The single-shot multi-box detector (SSD) algorithm was used to train the
image datasets. Huang et al. [10] classifies various detection methods as sensor-based,
image-based, and percussion-based methods and systematically summarized their research
progress. The sensor-based method inserts or attaches sensors to the mechanical structure
with bolted connections and provides loosening detection by exploiting the variation in
the measurement parameters of the sensors. Guo et al. [11] defined a new method for
the early looseness state of bolted joint beams on the basis of generalized variable mode
decomposition (GVMD), and a similarity index was proposed. Eraliev et al. [12] studied
early-stage bolt loosening detection using machine learning classifiers for a multi-bolt
structure using a vibration-based method.

In the literature, experimental axial vibration, torsional vibration, and transverse
vibration tests were carried out in some studies on self-loosening of bolted joints. Goodier
and Sweeney [13] conducted axial vibration tests at various force ranges in their test rigs to
loosen bolted connections and developed some equations for loosening nuts. They found
rotation in the relaxation direction at very small angles for bolted connections under axial
vibration. Later, Sauer et al. [14] performed the same work as Goodier and Sweeney under
a more practical vibration instead of quasi-static loading and obtained greater relaxation
rates. During testing, they showed that used nuts were more prone to loosening than new
ones. Gambrel [15] investigated the effects of axial vibration, lubricant effect, and fastener
pitch parameters on joint loosening. It is seen that axial vibration did not have a significant
effect on joint loosening.

Hess and Davis [16,17] investigated the behavior of connections under axial harmonic
vibration and found a rotational path in both tightening and loosening directions. Hess
also developed theoretical models to explain the behavior of bolt self-loosening [17–20].
Clark and Cook [21] repeated the same work of Goodier and Sweeney on the threaded
blind hole connection instead of the bolt–nut connection, and no loosening was found.
They found that, below a certain value, cyclic oscillation would not cause the bolt to loosen,
while angular displacement had a limiting value. Sakai [22] theoretically investigated
the relaxation behavior of bolted connections and calculated the critical rotational slip
and relaxation angles between the parts connected under torsional vibration. Junker [23]
revealed that transversal vibration creates a much more serious loosening condition than
axial vibration for bolted joints. The loosening of the bolts after transversal vibration was
much higher than that of axial vibration.

The researchers found that fasteners with a hole diameter that is too large for the
screw diameter self-loosen faster. They also found that high-frequency vibration causes
less self-relaxation than low-frequency vibration, because higher frequency will give the
fastener less slip time per cycle [24]. Finkelston [25] performed similar vibration tests on
the device designed by Junker and investigated the effect of bolt pitch-to-loosening ratio.
There were other studies in the 1970s and 1980s that expanded Junker’s work [26–29]. The
purpose of these studies was to reveal fasteners that are ineffective in resisting loosening.

Bhattacharya et al. [30] compared the vibration resistance of various locking fasteners.
The vibration resistance of chemically locking solutions is better than all washer types, with
the nylok nut coming after chemically locking fasteners. Dravid et al. [31] investigated
the plain washer effectiveness against spring washer and no washer usage. As a result of
experimental tests, it was shown that the spring washer performs worse than the plain
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washer, and the resistance of the joint to loosening increases when the applied torque
increases. Yokoyama et al. [32] investigated the self-loosening mechanism in bolted joints
subjected to axial loading using three-dimensional finite element analysis. The relations
between the nut rotation angle and the applied torque were verified with experimental
tests. Dinger et al. [33] investigated the effect of critical slips on under head of the bolt and
threads. A 3D numerical simulation model was created and validated with experimental
tests. The friction effect was considered in all contact areas. Liu et al. [34] found that
torsional deformation in threads leads to the relative slip in high-strength bolts. A 3D
finite element model was established to display the behavior of bolt threads under shear
deformation. Izumi et al. [35] investigated the tightening and loosening processes of
fasteners using the three-dimensional finite element method. Loosening due to shear force
was initiated when full thread slippage was achieved before bolt head slippage. It was
suggested that a design modification of fasteners is required.

In this study, rigid counter singular loosening performances of fasteners were exam-
ined. Junker’s theories and standardized test methods such as DIN 65151 [36] and DIN
25201 [37] are effective in terms of performance evaluation for single bolt and nut types.
However, the rigid conditions in the Junker test approach are not suitable for automobile
chassis bolted joint structures since the working conditions of the bolted joints on a vehicle
are different, and external loading acting on the joints has variable frequency.

Although, in the literature, there are several studies determining the mechanism
of self-loosening and behavior of bolted joints, there are only few studies which used
intelligent approaches to predict the behavior of bolted joints. Some neural networks
and optimization-based studies are usually introduced by estimating the outputs and
optimizing the parameters in the case of black-box objective functions, which are expensive
and time-consuming to evaluate. A neural network (NN) is often used to fully represent
the complex relationship between inputs and outputs of the problem [38]. Khaw et al. [39]
showed that it is possible to increase the benefit of NN design using TM. TM and NN
methods are often used together in solving problems with multiple parameter inputs. TM
uses orthogonal arrays (OAs) to design NNs, which reduces design and development
times when building an NN model. Many benefits can come from using this method
for neural network design. Lin [40] conducted a study using the Taguchi method (TM),
along with the artificial neural network (NN) and genetic algorithm (GA) methods, to
optimize the lap joint quality of aluminum pipe and flange in the automotive industry.
Kechagias et al. [41] applied the artificial neural network (NN) method to estimate the
cutting forces and average surface roughness in turning for Ti–6Al–4V alloy material using
Taguchi method-assisted experimental design (DOE).

