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Abstract: In this paper, the problem of the output voltage regulation of buck converters is considered.
The novelty of the problem statement is that the external electric load and the input voltage of
the converter are unknown bounded functions of a certain class. In particular, the external load
equivalent scheme is similar to the successive connection of the inductive and resistive elements. In
this case, the behavior of the load current is described by the differential equation with time-varying
coefficients. In this equation, the equivalent inductance and resistance are described by unknown
arbitrary bounded functions with several bounded derivatives. Under known bounds for these
functions and their derivatives, the initial system can be transformed into the special form with
smooth bounded perturbation. This disturbance is an unknown function, and its action channel
differs from the input channel. Therefore, the influence on the unknown external load can not
be compensated for directly by the control input. Due to this reason, the new control strategy is
developed in the paper with the help of a “vortex” algorithm, which provides asymptotic convergence
of the regulation error to zero in time. How to choose the converter parameters and the bounds for
the input voltage to operate the closed-loop system properly are shown. The convergence proof is
organized with the help of the Lyapunov function approach, and the transient rate is also estimated.
The simulation results show the efficiency of the designed control law for the wide class of input
voltage and electrical parameter functions. The proposed control scheme may be further used in
electric drive systems.

Keywords: buck converter; external disturbance; relay control algorithm; inductive-resistive load

1. Introduction

At present, power converters are widely used in industry, aerospace and everyday
life [1–5]. The heart of each power converter is the electronic switching device, which has
two stable states of operation. In the ON state, it provides current flowing through itself,
and in the OFF state, it disconnects different parts of an electronic scheme. In this paper, the
direct current to direct current converter (DC/DC) is investigated, and the transformation
of the input voltage from the upper level to the lower one is considered. This type of
converter is called a buck converter in the literature [3,5–7].

There is a wide range of methods applied to the buck converter control. The classical
linear regulation technique is used in [8] under the condition of the output voltage pertur-
bation, and an auto-tuning approach for proportional-integral-derivative gain parameters
of the feedback is proposed. The unknown load resistance step variations and its com-
pensation technique with the extension of the classical proportional-integral-derivative
regulator is developed in [9]. The feedback tuning coefficients of the linear quadratic
Gaussian regulator is implemented in [10] for the case of the variable switching frequency.
The discontinuous control solutions are designed in [11–14]. The stability analysis of the
buck converter operation via Filippov’s method is contributed in [11]. The sliding mode
control technique is developed in [12,13]. A generalization of this method is described
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in [14], and the advantages of using the sliding controllers as compared with the conven-
tional linear controllers are discussed through some case-study examples. The specific
time optimal control is developed in [15], which provides stabilization for the acceptable
step reference voltage changes. The predictive-based current controller (inner loop for
the DC input current) and a proportional integral voltage controller (outer loop for the
DC output voltage) is proposed in [16] for the PFC single-phase rectifier based on the
versatile buck-boost converter. The discontinuous control algorithm with hysteresis and
finite switching frequency is considered in [17], and the technique of the hysteresis size
choice is described. The nonlinear PID controller is developed in [18] under the assumption
that the input voltage is a piece-wise constant function of the time.

Generally speaking, the above-described publications [10–18] deal with the constant
resistive load consideration only for the sake of simplicity. A non-resistive load actually
requires the converter model to be modified and extended due to the presence of capacitive
or inductive elements, which can accumulate electric or electromagnetic energy. One of the
possible control laws is designed in [19] for the case of time-varying resistive and inductive
loads. However, the problem of the output voltage stabilization of the DC/DC converter
under unknown time-varying inductive and resistive load is the challenge control task.

This paper is devoted to the problem of buck converter control with time-varying
inductive and resistive loads. There are several unsolved problems concerned with this
challenge. The classical task of the buck converter control is to provide a constant output
voltage level under resistive load. For the proposed load, there are several problems that
are insufficiently studied in the literature, as discussed above.

• The inductive and resistive nature of the load yields the growth of the dynamical
order of the control plant.

• The linear system with time-varying coefficients must be analyzed during feedback
synthesis.

• The designed control algorithm must be suitable under insufficient information about
load parameters and variable input voltage. In particular, the problem statement
from [18] for the case of piece-wise constant input voltage may be extended for the
situation of the arbitrary input voltage function.

This paper is devoted to the solution of the set of the challenges described above.
It will be shown that the control plant may be transformed into the canonical form with
unmatched perturbation [20,21]. To solve the problem of a disturbance compensation, the
variable structure controller based on a “vortex”algorithm [22,23] is developed below. The
Lyapunov function method [24–26] is used for transient behavior analysis.

The paper is organized as follows. In Section 2, the problem statement is considered,
and the basic description of the control plant is described. In Section 3, the basic control
algorithm is developed. In Section 3.1, the property of the energy dissipation is discussed
for the system with zero control input, and one of the main lemmas is proven. The close
loop system stability analysis is provided by means of the Lyapunov function method,
and the main theorem is formulated in Section 3.2. The simulation results are presented
in Section 4. Finally, in Section 5, some concluding remarks about the developed results
are given.

2. Problem Statement

The qualitative scheme of the researched system is depicted in Figure 1.
The differential equations of the investigated system are [27,28]:

ẋ3 = −RL(t) + L̇L(t)
LL(t)

x3 +
x2

LL(t)
,

ẋ2 =
1
C

x1 −
1
C

x3,

ẋ1 = − r
L

x1 −
1
L

x2 +
U(t)

L
u,

(1)
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where the variables and parameters are defined in Table 1.

Figure 1. The simplified scheme of the buck converter with the time-varying resistive and
inductive load.

Table 1. The variables and parameters definitions.

Parameter/Variable Definition

L, H the inductor’s inductance

r, Ohm the inductor’s active resistance

C, F the capacitor’s electrical capacity

RL(t), Ohm the variable load’s active resistance

LL(t), H the variable load’s inductance

U(t), V the variable input’s voltage

x1, A the inductor’s current

x2, V the capacitor’s voltage

x3, A the load’s current

L̇L(t), (H/s) the electromotive force

u ∈ {0, 1} the control input

The following features of the control object are highlighted.
1. The functions describing the behavior of the load resistance and inductance fulfill

the restrictions
RL(t) ≥ R0, |R(i)

L (t)| ≤ Ri (i = 1, 2);

0 ≤ LL(t) ≤ L0, L(i)
L (t) ≤ Li (i = 1, 3),

(2)

where | · | is the absolute value of a number, Rj = const > 0 (j = 0, 1), Lj = const > 0

(j = 0, 3) are known constants and by means of R(i)
L (t), L(i)

L (t), the i-th derivatives of the
functions RL(t) and LL(t) are denoted, respectively.

