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Abstract: Recently, applying the utilization of RGB-D data for robot perception tasks has garnered
significant attention in domains like robotics and autonomous driving. However, a prominent chal-
lenge in this field lies in the substantial impact of feature robustness on both segmentation and pose
estimation tasks. To tackle this challenge, we proposed a pioneering two-stage hybrid Convolutional
Neural Network (CNN) architecture, which connects segmentation and pose estimation in tandem.
Specifically, we developed Cross-Modal (CM) and Cross-Layer (CL) modules to exploit the comple-
mentary information from RGB and depth modalities, as well as the hierarchical features from diverse
layers of the network. The CM and CL integration strategy significantly enhanced the segmentation
accuracy by effectively capturing spatial and contextual information. Furthermore, we introduced
the Convolutional Block Attention Module (CBAM), which dynamically recalibrated the feature
maps, enabling the network to focus on informative regions and channels, thereby enhancing the
overall performance of the pose estimation task. We conducted extensive experiments on benchmark
datasets to evaluate the proposed method and achieved exceptional target pose estimation results,
with an average accuracy of 94.5% using the ADD-S AUC metric and 97.6% of ADD-S smaller than
2 cm. These results demonstrate the superior performance of our proposed method.

Keywords: cross layer; cross modality; hybrid CNN architecture; object pose estimation

1. Introduction

Accurately estimating the six-degree-of-freedom (6-DoF) of objects is a critical task
in various applications, including robotics, autonomous driving, and virtual reality. For
instance, the precise estimation of spatial coordinates and rotational orientation of an object
is essential for robotic tasks such as manipulation, navigation, and assembly. However,
achieving robustness in 6-DoF detection remains a challenging problem. In real-world
applications, numerous object types exhibit significant occlusions and variations in lighting
conditions. Due to the increasing reliability of new RGB-D image sensors, the 6-DoF detec-
tion of visual targets based on multi-source image information is flourishing. Researchers
have explored a number of ways [1–3] to fuse RGB image data and depth image data to
guide 6-DoF detection of visual targets with impressive accuracy. Different research teams
are employing various framework approaches to investigate solutions for the 6DoF pose
estimation problem. Some focus on the overall algorithmic framework, while others delve
into efficient feature extraction. In contrast, our emphasis lies in the efficient extraction
of features from the target object. To enhance model interpretability in the framework
selection, we opted for the classical two-stage framework.
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Regarding the problem of object pose estimation, previous approaches predominantly
employed adaptive matrices to tackle this issue. However, with the rise of convolutional
neural networks (CNN) and transformers, deep learning (DL) based methods are used
to solve the 6-DoF estimation problem. There are two main types of DL-based frame-
works for 6D attitude estimation of objects: end-to-end architectures [4,5] and two-stage
segmentation-pose regression architectures [6,7]. End-to-end models integrate multiple
stages of visual processing steps into a single model; therefore, their networks are less
complex and computationally intensive. A single network processes pixel information from
the image to deduce the region where the candidate target is located and its corresponding
6DoF pose information. The internal structure and decision-making process of this neural
network are more hidden, less interpretable, and more difficult to train. On the other hand,
the two-stage segmentation-pose regression architecture first segments the visual target
from the scene and then obtains the pose of the visual target in the scene by regression.
This method is able to focus on the visual target being detected and exclude interference
from the background, resulting in more reliable results.

In the process of 6DoF pose estimation through image features, there have been
numerous prior efforts. Some have employed manually designed features (such as SIFT) to
extract object characteristics for subsequent pose regression. However, the limited quantity
of manually designed features might lead to failures in pose regression. Depth images
provide dense features, yet enhancing the robustness of these depth features remains
an unsolved challenge. Solely relying on RGB or depth information addresses only one
facet of the problem. Thus, the approach in this study leverages the fusion of RGB-D
data to accomplish the task. Prior research has made significant strides in exploring the
fusion of RGB and depth images. A multitude of studies have delved deeply into various
techniques and algorithms aiming to effectively exploit the complementary information
these modalities provide. However, despite these commendable efforts, achieving seamless
integration between RGB and depth images remains an ongoing and formidable challenge.
Existing methods often grapple with the intricate task of synchronizing the two modalities
accurately, resulting in less than optimal fusion outcomes. Moreover, inherent differences in
intrinsic features between RGB and depth data, including variations in lighting conditions
and occlusions, further amplify the complexity of the fusion process. As such, continuous
research and innovation are urgently needed to elevate the fusion of RGB and depth images
in target pose detection to new heights.

In order to enhance the precision of 6-DoF pose detection, we presented a novel inte-
grated two-stage framework. This framework combined a semantic segmentation network
with a 6-DoF pose regression network, thereby facilitating the comprehensive integration
of pertinent information derived from both RGB and depth images. By leveraging this
approach, we aimed to extract more efficient and robust deep learning features, ultimately
leading to improved accuracy in 6D object pose estimation. The integration of the semantic
segmentation network and the regression network enabled a synergistic fusion of the com-
plementary strengths of both modalities, resulting in enhanced reliability and performance
in 6-DoF detection. The contributions of our work are listed below:

First, to enhance the accuracy of segmentation, a novel Three-Flow fusion network
was proposed. This architecture incorporates Cross Layer Spatial-wise attention and Cross
Modality Spatial-wise attention CNN mechanisms to address the challenge of multimodal
data fusion and guide the segmentation of candidate targets. Meanwhile, in order to verify
the validity of the proposed mechanisms, we conducted detailed ablation experiments for
each of the proposed mechanisms based on the idea of post hoc interpretability [8,9] and
verified the validity of these mechanisms, as detailed in Section 4.4.2.

Second, a CBAM-based feature enhancement network was introduced to improve the
robustness of 6-DoF pose regression for visual targets.

Finally, the proposed method improved upon a leading method by achieving greater
scores in the most used YCB-Video dataset in the 6D pose estimation area. Our method
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achieved on average 94.5% using ADD-S AUC metric and 97.6% of ADD-S smaller than
2 cm.