In this study, an artificial neural network is proposed to predict the mechanism
of self-loosening and behavior of bolted joints on automotive chassis engine suspension
connections. It is one of the pioneering research studies using a neural network to determine
the mechanism of self-loosing and behavior of bolted joints on automotive chassis engine
suspension connections.

The proposed approach consists of three stages. In the first stage, external loading
values are collected from bench testing acting on the joints. It is a specific test only for
engine suspension joints. In the second stage, TM experiments with actual joint conditions
are performed to obtain training and test data for the NN. Seven controlled factors influ-
encing the torque–clamping loading relationship and bolt loosening rate are divided into
two levels, and 16 Taguchi tests are conducted. In the third stage, NN is performed with
the Levenberg–Marquardt and Bayesian regularization algorithms to create the relationship
between the controlled factors and the loosening rate. The MSE (mean squared error)
values are calculated to evaluate the prediction errors of NN. By evaluating all the factors
that may influence the loosening of the bolted joint, an experimental set is created using
the Taguchi method, and physical transverse vibration tests are carried out for the same
connection structure with the vehicle. In the experimental design, horizontal vibration
displacements are determined by evaluating the vehicle bench test data. In this way, the
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vibration tests in the experimental design are performed on the basis of the vibration data of
the real connections. The outputs after the physical experiments are evaluated to determine
the signal-to-noise ratios and the rank of the most influential parameters.

The results showed that the proposed approach can be used to predict the mechanism
of self-loosening and behavior of bolted joints without additional tests, and it is possible
to make predictions with very low error rates using artificial intelligence techniques. This
will reduce the high development costs resulting from the test requirements due to the
modifications and improvements that will occur on bolted joints.

2. Experiments

External loading data acting on an engine suspension joint are collected using real
road signals on a bench test system to determine the horizontal vibrations in a Taguchi-
integrated DOE. Then, the test setup, a discussion of the Taguchi methods, test parameters
and their levels, and test specimens are provided. The flowchart of the proposed approach
is given in Figure 1.
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Figure 1. Flowchart of proposed study.

In Step 2, the loosening rates (kN/cycle) are obtained through monoaxial vibration
tests according to different parameters defined. Taguchi analysis and predictions are made
for the same parameters and different levels in Step 3 using the data from Step 2. The same
test results are evaluated using the LMBP and/or Bayesian algorithms in parallel in Step 4,
the data are trained, and the prediction method is applied with the help of a neural network.
In this study, both methods are applied separately, and the estimation rates are compared.

2.1. Data Measurement from Bench Test and Test Setup

Defining the radial displacement levels for experimental design, strain gauges were
applied to the vibrating connected part, which was close location of the bolted joints. Four
strain gauges were applied for analysis of the movements in joints. Linear strain tensors
were used for the measurement, and a quarter bridge was used for the analysis. The gauges
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were described as R1 and R2 for linear and R3 and R4 for the rosette strain gauges in
Table 1.

Table 1. Strain gauge specifications.

Strain Gauge Description Model Number Bridge Type Resistance (Ohm)

R1 & R2 Comp-1 Quarter bridge 350
R3 & R4 Comp-2 Quarter bridge 350

In addition, a washer type loadcell (HBM KMR 100 kN) was mounted to see the
clamping load levels. Strain gauge locations are given in Figure 2.
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A multiaxial simulation table (MAST), which is shown in Figure 3, was used for the
data acquisition and measurements for the aluminum casting engine mount component.
The vehicle front end was mounted to the test bench plate, and half shafts were mounted
to the torque input fixture to apply the real change gear moments. The road load data
accelerations from the table were applied to the vehicle front end. Then, during these
movements, responses were acquired and analyzed. In addition, using the MAST test
bench seat with dashboard structural durability, NVH tests could be performed up to
150 Hz input level. The model of the table was an MTS Model 353.20 Square Hexapod
Multiaxial Simulation Table (MAST™) with two torque input fixtures (TIFs). Analog signals
were collected from the system for the hydraulic system, and displacement control was
implemented by checking the analog input feedbacks. The MAST test bench used six
different servo-hydraulic actuators to give the road input, which was collected from the
proving ground. In addition, two individual servo-hydraulic actuators were used for the
torque inputs to the half shaft. The system enabled performing engine mount durability
tests by applying the operational loading configuration while controlling different outputs.
The system was used as the input to control itself via acceleration. To check the convergence
between the road and bench responses, main outputs were the engine mount body side,
engine mount engine side, and front body rail accelerations, as well as the torque strut load
and half shaft torque. In addition, to follow the fastener deformation level, the component
response was collected by means of strain gauges. In the end, the system allowed the
movement of test specimens in six degrees of freedom: X, Y, and Z relative movements and
roll, pitch, and yaw angular movements. The vehicle front end and vehicle engine were
located on the test bench. Four different road profiles were applied to the test bench, and
the deformation levels were acquired.



Machines 2023, 11, 895 6 of 17

Machines 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

and vehicle engine were located on the test bench. Four different road profiles were ap-
plied to the test bench, and the deformation levels were acquired. 

 
Figure 3. MAST test bench. 

The instrumented part was located over the gearbox mounting support bracket as 
shown in Figure 4. 

 
Figure 4. Instrumented part location in MAST bench. 

When the data acquisition was completed, each sensor strain level was analyzed as 
presented in Figure 5. 

Figure 3. MAST test bench.

The instrumented part was located over the gearbox mounting support bracket as
shown in Figure 4.

Machines 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

and vehicle engine were located on the test bench. Four different road profiles were ap-
plied to the test bench, and the deformation levels were acquired. 