2. The bounds for the input voltage U(t) and its derivative are assumed to be known

Umin ≤ U(t) ≤ Umax, |U̇(t)| ≤ U(1), (3)

where Umin, Umax, U(1) are known positive constants.
3. The “latch”diode VD provides a non-negative current flowing x1(t) only (see

Figure 1). Further, in any real power converter, there are heat losses concerned with the
active resistance r and the resistance of the switch. Due to this reason, the maximum
converter current must be limited by some value. Therefore, there are two inequalities for
the current x1(t), and the second one must be provided by the control input choice

x1(t) ≥ 0, ∀t ≥ t0, (4)

x1(t) ≤ x1 max, ∀t ≥ t0, (5)

where t0 is the initial time, and x1 max = const > 0 is the maximum possible current level.
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4. Variables x1(t), x2(t), x3(t) are measured.
The regulation problem for load voltage is stated in the paper

lim
t→∞
|x2(t)| = 0, x2(t) = x2(t)− x2d, (6)

where x2d = const > 0 is the desired value of the load voltage.

3. Results

According to the electrical scheme of the investigated system, the inductor may be
considered the current source for the external load. The parameters r, L, C of the step-down
converter may be chosen to provide a fast, transient response according to the variations
in the consumer current. From the other point of view, the unknown load parameter’s
changes must be compensated for by the appropriate control law choice. It is necessary
to note that the influence of x3(t) on the system behavior can not be attenuated directly
by the control input because these signals are introduced in the different equations of
system (1). Therefore, the stated problem, (6), is complicated by the challenge of the
unmatched perturbation suppression [20,21].

With the help of (6), the system equations may be written in the following representation

ẋ2 =
x1

C
+ ξ1(t),

ẋ1 = − r
L

x1 −
1

LC
x2 −

1
LC

x2d +
U(t)
LC

u,
(7)

where ξ1(t) = −
x3

C
.

The alternative representation of (7) is

ẋ2 = x1,

ẋ1 = − r
L

x1 −
1

LC
x2 −

1
LC

x2d +
U(t)
LC

u + ξ(t),
(8)

where x1 =
1
C

x1 −
1
C

x3, ξ(t) = − ẋ3

C
− r

LC
x3.

In this paper, it is proposed to separate the whole transient process into two main stages.
1. The first stage corresponds to the convergence of the state space vector of the system

to some vicinity of the origin, where perturbation ξ(t) and its derivative are bounded. It
will be shown below that this can be performed by choosing the control input u(t) = 0.
This part of the transient process is finished after the time interval Tc − t0, and the control
input is

u(t) = 0, t0 ≤ t ≤ Tc. (9)

Lemma 1. For the external load, the following condition is fulfilled

R0 − 3L1 > 0, (10)

and the parameters of the converter are chosen according to inequalities

R0 − L1 >
r

8
(

1− r2C
4L

) ,
r

2L
>

(
1−

√
1− r2C

4L

)
2γR0C

√
LC

,
1

LC
− r2

4L2 > 0. (11)

Then system (1) with the control input (9) is dissipative, and its state space vector converges
to zero exponentially.
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The proof of Lemma 1 is given in Section 3.1.
2. The second stage corresponds to the main part of the closed-loop system operation,

at which the solution of the stated problem (6) is provided. It is seen that the transformed
system (7) has the unmatched perturbation ξ1(t), which can not be directly suppressed
by the control input with the help of the sliding mode technique or other methods. For
this reason, the conception of the “vortex”algorithm [22] is used in this paper to provide
asymptotic unmatched disturbance attenuation. From the other point of view, the converter
current must be restricted according to (5). Combining the above, in the second part of the
transient process, the control input is chosen in the form

u(t) =
1
2
[1− sign(I x2)], t ≥ Tc, (12)

where I = x1 max − x1.
The convergence analysis of the second stage is considered below in this section.

3.1. Proof of Lemma 1

Proof of Lemma 1. The following coordinate transformation is introduced for system (1)

z1
z2
z3

 =



1
C

α 0

0 γ 0

0 0 γ

√
LL(t)

C


x1

x2
x3

,

α =
r

2L
, γ =

√
1

LC
− α2.

(13)

The differential equations for the new variables are

ż1 = −αz1 − γz2 −
α

γ
√

LL(t)C
z3,

ż2 = −γz1 − αz2 −
z3√

LL(t)C
,

ż3 =
z2√

LL(t)C
− RL(t) + L̇L(t)

LL(t)
z3.

(14)

Non-singlar case (LL(t) 6= 0). The derivative of the Lyapunov candidate function

V =
z2

1
2
+

z2
2

2
+

z2
3

2
(15)

according to (2) and (14)

V̇ = −αz2
1 −

α

γ
√

LL(t)C
z1z3 −

RL(t) + L̇L(t)
LL(t)

z2
3 − αz2

2 ≤

≤ −(z1 z3)P1(z1 z3)
T − αz2

2,

(16)

where P1(t) =


α

α

2γ
√

LL(t)C
α

2γ
√

LL(t)C
R0 − L1

LL(t)

.
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According to the Hurwitz criterion [29], matrix P1(t) is a positive definite matrix if the
determinant is positive ∣∣∣∣∣∣∣∣

α
α

2γ
√

LL(t)C
α

2γ
√

LL(t)C
R0 − L1

LL(t)

∣∣∣∣∣∣∣∣ > 0.

It follows from this condition that the following inequality must be fulfilled for the
converter parameters

R0 − L1

LL(t)
>

α

4γ2LL(t)C
.

This relation can be transformed with the help of (2) and (14) to condition (10) of
Lemma 1

R0 − L1 >
r

8
(

1− r2C
4L

) .