The article is structured as follows: Section 2 offers a comprehensive review of prior
research on object pose estimation. Section 3 outlines the intricacies of our proposed
approach. In Section 4, we present a thorough performance evaluation of our method.
Lastly, Section 5 provides a comprehensive summary and conclusion of the article.

2. Related Works
2.1. Feature Representation

In vision tasks, the representation of image features plays a crucial role in various
applications, including visual target recognition and detection. In the context of target pose
estimation, it is essential for the features of visual targets to exhibit robustness against trans-
lation, rotation, and scaling. Additionally, these features should possess local descriptive
capabilities and resistance to noise.

In previous studies, researchers have utilized image feature matching to detect the
position of visual targets. The pose of the target can be obtained by solving the 2D-to-3D
PnP problem. Artificially designed features such as SIFT [10,11], SURF [12], DAISY [13],
ORB [14], BRIEF [15], BRISK [16], and FREAK [17] have demonstrated robustness against
occlusion and scale-scaling issues. These descriptors have been widely adopted in models
for target position detection. Similarly, 3D local features such as PFH [18–20], FPFH [21],
SHOT [22], C-SHOT [23], and RSD [24] can effectively extract features and detect the
position of targets in 3D point clouds. Recently, machine learning based feature descriptor
algorithms [25,26] are receiving more and more attention in the field of image matching.
These methods employ PCA [27], random trees [28], random fern [29], and boosting [30]
algorithms to achieve more robust features than hand-designed features.

However, in cases where the surface of the visual target is smooth and lacks texture, the
extraction of manually designed feature points is often limited in number. This limitation
adversely affects the reliability of object pose estimation. Furthermore, the high apparent
similarity among visual targets also poses challenges in accurately estimating the positional
attitude of the detected target.

In addition to manually designed features, there are supervised learning-based feature
description methods such as triplet CNN descriptor [31], LIFT [32], L2-net [33], Hard-
Net [34], GeoDesc [35]. For the recognition of textureless objects, global features can be
implemented by utilizing image gradients or surface normals as shape attributes. Among
these, template-based global features aim to identify the region in the observed image that
bears the closest resemblance to the object template. Some commonly employed template-
based algorithms include Line-MOD [36] and DTT-OPT [37]. In recent years, novel 3D deep
learning methods have emerged, such as OctNet [38], PointNet [39], PointNet++ [40], and
MeshNet [41]. These methods are capable of extracting distinctive deep representations
through learning and can be employed for 3D object recognition or retrieval.

2.2. Two-Stage or Single-Shot Approach

In the realm of object 6D pose estimation frameworks, two main types can be identified:
end-to-end architectures and two-stage segmentation 6-DoF regression architectures.

In the field of object detection, notable end-to-end frameworks like YOLO [42] and
SSD [43] have emerged. These frameworks have been extended to address the challenge of
target pose detection. Poirson et al. [44] proposed an end-to-end object and pose detection
architecture based on SSD, treating pose estimation as a classification problem using RGB
images. Another extension, SSD-6D [45], utilizes multi-scale features to regress bounding
boxes and classify pose into discrete viewpoints. Yisheng He et al. [46] introduced PVN3D,
a method based on a deep 3D Hough voting network that fuses appearance and geometric
information from RGB-D images.

Two-stage architectures segment the visual target and estimate pose through regres-
sion. For example, in [47], pose estimation was treated as a classification problem using the
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2D bounding box. Mousavian et al. [48] utilized a VGG backbone to classify pose based
on the 2D bounding box and regress the offset. Nuno Pereira et al. [7] proposed Masked-
Fusion, a two-stage network that employed an encoder–decoder architecture for image
segmentation and utilized fusion with RGB-D data for pose estimation and refinement.
This two-stage neural network effectively leverages the rich semantic information provided
by RGB images and exhibits good decoupling, allowing for convenient code replacement
when improvements are required for a specific stage algorithm. Additionally, this design
helps reduce training costs.

However, the MaskedFusion method employed in the first stage solely relies on RGB
image information, which often leads to insufficient and inaccurate semantic information
in low-light and low-texture scenarios. This results in issues such as blurry edges and
erroneous segmentation in the Mask image of the segmentation network during practical
scene applications.

2.3. Single Modality or Multi-Modality Fusion
2.3.1. RGB Single Modal Based Object Pose Estimation

For visual target position detection, RGB images have traditionally been used as the
primary data source. Feature matching techniques are commonly employed for local-
izing target positions within 2D images. PoseCNN [49] utilizes a convolutional neural
network and Hough voting to estimate the target’s pose. PvNet [50] extracts keypoints
from RGB images and employs a vector field representation for localization. Hu et al. [51]
proposed a segmentation-driven framework that uses a CNN to extract features from RGB
image and assigns target category labels to virtual meshes. The ROPE framework [52]
incorporates holistic pose representation learning and dynamic amplification for accurate
and efficient pose estimation. SilhoNet [53] also predicts object poses using a pipeline
with a convolutional neural network. Zhang et al. [54] proposed an end-to-end deep
learning architecture for object detection and pose recovery from single RGB modal data.
Aing et al. [55] introduced informative features and techniques for segmentation and pose
estimation.

Although image-based methods have achieved promising results in 6-DoF estimation,
their performance tends to degrade when dealing with textureless and occluded scenarios.

2.3.2. 3D Cloud or Depth Image Based Object Pose Estimation

Recovering the position of a visual target from 3D point cloud or depth image data is
also a common method. The RGM method [56] introduces deep graph matching for point
cloud registration, leveraging correspondences and graph structure to address outliers. This
approach replaces explicit feature matching and RANSAC with an attention mechanism,
enabling an end-to-end framework for direct prediction of correspondence sets. Rigid
transformations can be estimated directly from the predicted correspondences without
additional post-processing. The BUFFER method [57] enhances computational efficiency by
predicting key points and improves feature representation by estimating their orientation.
It utilizes a patch-wise embedder with a lightweight local feature learner for efficient and
versatile piecewise features. The ICG framework [58] presents a probabilistic tracker that
incorporates region and depth information, relying solely on object geometry

Nonetheless, the point cloud data inherently exhibits sparsity and lacks sufficient
texture information, which poses limitations to the performance of these methods. Conse-
quently, the incorporation of RGB image information represents a crucial enhancement to
enhance the accuracy and effectiveness of the position estimation.