 
Figure 3. MAST test bench. 

The instrumented part was located over the gearbox mounting support bracket as 
shown in Figure 4. 

 
Figure 4. Instrumented part location in MAST bench. 

When the data acquisition was completed, each sensor strain level was analyzed as 
presented in Figure 5. 

Figure 4. Instrumented part location in MAST bench.

When the data acquisition was completed, each sensor strain level was analyzed as
presented in Figure 5.
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1 
 

 
Figure 5. System strain output for four different road profiles.

In Table 2, maximum and minimum strain levels are given. These results were the
input for the monoaxial loading test.

Table 2. Max–min response table from data acquisition.

Channel Name Units Min Max

R3_0_Degr µε −140.012 141.977
R3_45_Deg µε −68.904 35.103
R3_90_Deg µε −89.175 176.785
R1_Linear µε −12.517 13.471
R4_0_Deg µε −150.979 125.838

R4_45_Deg µε −50.894 25.222
R4_90_Deg µε −98.383 94.465
R2_Linear µε −4.342 8.836

The monoaxial test was set up according to the channel R4_ 0_Deg, whereby the Y-axis
of the movement and strain results were the most severe. The highest radial deforma-
tion acting on the connection under bench conditions was 150 µε. The minimum radial
displacement value of 0.15 mm was set in the monoaxial servo-actuator, which obtained
similar deformations for R3_0_Deg and F4_0_Deg channels with respect to MAST. The
maximum level was determined as 1 mm to accelerate the loosening rates and to prevent
the parts from being subjected to fatigued fracture before loosening. Above 1 mm level
of displacement from actuator, we tried some tests, and some cracks were observed on
the parts. The aim was to see the loosening performance of the bolted joints between
0.15 mm and 1 mm radial displacement. The monoaxial test was set as the Y-axis, as shown
in Figure 6. All fasteners were tightened directly to the 30,000 and 45,000 N target clamping
loads with a torque wrench, which are given in Table 3 by checking the load value of
the washer type loadcell, as shown in Figure 6. Displacements were applied by the MTS
hydraulic actuator to the specimen, and an HBM MGC-Plus data acquisition system was
used for data acquisition; analysis of the data was completed using the Catman HBM data
acquisition software (catmanAP 5.4.2.11 version).
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Table 3. Controlled parameters, their levels, and loosening rates of vibration tests.

Test No Clamp
Force, N

Radial
Displacement, mm

Clamping
Length, mm

Surface
Condition

between Parts

Joint
Rigidity,
N/mm

Working
Thread

Length, mm

Bearing
Area, mm2

Loosening
Rates

(N/cycle)

1 30,000 0.15 48 Serrated 853,689 15 235 0.998557639
2 30,000 0.15 48 Normal 853,689 25 361 0.466683951
3 30,000 0.15 58 Serrated 1,098,156 15 361 0.066644452
4 30,000 0.15 58 Normal 1,098,156 25 235 0.745979997
5 30,000 1 48 Serrated 1,098,156 25 235 2.398081535
6 30,000 1 48 Normal 1,098,156 15 361 3.400075557
7 30,000 1 58 Serrated 853,689 25 361 3.10024113
8 30,000 1 58 Normal 853,689 15 235 3.994673768
9 45,000 0.15 48 Serrated 1,098,156 25 361 0.0135

10 45,000 0.15 48 Normal 1,098,156 15 235 0.299900033
11 45,000 0.15 58 Serrated 853,689 25 235 0.0135
12 45,000 0.15 58 Normal 853,689 15 361 0.089675375
13 45,000 1 48 Serrated 853,689 15 361 1.339152862
14 45,000 1 48 Normal 853,689 25 235 1.797603196
15 45,000 1 58 Serrated 1,098,156 15 235 1.199893343
16 45,000 1 58 Normal 1,098,156 25 361 3.150525088
17 37,500 0.575 53 Normal 975,921 20 298 1.25635
18 30,000 0.15 48 Normal 853,689 15 235 0.992105
19 45,000 1 58 Serrated 1,098,156 25 361 1.785632

2.2. Design of Experiments—Taguchi Method

The Taguchi method (TM) is a popular experimental design method in the industry
and optimizes parameter design with less experimentation. The parameter design of TM
aims to reduce the effects of environmental conditions as much as possible and to obtain
robust results [42]. According to Taguchi, there are two different types of parameters that
can be explored: design parameters and noise parameters. Design parameters are those
that the designer controls. Noise parameters are parameters over which the designer has
no control [43].

The Taguchi method can be used to determine the optimum settings of design factors
to make the neural network insensitive to noise factors. The design of the proposed neural
network using the Taguchi method includes the following steps:

(1) Identification of design factors and determination of objective functions to be achieved;
(2) Description of the experiment set and data analysis procedure;
(3) Making test sets and obtaining the results;
(4) Determination of optimal design parameters that maximize signal tone;
(5) Performing validation experiments for validation.
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In this study, seven controlled factors were selected and divided into selected levels.
The tests were carried out with M12 × 1.75 × 10.9 bolts whose geometric properties were
the same except for the length. The coefficient of friction, which is the noise factor, was
chosen in the range of 0.10–0.16 to avoid deviation. During monoaxial testing, 0.15 mm
and 1 mm radial amplitudes were conducted at 6 Hz frequency level. Apart from seven
controlled parameters, the bolt pitch was not included in the test parameters because
its effect is well known [44]. Furthermore, the locking nuts and tests were not included,
because it was conducted for only blind hole applications, and its positive effects were
known from the literature [30]. The tribological lubricant effect was not included in the
tests because the use of various oil-treated bolts is almost nonexistent.