From (16), one can write the inequality

V̇ ≤ −λP1(t)(z
2
1 + z2

2)− αz2
2, (17)

where λP1(t) = α
2 + R0−L1

2LL(t)
− 1

2

√(
α− R0−L1

LL(t)

)2
+ α2

γ2LL(t)C
is the minimal Eigenvalue of

matrix P1, which is positive due to (10).
According to the basics of mathematical analysis [30,31], the local minimums of

λP1(LL) are reached at the extreme points LL(t) = LLextr calculated from the equation

∂λP1

∂LL
= − 1

2L2
L

R0 − L1 +

(
α− R0−L1

LL(t)

)
(R0 − L1)− α2

2γ2C√(
α− R0−L1

LL(t)

)2
+ α2

γ2LL(t)C

 = 0. (18)

After comparing the two numbers

p1 = (R0 − L1)

√(
α− R0−L1

LL(t)

)2
+ α2

γ2LL(t)C
,

p2 =
(

α− R0−L1
LL(t)

)
(R0 − L1)− α2

2γ2C

with the help of the difference

p2
1 − p2

2 =
α3

(R0 − L1)

(
1− α

4γ2C(R0 − L1)

)
,

one can conclude from (10) that LLextr ∈ ∅ and expression (18) is always negative. This
means that λP1(LL) is the decreasing function. Thus, λP1(LL) reaches a minimum at the
upper bound of LL(t) = L0 according to (2)

λP1(t) ≥
α

2
+

R0 − L1

2L0
− 1

2

√(
α− R0 − L1

L0

)2
+

α2

γ2L0C
= λP1 min. (19)

The substitution of (19) into (17) using (15) derives the estimation

V̇ ≤ −λP1 min(z2
1 + z2

2)− αz2
2 ≤ −λV1(z2

1 + z2
2 + z2

3) ≤ −2λV1V, (20)

where λV1 = min
{

α, λP1 min
}

.
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Singular case (LL(t) = 0). In this situation, the right-hand side of the first equation
of (1) is discontinuous, and the buck converter is loaded with resistance only. By means of
the theory of a singular perturbed system [32], the first differential equation of the plant (1)
is transformed into the algebraic equation for the set of the points LL(t) = 0

x3(t) =
x2(t)
RL(t)

. (21)

The modified system (14) under LL(t) = 0, taking into account (13) and (21) is

ż1 = −αz1 −
(

γ +
α

γRL(t)C

)
z2,

ż2 = −γz1 −
(

α +
1

RL(t)C

)
z2,

z3 = 0,
z3√

LL(t)C
=

z2

RL(t)C
.

(22)

By using (22), derivative (17) is rewritten as the following

V̇ ≤ −αz2
1 −

α

γRL(t)C
z1z2 −

(
α +

1
RL(t)C

)
z2

2 ≤

≤ −(z1 z2)P2(t)(z1 z2)
T,

(23)

where P2(t) =


α

α

2γRL(t)C
α

2γRL(t)C
α +

1
RL(t)C

.

The minimal Eigenvalue of matrix P2 is

λP2(t) = α− 1
2γRL(t)C

(
1√
LC
− γ

)
.

According to (2) and Lemma 1 condition (11), the lower bound for λP2(t) is

λP2(t) ≥ α− 1
2γR0C

(
1√
LC
− γ

)
= λP2 min > 0. (24)

After the substitution of (24) into (23), the inequality can be written

V̇ ≤ −λP2 min(z2
1 + z2

2) ≤ −2λP2 minV. (25)

Finally, from (20) and (25), one can obtain the Lyapunov function derivative estimation
for the whole range of the inductance 0 ≤ LL(t) ≤ L0

V̇ ≤ −λVV, (26)

where λV = min
{

2λV1, 2λP2 min
}

.
By using (2), (13) and (15), the solution of (26) is

V ≤ V(t0)e−λV(t−t0) ≤ V0e−λV(t−t0), t0 ≤ t ≤ Tc, (27)

where V0 = γ2 L0

2C
[x3(t0)]

2 +
γ2

2
[x2(t0)]

2 +
1
2

(
1
C

x1(t0) + αx2(t0)

)2
.

Lemma 1 is proved.
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3.2. Closed-Loop System Analysis

According to (8) and (12), the closed-loop equations are

ẋ2 = x1,

ẋ1 = − r
L

x1 −
1

LC
x2 −

1
LC

x2d +
U(t)
2LC

[1− sign(I x2)] + ξ(t).
(28)

The “vortext”algorithm used in the feedback provides the convergence to zero if the
perturbation ξ(t) and its derivative are bounded by some known constants [22]. It follows
from (8) that ξ(t) and ξ̇(t) depend on the values of the load current and its first and second
derivatives. The following lemma gives a useful result that justifies the boundedness of the
mentioned variables.

Lemma 2. Let conditions (10) and (11) and

|x2(t)| ≤ x2 max, |ẋ2(t)| ≤ x(1)2 max, |x(2)2 (t)| ≤ x(2)2 max, t ≥ Tc, (29)

be met.
There is time instant Tc such that, for the arbitrary initial conditions of plant (1), the closed-loop

system trajectories converge to the neighborhood

|x3(t)| ≤
x2 max

R0 − L1
, |ẋ3(t)| ≤ x(1)3 max, |x(2)3 (t)| ≤ x(2)3 max, t ≥ Tc, (30)

where

x3 max =
x2 max

R0 − L1
, x(1)3 max =

x(1)2 max + (R1 + L2)x3 max

R0 − 2L1
,

x(2)3 max =
x(2)2 max + (2R1 + 3L2)x(1)3 max

R0 − 3L1
.

Proof of Lemma 2. The equations for the first and the second derivatives of x3(t) can be
calculated from the first equation of (1)

x(2)3 (t) =
−[RL(t) + 2L̇L(t)]ẋ3 + ẋ2 − [L(2)

L (t) + ṘL(t)]x3

LL(t)
,

x(3)3 (t) =
−[RL(t) + 3L̇L(t)]x

(2)
3 (t) + x(2)2 (t)− [2ṘL(t) + 3L(2)

L (t)]ẋ3

LL(t)
−

−
R(2)

L (t) + L(3)
L (t)

LL(t)
x3.