2.3.3. Multi-Modal Data Based Object Pose Estimation

In the field of target position detection, the fusion of information from multiple sensors
has emerged as a cutting-edge research area for accurate position detection. Zhang et al. [59]
proposed a hybrid Transformer-CNN method for 2-DoF object pose detection. They further
proposed a bilateral neural network architecture [60] for RGB and depth image fusion and
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achieved promising results. In 6-DoF pose detection area, Wang et al. [6] introduced the
DenseFusion framework for precise 6-DoF pose estimation using two data sources and a
dense fusion network. MaskedFusion [7] achieved superior performance by incorporating
object masking in a pipeline. Se(3)-TrackNet [61] presented a data-driven optimization
approach for long-term 6D pose tracking. PVN3D [46] adopted a keypoint-based approach
for robust 6DoF object pose estimation from a single RGBD image. FFB6D [5] introduced
a bi-directional fusion network for 6D bit-pose estimation, exploiting the complementary
nature of RGB and depth images. The ICG+ [62] algorithm incorporated additional texture
patterns for flexible multi-camera information fusion. However, existing methods still face
challenges in extracting feature information from RGB-D data.

3. Method
3.1. Network Overview

As mentioned previously, the accurate detection of the six degrees of freedom pose
for visual targets relies on effectively utilizing semantic information to separate the targets
from the background and obtain valuable and valid pixel regions. This is crucial for guiding
subsequent target pose prediction. Furthermore, leveraging the information from RGB and
depth images to create robust feature representations is essential for accurate target pose
inference.

To address these challenges, we proposed the two-stage object pose detection frame-
work, which combined semantic segmentation and pose estimation. As depicted in Figure 1,
the proposed architecture was composed by the semantic segmentation network and object
pose prediction network. Our work enhanced the segmentation process by integrating CM
module for RGB and depth information interaction and the CL module for inter-feature
layer guidance. These modules improved the segmentation approach during the segmenta-
tion stage. Additionally, in the subsequent target pose regression stage, we introduced the
CBAM attention mechanism, which densely embedded attention into features, enhancing
their robustness and reducing the influence of interfering features. This increased the
reliability of pose regression. The visual object pose detection framework proposed in this
study is illustrated in Figure 1.
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Figure 1. Proposed network architecture in this study. The proposed method has three sub-tasks: CL
and CM-based semantic segmentation, CBAM-based prose prediction and pose refinement.

As shown in Figure 1, the framework first input RGB-D data into our proposed
segmentation network to extract features (details in Section 3.2). These features were then
passed through a dense feature embedding module with the CBAM attention mechanism
(details in Section 3.3.1). A similar object pose prediction approach to DenseFusion was
employed for pose estimation and tuning (details in Section 3.3.2).
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Specifically, in the context of RGB-D data, we employed Convolutional Neural Net-
work (CNN) architectures to extract features independently from the RGB map and the
depth map, resulting in two distinct feature streams. These streams were mutually guided
by the Cross-Modal (CM) module during the feature extraction process, facilitating ef-
fective information exchange between the RGB data and the depth data. Additionally, a
fusion layer was introduced to integrate the RGB streams and depth streams, generating
a third stream that served as an intermediary between the RGB streams and the feature
streams. Each of these three branches, comprising the aforementioned feature streams, can
be regarded as a feature extraction network with a structure akin to U-Net [63] (which is a
classical encoder–decoder structure, but innovatively includes mechanisms for encoding
features to guide decoding features). Finally, for the regression and refinement of 3D rota-
tions and 3D translations of objects, we employed a CNN network equipped with adaptive
point cloud quantity sampling and a spatial and channel-based attention mechanism.

3.2. CM and CL Module-Based Three-Stream Segmentation Network

In the realm of 6DoF pose estimation, previous research has largely overlooked the
potential loss of information that occurs during the feature extraction stages. It is widely
recognized that low-level feature maps encompass valuable image details, and it is impera-
tive to devise an effective approach that preserves spatial information while retaining the
original image information in higher-level feature maps. To address this critical concern,
we proposed a novel cross-layer (CL) strategy in this study. The primary objective of this
strategy was to mitigate the loss of information during feature extraction by seamlessly
integrating image details from low-level feature maps into their higher-level counterparts.
By incorporating this CL strategy, we aimed to enhance the overall accuracy and robust-
ness of 6DoF pose estimation by preserving crucial image details throughout the feature
extraction process.

Moreover, the prevailing studies in object pose detection have predominantly relied
on RGB data for segmentation purposes. However, it is important to acknowledge that
RGB images alone may exhibit limitations in scenarios characterized by weak texture, poor
lighting conditions, or objects with transparency. In contrast, depth images possess the
potential to compensate for these limitations by providing additional information that
complements the RGB features. Hence, it becomes imperative to explore methodologies
that facilitate meaningful information exchange between calibrated RGB data and depth
information. To address this challenge, we proposed the integration of a cross-modal
(CM) module in our research. This CM module served as a pivotal component in our
segmentation network framework, as depicted in Figure 2.

The segmentation network proposed in this study leverages RGB-D data as input,
enabling a comprehensive analysis of both modalities. To facilitate this analysis, the
network establishes separate feature streams for RGB and depth images. At the initial
layer of the encoder, a fusion process is employed to integrate RGB and depth features,
resulting in a fused feature stream. Throughout the encoder layers, the three branches of
the network engage in multimodal information interaction, facilitated by the Cross-Modal
(CM) module. This module enables effective exchange and integration of information
between the RGB and depth streams. Furthermore, to address the challenge of information
loss during feature extraction, the Cross Layer (CL) module guides each branch across
feature layers, ensuring the preservation of crucial details. The decoder for each branch
follows a design inspired by U-Net, facilitating encoder–decoder information interaction
and achieving upsampling. Finally, the feature maps from the three branches are fused
to produce the network’s output, providing accurate and comprehensive segmentation
results.
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Figure 2. Segmentation network framework proposed in this study. A CNN network is utilized
for learning of RGB image and depth image, respectively. In flow of three networks, CL and
CM = guiding Module are added as bridges for information.