2.3. Test Specimens

Metal and aluminum washers, serrated lower female thread parts, and connecting
parts with the hole diameter and thickness adjusted were produced to provide the Taguchi
levels determined such as clamping length, bearing area, joint rigidity, and surface condi-
tions between parts. The serrated surface of the lower female thread part was processed to
increase the friction coefficient of the surface. All materials were renewed after each test.
Test specimens are given in Figures 7 and 8.
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2.4. Test Matrix

Taguchi’s orthogonal sequences were determined as the most useful sequence to be
used for the experiment using the L16 (27) sequence. L16 was a specially designed array
used to determine only the main effects of parameters. No interactions between parameters
were investigated. The interaction effect becomes more complicated when considering the
effects of more than two parameters.
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3. Experimental Results and Data Analysis

Monoaxial vibration tests were carred out with the same parts used in the vehicle to
accurately simulate the vehicle condition of the investigated joint. Sinusoidal cyclic signals
of 0.15 mm and 1 mm were applied during tests. A total of 16 tests were carried out within
the scope of Taguchi experimental design, and three additional tests were applied at the
minimum, maximum, and nominal levels of Taguchi levels. Each experiment was stopped
when the joint loosened 30% of its preload. In two experiments, 30% bolt loosening did not
occur, whereby loosening was assumed at 1,000,000 cycles. As the output of the tests, the
loosening rate values (N/cycle) were obtained. All values were exported from catmanAP
5.4.2.11 software to the MATLAB after data acquisition, and the curve fitting tool was used
to define the loosening rate through controlled parameters using the design of experiment
approach. Level values and levels for tests can be seen for controlled parameters for
individual tests in Table 3.

3.1. Taguchi Analysis

A Taguchi L16 (2)7 orthogonal experimental design matrix was established in the
experimental test, and the signal/noise ratios (S/N), mean values, and effect rank were
shared for each input parameter, as given in Tables 4 and 5. The signal-to-noise ratio is a
measure of robustness, which can be used to determine the input factor that minimizes the
effect of noise on the response. The S/N ratio is an output that compounds the mean and
variance. The aim in robust design is to diminish the sensitivity of a control characteristic
to noise factors. Minitab 18 software was used to perform the Taguchi analysis.

Table 4. Response table for signal-to-noise ratios and their input effect rank.

Level Clamp
Force

Radial
Displacement

Clamping
Length

Surface
Condition

Joint
Rigidity

Working
Thread Length

Bearing
Area

1 −0.9228 17.3620 4.0188 0.3564 4.8757 3.9609 3.0135
2 11.3168 −6.9680 6.3752 10.0376 5.5183 6.4331 7.3805

Delta (dB) 12.2396 24.3300 2.3565 9.6813 0.6426 2.4722 4.3670
Rank 2 1 6 3 7 5 4

Table 5. Response table for means and their input effect rank.

Level Clamp
Force

Radial
Displacement

Clamping
Length

Surface
Condition

Joint
Rigidity

Working
Thread Length

Bearing
Area

1 1.8964 0.3368 1.2834 1.7431 1.4192 1.3678 1.4310
2 0.9322 2.4917 1.5451 1.0854 1.4093 1.4608 1.3975

Delta (dB) 0.9642 2.1549 0.2617 0.6577 0.0099 0.0930 0.0335
Rank 2 1 4 3 7 5 6

A “smaller is better” characteristic was used to judge performance. This is convenient
for objectives aimed at diminishing the output or minimizing the target such as the bolt
loosening rate.

The signal-to-noise (S/N) ratio was calculated for each factor level combination. The
formula for the smaller-is-better S/N ratio using log base 10 is as follows:

S
N

= −10log

[
1
n

n

∑
i=1

y2
i

]
, (1)

where y is the response for a given factor level combination, and n is the number of
responses in the factor level combination.

The average effect of the radial displacement parameter at Level 2 was −6.9680 dB,
while the average effect at Level 1 was 17.3620 dB. The difference between the two levels was
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24.33 dB. It can be observed that the radial displacement parameter was a very influential
factor on the response, i.e., the loosening rate.

The difference between the levels of the joint rigidity parameter was very small
(0.6426 dB), indicating that this parameter had very little or no effect on the response.

Tables 4 and 5 express that the degree of effect of the selected parameters such as
radial displacement, clamp force, and surface condition was high. A small modification in
these parameters would cause a significant change in loosening rates. An experiment using
Level 1 radial displacement, Level 2 clamp force, and Level 2 surface condition would
work best to minimize the loosening rates. Figures 9 and 10 expressed the main effects of
signal-to-noise ratios and means.
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The loosening rates of Tests 17, 18, and 19, as indicated in Table 3, were predicted, and
the prediction error rates according to the physical test results are shown in Table 6.

Table 6. Taguchi prediction for experimental tests.

Test # Output Test Output Minitab Prediction Error Rate %

17 1.25635 1.35089 7.525
18 0.992105 1.12567 13.463
19 1.785632 1.83643 2.845

In the next section, loosening rates are evaluated using the LMBP and BO approaches,
and the prediction error rates are determined for Tests 17, 18, and 19.