(31)

The general solutions for the variables x3(t), ẋ3(t), x(2)3 (t) are derived from (1) and (31)
by means of the method of variation in arbitrary variables [30,31,33]:
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x3(t) = x3(t0)e−ϕ1(t, t0) + e−ϕ1(t, t0)

t∫
t0

eϕ1(τ, t0)x2(τ)

LL(τ)
dτ ;

ẋ3(t) = ẋ3(t0)e−ϕ2(t, t0)+

+e−ϕ2(t, t0)

t∫
t0

eϕ2(τ, t0)
[

ẋ2(τ)− (ṘL(τ) + L(2)
L (τ))x3(τ)

]
LL(τ)

dτ ;

x(2)3 (t) = x(2)2 (t0)e−ϕ3(t, t0)+

+e−ϕ3(t, t0)

t∫
t0

eϕ3(τ, t0)
[

x(2)2 (τ)− [2ṘL(τ) + 3L(2)
L (τ)]ẋ3(τ)

]
LL(τ)

dτ−

−e−ϕ3(t, t0)

t∫
t0

eϕ3(τ, t0)
[

R(2)
L (τ) + L(3)

L (τ)
]

x3(τ)

LL(τ)
dτ,

(32)

where the functions ϕ1(t, t0), ϕ2(t, t0), ϕ3(t, t0) are calculated as the following

ϕ1(t, t0) =

t∫
t0

RL(σ) + L̇L(σ)

LL(σ)
dσ, ϕ2(t, t0) =

t∫
t0

RL(σ) + 2L̇L(σ)

LL(σ)
dσ,

ϕ3(t, t0) =

t∫
t0

RL(σ) + 3L̇L(σ)

LL(σ)
dσ.

(33)

It is obvious that for the stability of solution (32), functions ϕi(t, t0) (i = 1, 3) must be
positive. According to this requirement, condition (10) of Lemma 1 is justified, taking into
account (2).

Due to (2) for the functions from (33), the following inequalities are valid:

ϕ1(t, t0) =

t∫
t0

RL(σ) + L̇L(σ)

LL(σ)
dσ ≥ R0 − L1

L0
(t− t0);

ϕ2(t, t0) =

t∫
t0

RL(σ) + 2L̇L(σ)

LL(σ)
dσ ≥ R0 − 2L1

L0
(t− t0);

ϕ3(t, t0) =

t∫
t0

RL(σ) + 3L̇L(σ)

LL(σ)
dσ ≥ R0 − 3L1

L0
(t− t0).

(34)

From Lemma 1’s result, one can write the following estimations by using (2), (13), (15)
and (27) for the time interval t ∈ [t0, Tc]

t0 ≤ t ≤ Tc;

|x2(t)| ≤
√

2V0

γ
e−

λV
2 (t−t0) ≤ X2e−

λV
2 (t−t0);

|x1(t)| ≤ C
(

α|x2(t)|+
√

2V0e−
λV
2 (t−t0)

)
≤ X1e−

λV
2 (t−t0),

(35)

where X1 = C
(

α

γ
+ 1
)√

2V0, X2 =

√
2V0

γ
.
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For the same time interval, the inequality for x3(t) is achieved with the help of (32),
(34) and (35)

|x3(t)| =

∣∣∣∣∣∣x3(t0)e−ϕ1(t, t0) + e−ϕ1(t, t0)

t∫
t0

eϕ1(τ, t0)x2(τ)

LL(τ)
dτ

∣∣∣∣∣∣ ≤
≤ |x3(t0)|eϕ1(τ, t0)+

+X2

∣∣∣∣∣∣e−ϕ1(t, t0)

t∫
t0

eϕ1(τ, t0)e−
λV
2 (τ−t0)

LL(τ)

d[ϕ1(τ, t0)− λV
2 (τ − t0)]

ϕ̇1τ(τ, t0)− λV
2

∣∣∣∣∣∣ ≤
≤ |x3(t0)|e

− R0−L1
L0

(t−t0)+

+X2

∣∣∣∣∣∣e−ϕ1(t, t0)

t∫
t0

eϕ1(τ, t0)−
λV
2 (τ−t0)d[ϕ1(τ, t0)− λV

2 (τ − t0)]

RL(τ) + L̇L(τ)− λV
2

∣∣∣∣∣∣ ≤

≤ |x3(t0)|e
− R0−L1

L0
(t−t0) +

X2

∣∣∣∣e− λV
2 (t−t0) − e−ϕ1(t, t0)

∣∣∣∣
|R0 − L1 − λV

2 |
≤

≤ |x3(t0)|e
− R0−L1

L0
(t−t0) +

X2

(
e−

λV
2 (t−t0) + e−

R0−L1
L0

(t−t0)
)

|R0 − L1 − λV
2 |

≤

≤ X3e−λ30(t−t0),

(36)

where X3 = |x3(t0)|+ 2X2∣∣∣R0−L1−
λV
2

∣∣∣ , λ30 = min
{

λV
2 , R0−L1

L0

}
, t ∈ [t0, Tc], ϕ̇1τ(τ, t0) denotes

the derivative of function ϕ1(τ, t0) with respect to variable τ and ϕ̇1τ(τ, Tc) is calculated
according to the rule of differentiation of the integral by the upper limit [30,31,33]

ϕ̇1τ(τ, t0) =
dϕ1(τ, t0)

dτ
=

d
dτ

 τ∫
t0

RL(σ) + L̇L(σ)

LL(σ)
dσ

 =
RL(τ) + L̇L(τ)

LL(τ)
.

The estimation for ẋ3(t) is written in a similar way by using (1), (32) and (34)–(36)

|ẋ3(t)| ≤ |ẋ3(t0)|e
− R0−2L1

L0
(t−t0)+

+e−ϕ2(t, t0)

t∫
t0

eϕ2(τ, t0)
[

ẋ2(τ)− (ṘL(τ) + L(2)
L (τ))x3(τ)

]
LL(τ)

dτ ≤

≤ |ẋ3(t0)|e
− R0−2L1

L0
(t−t0)+

+e−ϕ2(t, t0)

t∫
t0

eϕ2(τ, t0)

LL(τ)

[
|x1(τ)|

C
+
(

R1 + L2 +
1
C

)
|x3(τ)|

]
dτ ≤

≤ |ẋ3(t0)|e
− R0−2L1

L0
(t−t0) +

X1

(
e−

λV
2 (t−t0) + e−

R0−2L1
L0

(t−t0)
)

C|R0 − 2L1 − λV
2 |

+

+

X3

(
R1 + L2 +

1
C

)(
e−λ30(t−t0) + e−

R0−2L1
L0

(t−t0)
)

|R0 − 2L1 − λ30|
≤

≤ X(1)
3 e−λ31(t−t0),

(37)
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where λ31 = min
{

λ30, λV
2 , R0−2L1

L0

}
, t ∈ [t0, Tc] and values ẋ3(t0), X(1)

3 are calculated
according to

|ẋ3(t0)| =
∣∣−[RL(t0) + L̇L(t0)]x3(t0) + x2(t0)

∣∣
LL(t0)

;