3.2.1. Cross Modal Module (CM)

In scenarios characterized by low-texture and low-light conditions, RGB images often
exhibit a lack of sufficient feature information, while depth images may lack crucial color
and texture details. Consequently, it becomes imperative to establish an effective mecha-
nism for information exchange between the RGB and depth feature extraction streams. To
tackle this challenge, we proposed the incorporation of a Cross-Modal Feature Guiding
Module (as illustrated in Figure 3) in this section. This module serves as a facilitator for
the exchange of information between RGB and depth images, enabling a synergistic fusion
of their respective strengths. It is important to note that this research assumes the prior
calibration of RGB and depth images, which can be mathematically represented as follows:

FRSA = δ(MLP(AvgPool(FR))⊕ (MLP(MaxPool(FR))) (1)

FDSA = δ(MLP(AvgPool(FD))⊕ (MLP(MaxPool(FD))) (2)

F′R = δ(FR ⊗ FDSA) (3)

F′D = δ(FD ⊗ FRSA) (4)

In this module, the input features for the RGB and depth branches are represented
by FR and FD, respectively. MaxPool and AvgPool refer to the max-pooling and average-
pooling operations, respectively. ⊕ stands for channel-wise concatenation. The MLP
denotes the perception layer, which comprises two convolutional layers followed by the
ReLU activation function represented by δ. It is noteworthy that the weights of the RGB
and depth branches are not shared during this process. To achieve this, the module initially
employs the Spatial Attention (SA) module to extract features from the input feature maps
FRSA and FDSA. In SA module, ⊗ represents the pixel-wise multiplication.

In the segmentation network, the CM module plays a crucial role at each layer of
the encoder by facilitating cross-modal information interaction between RGB and depth
data. Given that the RGB and depth data are calibrated upon entering the network, the
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CM module employs a multiplication operation to fuse the RGB/depth spatial attention
map with the depth/RGB feature. This design enables the RGB branch to enhance its
feature extraction capability, particularly in environments characterized by weak texture
and low lighting conditions. Simultaneously, the depth branch overcomes the limitation of
lacking color texture information, thereby achieving a more comprehensive representation.
However, it is important to acknowledge that relying solely on the CM module may not
accurately extract features for each branch, especially in complex and diverse scenarios.
To address this inherent challenge, we developed a unique CM module that effectively
handles these complexities, ensuring more accurate and robust feature extraction for both
branches.
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Figure 3. Structure of the cross-modal guiding module. For each point, we extracted the spatial
attention weights using a fusion of MaxPool and AvgPool, and then used multiplication to fuse point
features on the cross-modal feature maps.

3.2.2. Cross Layer Strategy (CL)

In this section, we introduce a novel Cross-Layer Guiding Feature Extraction Module
(CL) aimed at enhancing the feature extraction capability of the encoder. As shown in
Figure 4, we acknowledge that low-level feature maps, characterized by fewer channels
but larger size, inherently possess more comprehensive semantic information compared to
high-level feature maps, which exhibit more channels but smaller size. Recognizing this
distinction, our approach leverages the CL module to facilitate inter-feature layer guidance.
By incorporating the CL module, we enabled the exchange of valuable information between
different layers, allowing the encoder to effectively leverage the rich semantic details present
in the low-level feature maps. This inter-layer guidance mechanism enhances the overall
feature extraction process, leading to improved performance and accuracy in subsequent
stages of the network.

In this approach, the initial processing of low-level features involves passing them
through the spatial attention module, resulting in the generation of a spatial attention
graph. To ensure compatibility with high-level features, this attention map undergoes
downsampling using a maximum pooling technique, while still preserving the fundamental
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semantic information of the low-level features. The downscaled spatial attention map
is subsequently multiplied with the high-level feature map, giving rise to a cross-layer
bootstrap feature map. This iterative process, as described by Equations (5) and (6), enables
the seamless integration of low-level and high-level features, thereby enhancing the overall
representation of the input data.

FL = δ(MLP(AvgPool(FR))⊕ (MLP(MaxPool(FR))) (5)

FH = FH ⊗ δ(MaxPool(FL)) (6)

In the given formula, FL denotes the low-level spatial attention features that are
extracted using the Spatial Attention Module. On the other hand, FH represents the
high-level features that are guided by the low-level features. By integrating the semantic
information derived from the low-level features into the high-level ones, we can effectively
mitigate the issue of low efficiency in fitting the overall features within the high-level
features. Consequently, this approach accelerates the convergence of network training.
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Figure 4. Structure of the cross-layer guiding module. The points of the low-level feature map are
inputted into the Spatial Attention module to acquire the weight associated with each point in the
feature map. Subsequently, we resize it to match the dimensions of the high-level feature map using
MaxPool. Finally, point-to-point feature fusion is performed through element-wise multiplication.

In the depicted upsampling process as illustrated in Figure 2, our work incorporated
the skip connection design inspired by U-Net. This design choice enables the preservation
of a greater amount of contextual information from the encoder layers during the decoding
process. The utilization of skip connections is a well-established technique in the field of
image processing and is widely recognized for its ability to enhance the performance of the
decoding phase. For a visual representation of this design, please refer to Figure 5.

Specifically, the upsampling module serves the purpose of decoding both the low-
level image details and high-level semantic features. In order to seamlessly incorporate
the semantic features obtained from the encoder stage into the upsampling process of
the decoder, a reverse max-pooling method was employed. This method enables the
generation of decoder feature maps with identical dimensions and channel numbers as the
feature maps in the encoder stage. Subsequently, the two feature maps, having the same
dimensions, are combined through element-wise addition. This fusion process effectively
integrates the feature maps from both the encoder and decoder stages, resulting in a
generated feature map that encompasses both the high-level semantic information from
the encoder stage and the low-level image details from the decoder stage. The described
process can be summarized by Equation (7).