3.2. Neural Network with Levenberg–Marquardt and Bayesian Regularization Algorithms

A neural network is an artificial intelligence technique which is usually used to estab-
lish the relationships between inputs and outputs of black-box processes. NNs are widely
used to solve complex problems with hidden layers by performing nonlinear matching
between inputs and outputs [40]. Yu et al. [45] revealed a neural Taguchi network with a
genetic algorithm by establishing a backpropagation network using Taguchi experiments
to estimate the relationship between input and outputs. The genetic algorithm was then
applied to optimize the extrusion blow molding process. Su and Chiang [46] proposed a
combined approach using a neural network and genetic algorithm to optimize the wire
bonding procedure. Yu et al. [47] investigated the small angle detection method of bolt
loosening in a wooden structure using deep learning and machine vision technology.
Çallı et al. [48] proposed an artificial neural network model considering the directed energy
deposition (DED) process parameters. It has been shown that the proposed NN–GA is a
capable method for creating topology-based geometrical patterns and process parameters
for hybrid manufacturing technologies.

In this study, an ANN model was developed to determine the error rates to predict the
loosening rates by creating LM and BR algorithms depending on the experimental results
related to the bolt loosening problem. ANN was used as a surrogate model to examine the
effects of the variables. The surrogate-based prediction and optimization methods play
an important role in prediction and optimization processes, especially when the process
model is complex and established using computationally expensive simulations and tests
in case of uncertainties [49,50].

MATLAB R2020a was used to develop the ANN model, which is composed of three lay-
ers as given in Figure 11. The neural network model had seven input neurons, 3–15 neurons
in the hidden layer, and one output neuron. Figure 11 presents the topology of the 7–3:15–1
network. Factors A to G were as follows: clamp force, radial displacement, clamping
length, surface condition between parts, joint rigidity, working thread length, and bearing
area, respectively.

Mean squared error (MSE) values were examined to find the best ANN structure. The
ANN model was designed with 30 data points, which were obtained via the design of
experiments. A total of 70% and 15% of these points are used for training and testing [51].
Cross-validation is a statistical technique to evaluate networks by partitioning the data into
subsets of specified ratios. In this study, the leave-one-out method for cross-validation was
used by partitioning the data into subsets, which were the data used for the test, validation,
and neural network model training [51,52]. The ANN model and predictions were saved in
this study. The reason for choosing MSE and R-value is to prevent overfitting and increase
accuracy. R-values (Pearson correlation coefficients) were recorded for training and testing,
as given in Tables 7 and 8. For high accuracy of the model, the R-value should be as close to
1 as possible. All R-values for NN architectures were calculated between 0.91 and 0.98. The
training was realized with Bayesian regularization, and the performance is was in terms of
the mean squared error (MSE) and Pearson coefficient of determination (R), as shown in
Table 8.



Machines 2023, 11, 895 13 of 17

Machines 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

MATLAB R2020a was used to develop the ANN model, which is composed of three 
layers as given in Figure 11. The neural network model had seven input neurons, 3–15 
neurons in the hidden layer, and one output neuron. Figure 11 presents the topology of 
the 7–3:15–1 network. Factors A to G were as follows: clamp force, radial displacement, 
clamping length, surface condition between parts, joint rigidity, working thread length, 
and bearing area, respectively. 

 
Figure 11. NN architecture. 

Mean squared error (MSE) values were examined to find the best ANN structure. The 
ANN model was designed with 30 data points, which were obtained via the design of 
experiments. A total of 70% and 15% of these points are used for training and testing [51]. 
Cross-validation is a statistical technique to evaluate networks by partitioning the data 
into subsets of specified ratios. In this study, the leave-one-out method for cross-validation 
was used by partitioning the data into subsets, which were the data used for the test, val-
idation, and neural network model training [51,52]. The ANN model and predictions were 
saved in this study. The reason for choosing MSE and R-value is to prevent overfitting and 
increase accuracy. R-values (Pearson correlation coefficients) were recorded for training 
and testing, as given in Tables 7 and 8. For high accuracy of the model, the R-value should 
be as close to 1 as possible. All R-values for NN architectures were calculated between 0.91 
and 0.98. The training was realized with Bayesian regularization, and the performance is 
was in terms of the mean squared error (MSE) and Pearson coefficient of determination 
(R), as shown in Table 8. 

  

Figure 11. NN architecture.

Table 7. NN Levenberg–Marquardt approach results for the prediction of self-loosing mechanism
and behavior of bolted joints.

Levenberg-Marquardt Algorithm Error Rate %

Arch. MSE
for Training

MSE
for Validation R-Value Output #17 Output #18 Output #19 Output #17 Output #18 Output #19

7, 3, 1 0.2757 0.8951 0.9484 1.2672 0.9553 1.6806 0.8636 3.7098 5.8821
7, 4, 1 0.2484 0.8199 0.9493 1.3024 0.8995 1.8933 3.6654 9.3342 6.0297
7, 5, 1 0.2744 0.9211 0.9294 1.2578 0.9677 1.7289 0.1154 2.4599 3.1771
7, 6, 1 0.1687 0.9164 0.9635 1.1952 0.9786 1.5464 4.8673 1.3612 13.3976
7, 7, 1 0.1848 0.7869 0.9525 1.0954 1.0239 1.5714 12.8109 3.2048 11.9975
7, 8, 1 0.1246 0.8388 0.9718 1.3584 0.9723 2.1231 8.1227 1.9963 18.8991
7, 9, 1 0.1433 0.9358 0.9692 1.1015 0.8285 1.6231 12.3254 16.4907 9.1022

7, 10, 1 0.1261 0.8253 0.9724 1.196 1.1627 1.8836 4.8036 17.1953 5.4865
7, 11, 1 0.1361 0.8776 0.9667 1.3274 1.0825 1.5725 5.6553 9.1114 11.9359
7, 12, 1 0.1239 0.9101 0.9702 1.0325 0.9585 1.5985 17.8175 3.3872 10.4799
7, 13, 1 0.079 0.9058 0.9817 1.4553 1.0937 1.5985 15.8356 10.2403 10.4799
7, 14, 1 0.0915 1.0325 0.9779 1.4736 1.0665 1.7604 17.2922 7.4987 1.4131
7, 15, 1 0.0833 1.1206 0.9797 1.0448 0.9582 1.6196 16.8385 3.4175 9.2982

Table 8. NN Bayesian regularization approach results for the prediction of self-loosing mechanism
and behavior of bolted joints.