X(1)
3 = |ẋ3(t0)|+

2X1

C
∣∣∣R0 − 2L1 − λV

2

∣∣∣ +
2X3

(
R1 + L2 +

1
C

)
|R0 − 2L1 − λ30|

.
(38)

The differential equation for variable x(2)2 (t) can be written from (1)

x(2)2 (t) = − r
LC

x1 −
1

LC
x2 −

ẋ3(t)
C

. (39)

According to (1), (32), (34)–(36) and (39), the exponential estimation for the second
derivative x(2)3 (t) inside time interval t ∈ [t0, Tc]

x(2)3 (t) ≤ |x(2)3 (t0)|e
− R0−3L1

L0
(t−t0)+

+e−ϕ3(t, t0)

t∫
t0

eϕ3(τ, t0)
(
|x(2)2 (τ)|+ (2R1 + 3L2)|ẋ3(τ)|

)
LL(τ)

dτ+

+e−ϕ3(t, t0)

t∫
t0

eϕ3(τ, t0)(R2 + L3)|x3(τ)|
LL(τ)

dτ ≤ |x(2)3 (t0)|e
− R0−3L1

L0
(t−t0)+

+

rX1

(
e−

R0−3L1
L0

(t−t0) + e−
λV
2 (t−t0)

)
LC|R0 − 3L1 − λ31|

+

+

X2

(
e−

R0−3L1
L0

(t−t0) + e−
λV
2 (t−t0)

)
LC|R0 − 3L1 − λ31|

+

+

X(1)
3

(
2R1 + 3L2 +

1
C

)(
e−λ31(t−t0) + e−

R0−3L1
L0

(t−t0)
)

|R0 − 3L1 − λ31|
+

+

X3(R2 + L3)

(
e−λ30(t−t0) + e−

R0−3L1
L0

(t−t0)
)

|R0 − 3L1 − λ30|
≤ X(2)

3 e−λ32(t−t0),

(40)

where λ32 = min
{

λ30, λ31, λV
2 , R0−3L1

L0

}
, t ∈ [t0, Tc] and the values of x(2)3 (t0), X(2)

3 are
calculated according to

|x(2)3 (t0)| =
|−(RL(t0)+2L̇L(t0))ẋ3(t0)+

x1(t0)−x3(t0)
C −[L(2)

L (t0)+ṘL(t0)]x3(t0)|
LL(t0)

;

X(2)
3 = |x(2)3 (t0)|+

2rX1

LC|R0 − 3L1 − λ31|
+

2X2

LC|R0 − 3L1 − λ31|
+

+
2X3(R2 + L3)

|R0 − 3L1 − λ30|
+

2X(1)
3

(
2R1 + 3L2 +

1
C

)
|R0 − 3L1 − λ31|

.

(41)
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There are singularities in estimations (37) and (40) if LL(t0) = 0. For this case, ac-
cording to the theory of singular perturbed systems [32], the first equation of (1) and (31)
degenerate into the system of the algebraic equations

x3(t) =
x2(t)
RL(t)

, ẋ3(t) =
ẋ2 − ṘL(t)x3

RL(t)
,

x(2)3 (t) =
x(2)2 (t)− 2ṘL(t)ẋ3 − R(2)

L (t)x3

RL(t)
.

(42)

From (42), the estimates can be written with the help of (2) for the singular case

|x3(t0)| =
|x2(t0)|

R0
, |ẋ3(t0)| ≤

∣∣∣ x1(t0)−x3(t0)
C

∣∣∣+ R1|x3(t0)|
R0

,

x(2)3 (t) =

∣∣∣x(2)2 (t0)−[2ṘL(t0)+3L(2)
L (t0)]ẋ3(t0)−

[
R(2)

L (t0)+L(3)
L (t0)

]
x3(t0)

∣∣∣
RL(t0)+3L̇L(t0)

.

(43)

It is seen from (36), (37) and (40) that variables x3(t), ẋ3(t), x(2)3 (t) tend to zero with

t→ ∞. Therefore, the time instant Tc can be chosen in such a way that x3(Tc), ẋ3(Tc), x(2)3 (Tc)
belong to neighborhood (30). The convergence time to the specified vicinity of the origin
for each variable can be estimated from (36), (37) and (40)

T1 =

 t0 +
1

λ30
ln

X3

x3 max
, X3 ≥ x3 max;

t0, X3 < x3 max,

T2 =


t0 +

1
λ31

ln
X(1)

3

x(1)3 max

, X(1)
3 ≥ x(1)3 max;

t0, X(1)
3 < x(1)3 max,

T3 =


t0 +

1
λ32

ln
X(2)

3

x(2)3 max

, X(2)
3 ≥ x(2)3 max;

t0, X(2)
3 < x(2)3 max.

(44)

By using (44), the end time of the dissipation stage can be chosen according to
the relation

Tc ≥ max{T1, T2, T3}. (45)

From the first equation of (1) and system (31), taking into account (2), (29) and (45), it
follows that the trajectories of the closed-loop system can not leave neighborhood (30) for
t ≥ Tc. This concludes Lemma 2’s proof.

For further analysis of the closed-loop system transient process, the following notations
are introduced:

x2 max = x2d + ∆, x(1)2 max =
x1 max

C
, x(2)2 max =

Umax

LC
+

x(1)3 max
C

;

x(1)3 max = µ11x1 max + µ12x2 max;

x(2)3 max = µ21Umax + µ22x1 max + µ23x2 max,

(46)

where ∆ corresponds to the overshoot of x2(t) during the transient process. The coefficients
are calculated as
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µ11 =
1

C(R0 − 2L1)
, µ12 =

R1 + L2

(R0 − L1)(R0 − 2L1)
;

µ21 =
1

LC(R0 − 3L1)
, µ22 =

(
1

R0 − 3L1
+

C(2R1 + 3L2)

R0 − 3L1

)
1

C2(R0 − 2L1)
;

µ23 =

[
(R2 + L3)

R0 − 3L1
+

[ 1
C + 2R1 + 3L2]

(R0 − 3L1)

(R1 + L2)

(R0 − 2L1)

]
1

(R0 − L1)
;

∆ =

√
L
C

x1 max

∆1 +
√

∆2
1 + 1− 2ε

, ∆1 =
x2d(1− ε)

x1 max

√
C
L
−
√

L
C

1
R0 − 2L1

;

ε =
L(R1 + L2)

(R0 − L1)(R0 − 2L1)
+

r
R0 − L1

.