FUP = δ(conv(FDN ⊕UnMaxpool(FEN))) (7)

In Equation (7), FEN represents the feature map from the encoder stage, FDE rep-
resents the feature map from the decoder stage, and FUP represents the feature map
generated by the upsampling module.
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Figure 5. Structure of the upsampling fusion module in the decoder stage.

Upon the completion of the upsampling process, the segmentation network seamlessly
integrates the feature maps obtained from the three branches, effectively combining their
respective information. This fusion process culminates in the generation of a unified feature
map, which serves as the final output of the network. By consolidating the information from
multiple branches, the segmentation network achieves a comprehensive representation
that encapsulates the collective knowledge extracted throughout the upsampling process.
The output of the segmentation network can be defined as follows:

FOUT = δ(conv(FR ⊕ FD ⊕ FF)) (8)

3.3. Multidimensional Interaction Channel Attention Based 6DoF Object Pose Estimation

In previous research on 6DoF pose detection networks based on CNN feature extrac-
tion, leveraging the mask information provided by semantic segmentation networks to
extract spatial features of the target objects has been particularly crucial. Inspired by the
CBAM [64] algorithm, we began to focus on how to extract spatial feature information of
the target objects more accurately from the perspective of attention mechanisms, forming
robust feature descriptions for the bounding box regions of the target objects. Therefore,
we made improvements to the feature extraction stage of the pose detection network,
endowing the network with the capability to adaptively select the number of point cloud
samples and incorporating a multi-channel interactive attention module in the feature
extraction network to enhance the robust feature representation of the target objects and
improve the reliability of pose regression. Figure 6 illustrates the predicting head structure
of the 6DoF pose estimation network in this work.
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Figure 6. Structure of the predicting head in the 6DoF Pose Estimation Network. After obtaining
the bounding box for each target object, we used PSPNet to extract dense features from RGB images
and Mask images, and PointNet for dense features from point clouds. These features are fused and
passed through a four-layer CNN network to regress the 6DoF poses.
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3.3.1. Feature Extraction Stage

After obtaining the mask image output from the instance segmentation network, we
leveraged the semantic information provided by the mask to precisely locate the position of
each target object within the image. By utilizing this positional information, we individually
cropped the RGB and depth data for each target object and input them into separate neural
networks for feature extraction across different data modalities. This approach allowed us
to capture and analyze the unique characteristics of each object in a more comprehensive
manner.

For the depth feature extraction network, we enhanced the PointNet [39] architecture
by incorporating adaptive selection of the number of point cloud samples. Specifically,
leveraging the mask image generated by the segmentation network, we determined the
bounding box area for each target object, which provides an estimation of the object’s
physical volume. To accurately represent the spatial pose of small objects, we proposed
a method that dynamically increases the number of point cloud samples for objects with
smaller bounding box areas, thereby capturing more detailed spatial information. Con-
versely, for larger objects, the proposed architecture utilizes a normal number of point cloud
samples. This adaptive sampling strategy enabled us to effectively capture the intricate
spatial characteristics of objects of varying sizes.

For the RGB feature extraction network, we employed a modified version of PSP-
Net [65] as the backbone, based on ResNet18 [66], with the last fully connected layer
removed. Additionally, we utilized a similar PSPNet approach for processing the binary
mask images generated by the segmentation network. However, in this case, the network
input consisted of a single channel instead of three. After obtaining these three sets of fea-
tures, we further enhanced their robustness by feeding them into the CBAM (Convolutional
Block Attention Module) module. This module employs both spatial-wise and channel-
wise attention mechanisms to augment the feature representation, thereby enhancing the
overall precision of the networks’s output. Each of the three feature extraction networks is
capable of extracting shape features for up to 500 objects, which serve as valuable input for
subsequent stages, significantly enhancing the accuracy and effectiveness of our research
methodology.

3.3.2. 6DoF Pose Estimation and Refinement Stage

In the 6DoF pose estimation stage, we consolidated all the extracted features from
each data source into a unified vector, which was then processed through convolutional
layers to integrate the diverse feature representations. Subsequently, the proposed method
employed an additional neural network to receive the concatenated features and perform
regression analysis to estimate the 6DoF pose of the object, encompassing both its rotation
matrix and translation vector. Specifically, we concatenated all the extracted features and
input them into two distinct neural networks, each comprising four convolutional layers.
One network was dedicated to regressing the translation vector, while the other network
focused on estimating the rotation matrix.

As shown in Figure 7, the proposed architecture incorporated a pose refinement
network, akin to the one employed in DenseFusion. This refinement network takes the
output of the 6D pose estimation network as input and enhances the accuracy of the
predicted pose. However, it is worth noting that during the testing phase, the benefits of
this refinement network become apparent only after it has been trained for approximately
30 epochs. The training process of the refinement network is very time-consuming and
requires a lot of computational resources. Nevertheless, once the training is completed, the
prediction process becomes relatively faster, enabling efficient and rapid pose estimation.
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Figure 7. The pose refinement network structure proposed in this study is similar to Densefusion’s
approach, in which the attitude results of the previous stage are fused with the features of the point
cloud data of the current stage, and then the neural network is used for attitude estimation and
iteration.

3.4. 6DoF Object Pose Estimation Network Loss Design

In order to train our target position detection network, we employed the identical
loss function utilized in the Densefusion framework. This loss function plays a pivotal
role in guiding the network during the training process, facilitating the accurate detection
and localization of target positions. By leveraging this loss function, we ensure that our
network learns to effectively align the predicted target positions with the ground truth
values, thereby enhancing the overall performance and accuracy of our detection system.
The loss is defined in Equation (9).