Bayesian Regularization Error Rate %

Arch. MSE
for Training

MSE
for Validation R Value Output #17 Output #18 Output #19 Output #17 Output #18 Output #19

7, 3, 1 0.6445 1.3045 0.9518 1.3157 1.0201 1.6294 4.724 2.8218 8.7494
7, 4, 1 0.4007 1.1055 0.9535 1.2279 0.9146 1.6746 2.2645 7.8122 6.2181
7, 5, 1 0.4926 0.6528 0.9472 1.3185 1.0182 1.6593 4.9469 2.6303 7.0749
7, 6, 1 0.6891 1.0776 0.9432 1.2982 0.9597 1.6965 3.3311 3.2663 4.9916
7, 7, 1 0.6678 1.1163 0.938 1.2648 0.9421 1.6484 0.6726 5.0403 7.6853
7, 8, 1 0.8761 1.4565 0.936 1.2856 0.9786 1.687 2.3282 1.3612 5.5236
7, 9, 1 0.9273 1.5211 0.9152 1.4265 1.178 1.6926 13.5432 18.7374 5.2162

7, 10, 1 0.8826 1.2204 0.9341 1.3577 1.0573 1.7043 8.0677 6.5714 4.5548
7, 11, 1 0.8766 1.3624 0.9331 1.562 1.1235 1.6326 24.3284 13.2441 8.5702
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Table 8. Cont.

Bayesian Regularization Error Rate %

Arch. MSE
for Training

MSE
for Validation R Value Output #17 Output #18 Output #19 Output #17 Output #18 Output #19

7, 12, 1 0.7902 1.162 0.9332 1.344 1.0436 1.7009 6.9766 5.1905 4.7452
7, 13, 1 0.7942 1.3278 0.9338 1.3036 0.9892 1.699 3.7609 0.2928 4.8516
7, 14, 1 0.9387 1.3654 0.9324 1.2129 0.8968 1.7258 3.4584 9.6063 3.3507
7, 15, 1 0.868 1.3213 0.9325 1.5734 1.0992 1.654 25.2358 10.7947 7.3717

4. Result and Discussions

The experimental test results are given in Table 3. The first 16 results were used for
training and cross-validation, and the remaining three results were used for the test. One
result was left out for cross-validation, and the remaining 15 results were used for training.
The number of epochs was chosen as 20 for both approaches. The regularization parameter
was chosen as 0.5 for Levenberg–Marquardt backpropagation modeling. The training value
represents the learning status of the algorithm, which is the difference between outputs and
training status. The MSE (mean squared error) represents the error for each architecture.
The learning rate parameters were set as MATLAB default values, i.e., 0.001 for LM and
0.005 for BR. Although the experimental results were trained using LM, BR, and scaled
conjugate gradient (SCG), training with LM and BR gave better results. In this study, in
addition to the number of epochs, the learning rate was also changed, and experiments
were conducted by choosing five, eight, 10, 15, or 20 epochs and choosing different learning
rates for each epoch on the basis of improvements in the results without overfitting to
find the best neural network. LM gave the best results with the 7–5–1 architecture. LM
is a widely used and recommended training algorithm for most problems. In this study,
SCG was not a proper training algorithm for the bolt loosening prediction problem. BR
gave the best results with the 7–13–1 architecture. Although BR gave better results than
LM in some other cases, the LM method is ideal for the bolt loosening problem. Lastly,
the prediction error rates were computed for both algorithms, as shown in Tables 7 and 8.
In the case of Taguchi analysis, Tests 17, 18, and 19 were computed with error rates of
7.5%, 13.4%, and 2.8%, respectively. However, the neural network model with a 7–5–1
architecture achieved predictions with better error rates, especially for Tests 17 and 18 at
0.11% and 2.45%, while test 19 was computed at a 3.17% error rate. Although the error rate
using the Taguchi method was better for Test 19, the error rate using the neural network
was not much different from the Taguchi estimation method. The results show that a
neural network approach gave quite good results to predict the bolt loosening analysis as
indicated in Table 9.

Table 9. Comparison of prediction error rates of Taguchi prediction and LM method.

Prediction Method
Error Rate %

Output #17 Output #18 Output #19

NN–LM 7–5–1 model 0.12 2.46 3.18
Taguchi analysis 7.52 13.46 2.84

In traditional product development processes, joint design and design validation
processes take a long time and involve many repetitive test plans. Loosening tests take at
least 1 week; moreover, in the case of unexpected situations, the tests must be repeated.
The proposed method enables an experimental-based calculation and estimation approach,
reducing the loosening test requirement by approximately 50% with respect to MAST
testing, which is regularly carried out in product development. In this way, improvements
can be achieved in terms of time and cost for the durability tests to be carried out for new
fastener development, as well as cost reduction and mitigation studies.
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5. Conclusions

In this study, an approach using the Taguchi method (TM) and neural network (NN)
was developed to predict the self-loosening mechanism of bolted joints in automotive
chassis engine suspension connections. It represents a pioneering study using neural
networks to predict the self-loosening mechanism and to determine the behavior of bolted
joints in automotive chassis engine suspension connections.