The constants corresponding to the perturbation and its derivative are calculated as

Σ =
1

LC

[
L
C

x1 max

R0 − 2L1
+ ε(x2d + ∆)

]
,

Σ(1) =
1

LC

[
Umax

C(R0 − 3L1)
+ ε1x1 max + ε2x2d + ε2∆

] (47)

where

ε1 =

(
L

C(R0 − 3L1)
+

L(2R1 + 3L2)

R0 − 3L1
+ r
)

1
C(R0 − 2L1)

,

ε2 =

(
L(R2+L3)
R0−3L1

+
( 1

C +2R1+3L2)L(R1+L2)

(R0−3L1)(R0−2L1)
+ r(R1+L2)

(R0−2L1)

)
R0 − L1

.

The choice of bounds (46) and (47) will be justified during the main theorem proof
formulated below.

Theorem 1. Let inequality (10) be valid, and the converter and controller parameters are chosen to
fulfill (11) and (45) and

M+ − Σ > 0, M− − Σ > 0, M− − Σ− Σ(1)

α
> 0,

M+ − U(1)

αLC
− Σ− Σ(1)

α
> 0, x1 max >

x2 max

R0 − L1
,

(48)

where M− =
x2d
LC

, M+ =
Umin − x2d

LC
; parameter α is from (13).

Then conditions (29) and
|ξ(t)| ≤ Σ, |ξ̇(t)| ≤ Σ

are met with the bounds from (46) and the output voltage error of the closed-loop system (28)
converges to zero asymptotically in time.

Proof of Theorem. According to Section 2, the normal operation regime of the buck con-
verter corresponds to the positive values of the control plant (1) variables. Despite that, the
negative initial values for variables x2(t) and x3(t) can not be excluded from stability anal-
ysis consideration. For the considered dynamic range (46) of variable x2(t), the transient
regime must be investigated for the initial conditions that yield the maximum overshoot ∆
of the output error x2(t). From (35) and (36), the given margins for the absolute values of
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the plant variables are guaranteed. Therefore, we choose the negative initial value for the
capacitor voltage x2(Tc) < 0 and consider two possible scenarios of the transient process
with appropriate initial conditions for the converter and load currents.

Further, the following notations are used:

(1) ti (i = 1, ∞) is the time instant at which x2(ti) = 0;
(2) t

′
i (i = 1, ∞) is the time instant at which x1(t

′
i) = 0.

First, bound (46) is justified and overshoot ∆ is estimated.

Case 1. The phase portrait for this situation is depicted in Figure 2. Due to (4), the initial
conditions are

x2(Tc) = −x2d − |x2(Tc)|,
{

x1(Tc) < x3(Tc);

x3(Tc) > 0,
⇒ x1(Tc) < 0. (49)

Figure 2. The estimation of the maximum output voltage. 1—the phase portrait of the closed-loop
system (28), 2—the phase portrait of the comparison system (65).

During time interval t ∈ [Tc, t1], according to the conditions of Theorem 1,

M+ − Σ > 0, x1 max >
x2 max

R0 − L1

the phase point rotates in the clockwise direction until it crosses axis Ox1.
The time instants T

′
c, T

′′
c are introduced in

x1(T
′
c) = 0, x2(T

′′
c ) = −x2d, x2(T

′′
c ) = 0. (50)

For time interval Tc ≤ t ≤ T
′
c, according to (1), (3), (28) and (49), the relations are valid

−|x2(T
′
c)| ≤ x2(t) ≤ 0, x3(t) ≤ x3(Tc),

⇓
ẋ1 ≥ M+, ẋ2(t) ≥ x1(t)− x3(Tc).
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From the last expression and (49) and (50), the following inequalities are derived:

x1(t) ≥ x1(Tc)− x3(Tc) + M+(t− Tc);

x2(t) ≥ −|x2(Tc)| − [x3(Tc)− x1(Tc)](t− Tc) +
M+(t− Tc)2

2
;

⇓

T
′
c − Tc ≤

x3(Tc)− x1(Tc)

M+
;

|x2(T
′
c)| ≤ |x2(Tc)|+

[x3(Tc)− x1(Tc)]2

2M+
.

(51)

With the help of (32)–(34), (51) and the inequality

−|x2(T
′
c)| ≤ x2(t) ≤ 0, t ∈ [Tc, T

′′
c ],

the lower bound for variable x3(t) inside time interval t ∈ [Tc, T
′′
c ] is

x3(t) = x3(Tc)e−ϕ1(t, Tc) + e−ϕ1(t, Tc)

t∫
Tc

eϕ1(τ, Tc)x2(τ)

LL(τ)
dτ ≥

≥ −|x2(T
′
c)|

R0 − L1
= −|x2(Tc)|

R0 − L1
− [x3(Tc)− x1(Tc)]2

2M+(R0 − L1)
.

(52)

For the remaining time interval t ∈ [T
′′
c , t1] in the second quadrant of the phase plane,

one can write with the help of (1), (28) and (50)

x2(t) ≥ 0⇒ ẋ3(t) ≥ 0⇒ x3(t) ≥ x3(T
′′
c ), T

′′
c ≤ t ≤ t1. (53)

Let us introduce time instant T̃c ∈ (T
′′
c , t1) such that

x2(T̃c) = −
x2d
2
⇒ x2(T̃c) =

x2d
2

. (54)

The lower bound for time interval t1 − T̃c is derived taking into account (28), (52)–(54)

t1 − T̃c ≥
Cx2d

2(|x3(T
′′
c )|+ x1 max)

. (55)

If variable x3(t) < 0 for t ∈ [T̃c, t1], then with the help of the first equation of (1), and
(2), (53) and (54), the following inequalities are achieved

ẋ3(t) ≥
x2d

2L(t)
≥ x2d

2L0
, T̃c ≤ t ≤ t1;

⇓
x3(t) ≥ −|x3(T

′′
c )|+

x2d
2L0

(t− T̃c), T̃c ≤ t ≤ t1.

(56)

The substitution of (55) into (56) yields the inequality

x3(t1) ≥ −|x3(T
′′
c )|+

Cx2
2d

4L0(|x3(T
′′
c )|+ x1 max)

.