Lp
i =

1
M∑j

∥∥(Rxj + t
)
−

(
R̂ixj + t̂i

)∥∥ (9)

In Equation (9), xj represents the number of randomly sampled 3D points from the
object model, M and j are the ground truth rotation matrix and translation vector provided
by the YCB-Video dataset [67], and [Ri|Ti] are the predicted rotation matrix and translation
vector generated by the dense similar fusion embedding of the ith input point. Ri represents
the predicted rotation matrix, and Ti represents the predicted translation vector. Using this
loss function, the pose estimation network can accurately and quickly regress the correct
pose of the target.

4. Experiments and Results
4.1. Dataset

This study evaluated the proposed method on the YCB-Video dataset. The YCB-Video
dataset is a large open dataset for 6DoF pose estimation, created in collaboration between
the Robotics and State Estimation Lab (RSE-Lab) at the University of Washington and
NVIDIA. The dataset consisted of 21 objects, and for each scene, 3 to 9 objects were selected
to create a realistic indoor environment. The scenes were captured using RGB-D cameras,
resulting in 92 videos, containing a total of 133,827 frames of 640 × 480 images. The dataset
was manually annotated with 6DoF poses using a semi-automatic method.

Each frame in the dataset contained up to nine different objects and at least three
different objects, with an average of 4.47 objects per frame. The dataset included challenging
scenarios with occlusions among objects and low-quality depth maps, making it an ideal
benchmark for evaluation.

Furthermore, approximately 60% of the images in the dataset were synthetic, which
can improve the model’s generalization ability. However, to prioritize training speed, the
experiments in this study did not use these synthetic images during the training process.
Only real scene images were used.

To facilitate the evaluation using the YCB-Video dataset, the authors of PoseCNN
provided the YCB-Video dataset Toolbox in MATLAB. This toolbox enables convenient
computation of evaluation metrics like the percentage of ADD-S [49] smaller than 2 cm.



Machines 2023, 11, 891 13 of 22

4.2. Experimental Details

To fully utilize the label information provided by the YCB-Video dataset, the proposed
network in this study was not an end-to-end network. Instead, the instance segmentation
network and the pose detection network needed to be trained separately.

During the experimental process, we trained the network using 92 videos and tested
it on some keyframes that were not included in the training set.

The experiments were conducted on the PyTorch 1.8 platform using an NVIDIA
GeForce RTX3090Ti (24 GB memory). In the training process of the segmentation network,
we used the Adam optimizer with an initial learning rate of 0.0001, a batch size of 2, and
we trained it for 300 epochs. For the pose detection network training process, we also used
the Adam optimizer with an initial learning rate of 0.0001, a batch size of 8, and trained it
for 300 epochs.

During the training of the instance segmentation network, we used the training list
(16,189 pics) and the testing list (2949 pics) provided by the YCB-Video dataset. In each
epoch, we randomly selected 5000 images for training and 1000 images for testing. For
training the pose prediction network, we used all the images from both the training and
testing lists.

Regarding the conversion of clipped depth images to point cloud data, this study
applied adaptive point cloud selection based on the area occupied by the object’s bounding
box in the image. If the area value was greater than 2000, indicating that the object’s
projection in 3D space was large enough, we considered using 1000 sparse point cloud
points to represent the object’s spatial information. Conversely, if the area value was smaller,
indicating a smaller volume of the object’s projection in 3D space, we used 2000 3D points
to fully represent the spatial information of small-volume objects. This strategy is detailed
in Table 1.

Table 1. Relationship between bounding box area (number of pixels) and number of filtered point
clouds.

Bounding Box Area (Number of Pixels) Number of Filtered Point Cloud

≥2000 1000
<2000 2000

4.3. Evaluation Metrics

We measured the framework’s performance using two commonly used 6DoF evalua-
tion metrics: Average Distance of Surface Points (ADD-S) and Percentage of ADD-S below
2 cm (<2 cm). Generally, higher values of these two metrics indicate better framework
detection performance.

ADD-S is a pose error measure that is invariant to object symmetry and can compre-
hensively evaluate both symmetric and asymmetric objects. For a given estimated pose
[R|T] and the ground truth pose [R|T], ADD-S computes the average distance of each 3D
model point transformed by [R|T] to its nearest neighbor on the target model transformed
by [R|T]. We report the Area Under the Curve (AUC) of the ADD-S curve, which is the
same as in PoseCNN [49].

DD− S =
1
m∑x1∈ model minx2∈ model

∥∥(Rx1 + T)−
(

Rpx2 + Tp
)∥∥ (10)

In the formula, model represents the sum of 3D model point distances, and m is the
number of points. [R|T] denotes the ground truth, and

[
Rp

∣∣Tp
]

represents the predicted
values. In this case, we can plot the precision-recall curve and calculate AUC for pose
evaluation.

The second metric is the Percentage of ADD-S below 2 cm (<2 cm). Most robot gripper
tolerances are within 2 cm, and this metric measures the prediction accuracy under the
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minimum robot operation tolerance. We report this percentage to illustrate the performance
of the robot in practical operations.

4.4. Experiments of the Proposed Segmentation Network
4.4.1. Results of CM and CL Module-Based Segmentation Network

In this study, the proposed segmentation method was individually tested using the
YCB-Video dataset as input.

To evaluate the performance of the proposed segmentation algorithm compared to
DenseFusion, we utilized five different methods to measure the similarity between the
output label image of the instance segmentation network and the ground truth label image.
These methods consisted of Mean Hash, Difference Hash, Perceptual Hash, Single-Channel
Histogram, and Three-Channel Histogram. It should be noted that smaller hash values
indicate better performance, while larger histogram values indicate better results. We
calculated the average Siamese distance for 2949 images from the testing list in the YCB-
Video dataset, and the results are presented in Table 2.

Table 2. Comparison results of different semantic segmentation networks.