In the proposed study, instead of Junker vibration tests, which are commonly used in
the literature, a monoaxial vibration bench was used to simulate in exact same on-vehicle
bolted joint structure to perform radial vibration tests. External loading values acting on
the joints of the engine suspension were collected from bench tests for experimental design.
They were determined using actual joint conditions to obtain training and test data for the
NN. Seven controlled factors influencing the torque–clamping load relationship and bolt
loosening rate were considered.

The contributions of this study in the field of self-loosening and the behavior of bolted
joints are as follows:

(i) It we found that the radial displacement, clamp load, and surface conditions of
connected parts were the parameters with the greatest influence on the self-loosening
mechanisms of bolted joints.

(ii) The radial displacement acting on a bolted joint had a major effect on the loosening of
bolted joints among all factors. According to this superiority, if a joint is subjected to a
high radial displacement, it is important to determine other influential parameters to
prevent loosening.

(iii) According to Taguchi analysis, increasing the clamp load, working thread length
between male and female threads, bearing area, and serrated surface condition be-
tween the connected parts would reduce the loosening rate of the bolted joints. No
significant effect of joint rigidity on loosening rate was found.

(iv) The results showed that the proposed approach can be used to predict the mechanism
of self-loosening and the behavior of bolted joints without additional tests. Thus, it
is possible to make predictions with very low error rates using artificial intelligence
techniques. This brings advantages in terms of time and cost.
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Nomenclature

LM Levenberg–Marquardt
TM Taguchi method
DOE Design of experiment
NN Neural network
BR Bayesian regularization
MAST Multiaxial simulation table
SSD Single-shot multi-box detector
GMVD Generalized variable mode decomposition
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8. Gürsel, K.T.; Yarkın, T. Otomobillerin Şasi Montajlarında Cıvata Sıkma Limitlerinin Saptanması. J. Polytech. 2014, 17, 193.
9. Liu, Z.; Zheng, M.; Guo, J.; Chu, H.; Yan, X.; Ying, L. Experimental Study on Performance Characterization of Bolted Joint Under

Transverse Loading. Measurement 2021, 182, 109608. [CrossRef]
10. Huang, J.; Liu, J.; Gong, H.; Deng, X.; Deng, A. Comprehensive review of loosening detection methods for threaded fasteners.

Mech. Syst. Signal Process. 2022, 168, 108652. [CrossRef]
11. Guo, Y.; Zhang, Z.; Yang, W.; Cao, J.; Gong, T. Early bolt looseness state identification via generalized variational mode

decomposition and similarity index. J. Mech. Sci. Technol. 2021, 35, 861–873. [CrossRef]
12. Eraliev, O.; Lee, K.H.; Lee, C.H. Vibration-Based Loosening Detection of a Multi-Bolt Structure Using Machine Learning

Algorithms. Sensors 2022, 22, 1210. [CrossRef]
13. Goodier, J.N.; Sweeney, R. Loosening by vibration of threaded fastenings. Mech. Eng. 1945, 67, 798–802.
14. Sauer, J.; Lemmon, D.; Lynn, E. Bolts: How to prevent their loosening. Mach. Des. 1950, 22, 133–139.
15. Gambrell, S.C. Why bolts loosen? Mach. Des. 1968, 40, 163–167.
16. Hess, D.P.; Davis, K. Threaded components under axial harmonic vibration Part 1: Experiments. J. Vib. Acoust. Trans. ASME 1996,

118, 417–422. [CrossRef]
17. Hess, D.P.; Basava, S. Variation of clamping force in a single-bolt assembly subjected to axial vibration. Am. Soc. Mech. Eng. Des.

Eng. 1998, 90, 97–102.
18. Hess, D.P.; Sudhirkashyap, S.V. Dynamic loosening and tightening of a single bolt assembly. J. Vib. Acoust. Trans. ASME 1997, 119,

311–316. [CrossRef]
19. Rashquinha, I.A.; Hess, D.P. Modelling nonlinear dynamics of bolted assemblies. Appl. Math. Model. 1997, 21, 801–810. [CrossRef]
20. Basava, S.; Hess, D.P. Bolted joint clamping force variation due to axial vibration. J. Sound Vib. 1998, 210, 255–265. [CrossRef]
21. Clark, S.K.; Cook, J.J. Vibratory Loosening of Bolts, Society of Automotive Engineering Paper No. 660432. 1966, pp. 1–10.

Available online: www.sae.org/publications/technical-papers/content/660432/ (accessed on 29 June 2023).
22. Sakai, T. Investigations of bolt loosening mechanisms, 1st Report. Bolts of transversely loaded joints. Bull. JSME 1978, 21,

1385–1390. [CrossRef]
23. Junker, G.H. New criteria for self-loosening of fasteners under vibration. Soc. Automot. Eng. 1969, 78, 314–335.
24. Nassar, S.A.; Housari, B.A. Self-loosening of threaded fasteners due to cyclic transverse loads. In Proceedings of the ASME

Pressure Vessels and Piping Conference, Denver, CO, USA, 17–21 July 2005.
25. Finkelston, R.J. How much shake can bolted joints take? Mach. Des. 1972, 44, 122–128.
26. Pierce, M.B. A Study of Vibration-Resistant Fasteners. SAE Paper 730825. 1973. Available online: www.sae.org (accessed on 29

June 2023).
27. Eccles, W. Tribological aspects of the self-loosening of threaded fasteners. Ph.D. Thesis, University of Central Lancashire,