According to Lemma 1’s result, time instant Tc can be chosen to provide the relation

− |x3(T
′′
c )|+

Cx2
2d

4L0(|x3(T
′′
c )|+ x1 max)

> 0, (57)
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which contradicts the assumption about the negativeness of x3(t) from (56).
This means that under (57), the value x3(t1) ≥ 0 and the peak estimation of ẋ2(t)

from (46)
|x2(t1)| ≤

x1 max

C
(58)

are valid.
From (52) and (57), the desired vicinity of the origin is estimated

|x3(T
′′
c )| ≤

|x2(Tc)|
R0 − L1

+
[x3(Tc)− x1(Tc)]2

M+(R0 − L1)
,

|x3(T
′′
c )| ≤

−x1 max +
√

x2
1 max +

Cx2d
L0

2
.

(59)

Taking into account (36), inequality (59) is fulfilled by the following choice of Tc

T4 =


t0 +

1
λ30

ln

−x1 max+

√
x2

1 max+
Cx2d

L0
2X3

, 2X3 ≤ −x1 max +
√

x2
1 max +

Cx2d
L0

;

t0, 2X3 > −x1 max +
√

x2
1 max +

Cx2d
L0

.

(60)

Case 2. The phase portrait for this situation is depicted in Figure 3. Due to (4), the initial
conditions are

x2(Tc) = −x2d − |x2(Tc)|,
{

x1(Tc) < x3(Tc);

x3(Tc) < 0,
⇒ x1(Tc) > 0. (61)

Figure 3. The estimation of the maximum output voltage. 1—the phase portrait of the closed-loop
system (28), 2—the phase portrait of the comparison system (65).

There is no time instant T
′
c for this case. For time interval Tc ≤ t ≤ T

′′
c according to

(32)–(34) and (61), the lower bound for variable x3(t) inside the time interval t ∈ [Tc, T
′′
c ] is

x3(t) = x3(Tc)e−ϕ1(t, Tc) + e−ϕ1(t, Tc)

t∫
Tc

eϕ1(τ, Tc)x2(τ)

LL(τ)
dτ ≥

≥ −|x3(Tc)| −
|x2(Tc)|
R0 − L1

.

(62)
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Like in the previous case (59), the inequality

|x3(T
′′
c )| ≤ |x3(Tc)|+

|x2(Tc)|
R0 − L1

,

|x3(T
′′
c )| ≤

−x1 max +
√

x2
1 max +

Cx2d
L0

2
.

guarantees that the value x3(t1) ≥ 0 and peak estimation (58) of ẋ2(t) from (46) is also
valid for Case 2. Time instant Tc is chosen by using (60).

Finally, combining (45) and (60)

Tc ≥ max{T1, T2, T3, T4}. (63)

From the practice point of view, to provide a necessary value of x1 max according to
the conditions of Theorem 1, parameter r and the lower bound of U(t) must be chosen
like this:

x1 max = kor
x2 max

R0 − L1
, kor = const > 1;

x1 max ≤
Umin − x2 max

r
.

(64)

The estimation of the overshoot ∆ is based on the phase portrait analysis of system (28)
depicted in Figure 2 or Figure 3. The maximum over-regulation of x2(t) happens at time
instant t

′
1 with the initial condition x1(t1) ≤ x1 max as was shown in (58). Due to the

condition of Theorem 1
M− > Σ

the phase point rotates in the clockwise direction with u(t) = 0 (t ∈ (t1, t2)) as it is depicted
in Figures 2 and 3.

For overshoot estimation the comparison system is introduced for t ∈ [t1, t2]

ṡ2 = s1,

ṡ1 = − s2

LC
− x2d

LC
+ Σ.

(65)

The tangents to the phase trajectories of systems (28) and (65) in the first quadrant of
the phase plane (see Figures 2 and 3) are written in the forms

ds1

ds2
=

1
LC
−s2 − x2d + LCΣ

s1
,

d x1

d x2
=

1
LC
−rC x1 − x2 − x2d + LCξ

x1
;

ds1

ds2
< 0,

d x1

d x2
< 0.

By means of the expressions from Theorem 1

−s2 − x2d + LCΣ > −rC x1 − x2 − x2d + LCξ,

the arbitrary point (x∗2 , x∗1) located inside the first quadrant of the phase plane, the following
inequality is derived

ds1

ds2

∣∣∣∣
s1=x∗1 , s2=x∗2

≥ d x1

d x2

∣∣∣∣
x1=x∗1 , x2=x∗2

.

For the phase portraits starting from point

s1(t1) = x1 max, s2(t1) = 0 (66)
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the curve 2 (see Figures 2 and 3) is a majorant for the phase trajectory 1 of (28) for t ∈ [t1, t
′
1].

For the purpose of the maximum value of x2 estimation, we write the first inte-
gral [30,33] from (65)

(s2 + x2d − LCΣ)2 + LCs2
1 = C0, (67)

where C0 = L
C x2

1 max + (x2d − LCΣ)2 is constant determined by the initial conditions (66).
Let us denote the time instant t = t

′′
1 according to

s2(t
′′
1) = ∆, s1(t

′′
1) = 0.

At this point, equality (67), with the help of (47), can be rewritten in the form

∆2 +
2∆

1− 2ε

(
x2d(1− ε)− L

C
x1 max

R0 − 2L1

)
− L

C
x2

1 max
1− 2ε

= 0. (68)

By using the condition of Theorem 1 M− − Σ > 0 and (47), one can conclude that

0 < ε < 1, x2d(1− ε)− L
C

x1 max

R0 − 2L1
> ε ∆. (69)

Expression (69) is met with the following solution of (68)

∆ =

√
L
C

x1 max

∆1 +
√

∆2
1 + 1− 2ε

,

where ∆1 =
x2d(1− ε)

x1 max

√
C
L
−
√

L
C

1
R0 − 2L1

.

The computed value of the overshoot corresponds to (46) introduced earlier.
The derived expression for ∆ is not explicit since it includes x1 max as a function of ∆.

Therefore, after the overshoot calculation, the condition of Theorem

x1 max >
x2 max

R0 − L1

must be checked.
By the substitution of (64) into (68) one can obtain the explicit solution of the overshoot

as a function of the converter parameters and the desired output voltage with the help of
the following equation

a∆2 + b∆− c = 0,

where

a = 1− 2
(

ε +
L
C

kor

(R0 − L1)(R0 − 2L1)

)
− L

C
k2

or
(R0 − L1)2 ;

b = 2
(

1− ε− L
C

kor

(R0 − L1)(R0 − 2L1)
− L

C
k2

or
(R0 − L1)2

)
x2d;

c =
L
C

k2
orx2

2d
(R0 − L1)2 .