Segmentation Network aHash dHash pHash One-Channel Histogram Three-Channel Histogram

DenseFusion 1.97 2.31 5.55 98.86 97.83
Proposed Method 0.53 0.67 1.88 99.90 98.92

The results show that in the YCB-Video dataset, the proposed segmentation network
algorithm outperformed DenseFusion network in terms of the similarity between the
segmentation map and ground truth map when evaluated using hash algorithms, with an
improvement of 1.44% to 3.67%. Similarly, when evaluated using histogram algorithms,
there was an improvement of 1.04% to 1.09%. This analysis demonstrates the effectiveness
of the proposed network in the instance segmentation of multiple objects, as its ability to
learn and distinguish features of multiple objects can significantly aid the subsequent pose
estimation process.

In order to more intuitively appreciate the effect of the segmentation network proposed
in this study, the visualizations were performed (Figure 8).
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The proposed segmentation method was highly accurate with sharp edge handling,
as evident from Figure 8. Additionally, we conducted speed tests and found that the
segmentation can be completed in just 0.06 s on an NVIDIA GeForce RTX3090Ti, meeting
the real-time processing requirements of robotic arms.

However, it should be noted that the segmentation network was not entirely perfect
in handling all input data. As shown in Figure 9, the proposed network may encounter
challenges when dealing with complex edge information, leading to occasional small area
misidentifications in complex scenes. Furthermore, since the subsequent pose estimation
task heavily relied on segmentation results, inaccuracies in segmentation could potentially
impact the accuracy of pose estimation.
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4.4.2. Ablation Study

In this section, two ablation experiments based on the YCB-Video dataset are listed to
evaluate the effectiveness of the instance segmentation algorithm proposed in this study.
We examined, in detail, the individual module contributions in the proposed instance
segmentation network algorithm. For each part of the ablation experiments, we rigorously
retrained the entire network with the same parameter settings.

To evaluate the performance of the CL module and CM module in the proposed
segmentation algorithm, we compared the proposed segmentation algorithm with the
segmentation algorithm where the CL module and CM module were removed, using the
same training parameters. The results are presented in Table 3.

Table 3. Comparison of segmentation maps with ground truth labels for the segmentation network
proposed in this study and the segmentation networks without the CL or CM modules.

Segmentation Network aHash dHash pHash One-Channel Histogram Three-Channel Histogram

Proposed Method 0.53 0.67 1.88 99.90 98.92
Proposed Method

without CL Module 0.95 1.19 3.06 99.42 98.66

Proposed Method
without CM Module 8.38 6.47 19.64 97.23 95.93

Table 3 illustrates that the proposed method incorporating CL and CM modules
achieves superior performance compared to the other two architectures. These results
clearly demonstrate the effectiveness of CL and CM modules in enhancing the accuracy of
semantic segmentation.



Machines 2023, 11, 891 16 of 22

4.5. Results of Improved Pose Predict Network

We evaluated our method on the YCB-Video dataset and compared it with several other
methods, including PoseCNN [49]+ICP, PointFusion [68], the baseline DenseFusion [6], the
MaskedFusion [7], and the recent FFB6D [5] method.

To assess the performance of the networks, we used the AUC as the evaluation
metric, and the results are presented in Table 4. We conducted three repeated experiments,
and for the evaluation metric ADD-S AUC, except for PointFusion which performed
poorly, all other methods achieved an average score of over 90%. Among the CNN-based
networks, our proposed method showed superior performance, especially for objects
051_large_clamp and 052_extra_large_clamp, where our method exhibited an average
improvement of 3.6% to 6.4% compared to other methods. This demonstrates that our
method has strong discriminative capabilities for object size and excellent feature extraction
ability for objects with weak textures. Overall, among the CNN-based feature extraction
networks, our proposed method performed the best. Although the average AUC score
was not as high as FFB6D, our method outperformed FFB6D for most objects. Only for
objects 051_large_clamp and 052_extra_large_clamp, there was a significant performance
gap compared to the FFB6D method, which should be a focus of future research.

Table 4. Evaluation of 6D Pose (AUC) on the YCB-Video dataset.

Objects PointFuion
AUC

PoseCNN+ICP
AUC

DenseFusion
AUC

MaskedFusion
AUC

FFB6D
AUC

Proposed
Method AUC

002_master_chef_can 90.9 95.8 96.4 95.5 96.3 97.5
003_checker_box 80.5 92.7 95.5 96.7 96.3 97.4
004_sugar_box 90.4 98.2 97.5 98.1 97.6 98.0

005_tomato_soup_can 91.9 94.5 94.6 94.3 95.6 94.8
006_mustard_bottle 88.5 98.6 97.2 98.0 97.8 97.5
007_tuna_fish_can 93.8 97.1 96.6 96.9 96.8 98.2
008_pudding_box 87.5 97.9 96.5 97.3 97.1 98.5
009_geltain_box 95.0 98.8 98.1 98.3 98.1 99.0

010_potted_meat_can 86.4 92.7 91.3 89.6 94.7 95.5
011_banana 84.7 97.1 96.6 97.6 97.2 98.6

019_pitcher_base 85.5 97.8 97.1 97.7 97.6 96.8
021_bleach_cleanser 81.0 96.9 95.8 95.4 96.8 95.5

024_bowl 75.7 81.0 88.2 89.6 96.3 88.5
025_mug 94.2 95.0 97.1 97.1 97.3 98.0

035_power_drill 71.5 98.2 96.0 96.7 97.2 97.8
036_wood_block 68.1 87.6 89.7 91.8 92.6 94.6

037_scissors 76.7 91.7 95.2 92.7 97.7 98.4
040_large_marker 87.9 97.2 97.5 97.5 96.6 98.7
051_large_clamp 65.9 75.2 72.9 71.9 96.8 75.0

052_extra_large_clamp 60.4 64.4 69.8 71.4 96.0 72.7
061_foam_brick 91.8 97.2 92.5 94.3 97.3 97.7

MEAN 83.9 93.0 93.1 93.3 96.6 94.5

Table 5 presents the percentage of ADD-S <2 cm, as the minimum tolerance for robot
operation is 2 cm.