Lancashire, UK, 2010.
28. Eccles, W.; Sherrington, I.; Arnell, R.D. Towards an understanding of the loosening characteristics of prevailing torque nuts. Sage

J. 2010, 224, 483–495. [CrossRef]
29. Dick, S.J. Vibrational loosening of threaded fasteners—Effect of Various corrosion resistant finishes. Austin Rover Rep. 1984,

84, 11–50.
30. Bhattacharya, A.; Sen, A.; Das, S. An investigation on the anti-loosening characteristics of threaded fasteners under vibratory

conditions. Mech. Mach. Theory 2010, 45, 1215–1225. [CrossRef]
31. Dravid, S.; Yadav, J.; Kurre, S. Comparison of loosening behavior of bolted joints using plain and spring washers with full-threaded

and plain shank bolts. Int. J. Mech. Based Des. Struct. Mach. 2021. [CrossRef]
32. Yokoyama, T.; Olsson, M.; Izumi, S.; Sakai, S. Investigation into the self-loosening behavior of bolted joint subjected to rotational

loading. Eng. Fail. Anal. 2012, 23, 35–43. [CrossRef]
33. Dinger, G.; Friedrich, C. Avoiding self-loosening failure of bolted joints with numerical assessment of local contact state. Eng. Fail.

Anal. 2011, 18, 2188–2200. [CrossRef]

www.airandspaceforces.com
www.vgls.vic.gov.au
www.assets.publishing.service.gov.uk
https://doi.org/10.1051/smdo/2016005
https://doi.org/10.4271/2017-01-2427
www.sae.org
https://doi.org/10.1016/j.measurement.2021.109608
https://doi.org/10.1016/j.ymssp.2021.108652
https://doi.org/10.1007/s12206-021-0201-4
https://doi.org/10.3390/s22031210
https://doi.org/10.1115/1.2888199
https://doi.org/10.1115/1.2889725
https://doi.org/10.1016/S0307-904X(97)00107-8
https://doi.org/10.1006/jsvi.1997.1330
www.sae.org/publications/technical-papers/content/660432/
https://doi.org/10.1299/jsme1958.21.1385
www.sae.org
https://doi.org/10.1243/09544062JMES1493
https://doi.org/10.1016/j.mechmachtheory.2008.08.004
https://doi.org/10.1080/15397734.2021.2008258
https://doi.org/10.1016/j.engfailanal.2012.01.010
https://doi.org/10.1016/j.engfailanal.2011.07.012


Machines 2023, 11, 895 17 of 17

34. Liu, B.; Li, Y.; Wang, Y.; Zhang, C.; Chu, H. Analysis of self-loosening behavior of high strength bolts based on accurate thread
modelling. Eng. Fail. Anal. 2021, 127, 105541. [CrossRef]

35. Izumi, S.; Yokoyama, T.; Iwasaki, A.; Sakai, S. Three-dimensional finite element analysis of tightening and loosening mechanism
of threaded fastener. Eng. Fail. Anal. 2005, 12, 604–615. [CrossRef]

36. DIN 65151; Aerospace Series—Dynamic Testing of the Locking Characteristics of Fasteners under Transverse Loading Conditions
(Vibration Test). 2002. Available online: www.din.de/de (accessed on 29 June 2023).

37. DIN 25201-1; Design Guide for Railway Vehicles and Their Components in Bolted Joints—Part 4: Securing of Bolted Joints. 2015.
Available online: www.din.de/de (accessed on 29 June 2023).

38. Su, C.T.; Chiu, C.C.; Chang, H.H. Parameter design optimization via neural network and genetic algorithm. Int. J. Ind. Engineering
2000, 7, 224–231.

39. Khaw, J.F.; Lim, C.B.C.; Lim, L.E.N. Optimal design of neural networks using Taguchi method. Neurocomputing 1995, 7, 225–245.
[CrossRef]

40. Lin, H. Optimizing the auto-brazing process quality of aluminum pipe and flange via a Taguchi-Neural-Genetic approach. J.
Intell. Manuf. 2012, 23, 679–686. [CrossRef]

41. Kechagias, J.; Tsiolikas, A.; Arteris, P.; Vaxevanidis, N. Optimizing ANN performance using DOE: Application on turning of a
titanium alloy. MATEC Web Conf. 2018, 178, 01017. [CrossRef]

42. Taguchi, G.; Elsayed, E.A.; Hsiang, T.C. Quality Engineering in Production Systems; McGraw-Hill: New York, NY, USA, 1989.
43. Peace, G.S. Taguchi Methods: A Hands-on Approach; Addison-Wesley Publishing Company: Reading, MA, USA, 1993.
44. Nassar, S.A.; Housari, B.A. Effect of thread pitch and initial tension on the self-loosening of threaded fasteners. J. Press. Vessel.

Technol. Trans. ASME 2006, 128, 590–598. [CrossRef]
45. Yu, J.C.; Chen, X.X.; Hung, T.R.; Thibaut, F. Optimization of extrusion blow molding processes using soft computing and Taguchi’s

method. J. Intell. Manuf. 2004, 15, 625–634. [CrossRef]
46. Su, C.T.; Chiang, T.L. Optimizing the IC wire bonding process using a neural networks/genetic algorithms approach. J. Intell.

Manuf. 2003, 14, 229–238. [CrossRef]
47. Yu, Y.; Liu, Y.; Chen, J.; Jiang, D.; Zhuang, Z.; Wu, X. Detection Method for Bolted Connection Looseness at Small Angles of

Timber Structures based on Deep Learning. Sensors 2021, 21, 310. [CrossRef]
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