Like ADD-S AUC, we repeated the experiments three times to calculate the <2 cm
metric. Except for PointFusion, all methods performed well in the <2 cm metric. Our pro-
posed method showed significant improvements for objects 051_large_clamp and 052_ex-
tra_large_clamp, once again demonstrating its excellent feature extraction ability for objects
with weak textures and its sensitivity to objects of similar sizes. As FFB6D method did not
provide the <2 cm metric, it is not reflected in the table.

Figure 10 shows the visualization of our proposed framework for 6DoF pose estima-
tion. It can be observed that the proposed framework achieved relatively high accurate
segmentation and pose estimation results for target objects in most scenarios. Although
there were some errors, occasional inaccuracies in pose estimation do not matter in real
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robot manipulation scenarios because the network can correct them in time in subsequent
frames.

Table 5. Evaluation of 6D Pose (percentage of ADD-S smaller than 2 cm) on the YCB-Video dataset.

Objects PointFuion
<2 cm

PoseCNN+ICP
<2 cm

DenseFusion
<2 cm

MaskedFusion
<2 cm

Proposed Method
<2 cm

002_master_chef_can 99.8 100.0 100.0 100.0 100.0
003_checker_box 62.6 91.6 99.5 99.8 100.0
004_sugar_box 95.4 100.0 100.0 100.0 100.0

005_tomato_soup_can 96.9 96.6 96.9 96.9 96.9
006_mustard_bottle 84.0 100.0 100.0 100.0 100.0
007_tuna_fish_can 99.8 100.0 100.0 99.7 100.0
008_pudding_box 96.7 100.0 100.0 100.0 100.0
009_geltain_box 100.0 100.0 100.0 100.0 100.0

010_potted_meat_can 88.5 93.6 93.1 94.2 97.3
011_banana 70.5 99.7 100.0 100.0 100.0

019_pitcher_base 79.8 100.0 100.0 100.0 100.0
021_bleach_cleanser 65.0 99.4 100.0 99.4 99.8

024_bowl 24.1 54.9 98.8 95.4 100.0
025_mug 99.8 99.8 100.0 100.0 99.8

035_power_drill 22.8 99.6 98.7 99.5 99.6
036_wood_block 18.2 80.2 94.6 100.0 98.8

037_scissors 35.9 95.6 100.0 99.9 100.0
040_large_marker 80.4 99.7 100.0 99.9 100.0
051_large_clamp 50.0 74.9 79.2 78.7 80.9

052_extra_large_clamp 20.1 48.8 76.3 75.9 82.1
061_foam_brick 100.0 100.0 100.0 100.0 100.0

MEAN 74.1 93.2 96.8 97.1 97.6
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However, due to the segmentation results not always being accurate, the pose esti-
mation also occasionally encountered issues. In Figure 11, we showcase some instances
where inaccurate segmentation led to inaccurate pose estimation. Improving segmentation
accuracy remains a key focus for future research.
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4.6. Results in Inference Time

The inference time of the proposed segmentation network in this study was approxi-
mately 0.08 s per frame, while the pose prediction network and refinement network had
an inference time of approximately 0.012 s per frame. Therefore, the total inference time
for obtaining 6DoF pose results from RGB-D capture using our proposed method was
approximately 0.092 s per frame.

As shown in Table 6, our two-stage approach achieved better performance and was
two times faster compared to the PVN3D method. Moreover, when compared to the
MaskedFusion method, which also utilized a two-stage design, our approach exhibited
a 2.3 times speed improvement due to the faster segmentation network in the forward
process. Through comprehensive testing, the proposed method in this study met the
real-time requirements for static object pose estimation in robotic arms.

Table 6. Model run-time on the YCB-Video dataset. SS: Semantic Segmentation; PE: Pose Estimation.

Network SS (ms/Frame) PE (ms/Frame) All (ms/Frame)

PVN3D 170 20 190

MaskedFusion 200 12 212

Proposed Method 80 12 92

5. Conclusions

In this paper, we addressed the data fusion problem that affects the position estimation
of visual targets. Our analysis demonstrated the critical importance of effectively utilizing
the information from both the RGB image modality and the depth image modality to
achieve an accurate six-degree-of-freedom position estimation of visual targets.

To tackle this challenge, we proposed a two-stage position estimation method based on
convolutional neural networks. Our method incorporated a cross-modal cross-level com-
posite feature strategy, which adaptively preserved essential information while reducing
the impact of invalid information on target position estimation.

To validate the effectiveness of our method, we conducted a series of comparison
experiments with other existing methods, as well as ablation experiments. The experimen-
tal results clearly demonstrate that our proposed cross-modal fusion method achieved
high accuracy in visual target position detection. Based on the YCB-Video dataset, our
approach achieved state-of-the-art performance (94.5%) in terms of average accuracy for
21 objects using a CNN-based methodology. Compared to the classic DenseFusion, our
approach demonstrated an average improvement of 1.4%. While our method’s average
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accuracy for the 21 objects did not surpass the feature-designed FFB6D algorithm due to
the limitations of CNN feature extraction capabilities, it outperformed FFB6D for 14 out of
the 21 objects, reaching a new state-of-the-art level. Additionally, our proposed method
achieved the highest accuracy for the <2 cm metric, indicating its precision in real-world
robotic operations.

This study expanded the theoretical groundwork of robot grasping and pose esti-
mation. In the context of instance segmentation, we introduced a novel RGB-D-based
segmentation method. For pose estimation, we proposed a new 6DoF pose estimation
framework and extensively explored the dense feature fusion phase, incorporating atten-
tion mechanisms that significantly enhance performance. This research holds implications
across various domains, such as medical robotic assistance, dynamic obstacle avoidance in
autonomous driving, and virtual/augmented reality applications.

Although our proposed approach demonstrated exceptional accuracy in 6DoF pose
estimation, there is still room for improvement when dealing with objects exhibiting high
apparent consistency. We aim to further investigate such objects and refine our modeling
strategies. Moreover, we recognize the need for advancements in the technique of assigning
3D rotations and translations to each sampled point, followed by the derivation of final
pose data based on confidence levels.
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