The positive solution of the last equation is

∆ = − b
2a

+

√
b2 + 4ac

2a
. (70)

For further transient process analysis under t ≥ t1, the new coordinates are used

y1 = γx2, y2 = αx2 + x1, (71)
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and we rewrite system (28) to the form

ẏ1 = −αy1 + γy2,

ẏ2 = −γy1 − αy2 −
x2d
LC

+
U(t)
2LC

[1− sign(I y1)] + ξ(t),
(72)

where α, γ is calculated from (13).
The phase point of the closed-loop system (72) rotates in the clockwise direction, as

depicted in Figure 4. The right-hand side of differential Equation (72) is discontinuous on
the set of points y1(t) = 0. It is necessary to note that the phase curve goes through axis
Oy2, and there is no sliding motion [12,13] along manifold y1 = 0. Due to this reason, the
sign(·) function (12) is determined in the Caratheodory sense [34]. Below, system (72)’s
motion is investigated under t ≥ t1.

The final part of Theorem 1 is proven by using the Lyapunov functions candidates
V1 = M−

|y1|
γ
− ξ(t)

γ
y1 +

y2
1

2
+

y2
2

2
, y1 > 0, I > 0;

V2 = M(t)
|y1|
γ
− ξ(t)

γ
y1 +

y2
1

2
+

y2
2

2
, y1 < 0, I > 0,

(73)

where M(t) =
U(t)
LC
− x2d

LC
.

Figure 4. Phase portrait of the closed-loop system.

First, case y1(t) > 0 is considered. After performing the calculations according to (72)
with sign(I x2) = 1, one can write

V̇1 = −αM−

γ
|y1| −

αξ(t)y1

γ
− ξ̇(t)y1

γ
− αy2

1 − αy2
2 ≤

≤ −αM−

γ
|y1|+

αΣ
γ
|y1|+

Σ(1)|y1|
γ

− α
(
y2

1 + y2
2
)
≤

≤ −α1|y1| − α
(
y2

1 + y2
2
)
,

(74)

where α1 =
α

γ

(
M− − Σ− Σ(1)

α

)
.

Thus, according to the conditions of Theorem 1 α1 > 0, and V̇1(t) ≤ 0, the system
trajectories belong to the first and the fourth quadrants of the phase plane (see Figure 4).
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By using (73), the following inequality is produced

V1 ≤
M− + Σ

γ
|y1|+

y2
1 + y2

2
2

≤ c01(|y1|+ y2
1 + y2

2), (75)

where c01 = max
{

M− + Σ
γ

,
1
2

}
.

With the help of (75), the expression (74) is rewritten as

V̇1 ≤ −c11(|y1|+ y2
1 + y2

2) ≤ −ν1V1, (76)

where ν1 = (c11/c01), c11 = min{α, α1}.
Simultaneously, under condition y1 < 0, the time derivative of V2(t) according to the

restrictions of (3) can be written as

V̇2 ≤ −
αM1(t)

γ
|y1|+

U̇(t)
γLC

|y1| −
ξ̇(t)y1

γ
− αξ(t)y1

γ
− k

2
y2

1 −
k
2

y2
2 ≤

≤ −αM−

γ
|y1|+

αΣ
γ
|y1|+

Σ(1)|y1|
γ

+
U(1)

γLC
|y1| − α

(
y2

1 + y2
2
)
≤

≤ −α2|y1| − α
(
y2

1 + y2
2
)
,

(77)

where α2 =
α

γ

(
M+ − U(1)

αLC
− Σ− Σ(1)

α

)
is positive according to the conditions of Theorem 1.

From expressions (3) and (73), the inequality for V2 can be obtained

V2 ≤
Mmax + Σ

γ
|y1|+

y2
1 + y2

2
2

≤ c02(|y1|+ y2
1 + y2

2), (78)

where Mmax =
1

LC
(Umax − x2d), c02 = max

{
Mmax + Σ

γ
,

1
2

}
.

The substitution of (78) into (77) produces the estimation

V̇2 ≤ −α2|y1| − α
(
y2

1 + y2
2
)
≤ −c12(|y1|+ y2

1 + y2
2) ≤ −ν2V2, (79)

where ν2 = c12/c02, c12 = min{α2, α}.
The following time intervals are introduced ∆i = ti+1 − ti (i = 1, ∞). After consider-

ation of the phase portrait, using (75), (76), (78) and (79), the following estimates can be
derived for number i

V1(t2) =
y2

2(t2)

2
≤ V1(t1)e−ν1∆1 ≤ c0[|y1(t1)|+ y2

1(t1) + y2
2(t1)]e−ν1∆1

⇓
y2

2(t2) ≤ Y1e−ν∆1 ,

where c0 = max{c01, c02}, ν = min{ν1, ν2}, ∆1 = t2 − t1, Y1 = 2c0[|y1(t1)| + +y2
1(t1) +

y2
2(t1)].

By using V2(t) in the right half of the phase plane, the following inequalities can
be derived

V2(t3) =
y2

2(t3)

2
≤ V2(t2)e−ν2∆2 ≤ c0y2

2(t2)e−ν∆2

⇓

y2
2(t3) ≤ y2

2(t2)e−ν∆2 ≤ Y1e−ν(∆1+∆2).
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The upper bound estimation for the variable y2
2(t) at time instant ti is

y2
2(ti) ≤ Y1e

−ν
i−1
∑

k=1
∆k

, i = 2, ∞.

By using the last relation and (75)–(76) and (78)–(79), the following majorant can be
derived for y2(t)

|y2(t)| ≤ y2(t1)e−
ν
2 (t−t1), t ≥ t1. (80)

The extremes of |y1(t)| happen under condition ẏ1 = 0 (see Figure 3) at time instants t
′
i

y1(t
′
i) =

γ

α
y2(t

′
i)

The inequality for y1(t′i) is

|y1(t′i)| ≤
γ

α
|y2(ti)|, i = 1, ∞.

With the help of (80), one can conclude that

lim
i→∞
|y2(t′i)| = 0, lim

i→∞
|y1(t′i)| = 0.

It follows from the proof of Theorem 1 that |x2(t
′
1)| = ∆ > |x2(t

′
i)| (i = 2, ∞).

Therefore, estimation (58) is valid for t ≥ t1, and bounds (46) are justified for x2(t) ẋ2(t)
in the sense of (29) for t ≥ Tc. According to (30), the bounds for the derivative ẋ3(t) are
calculated as in (46).

From (1), the differential inequality for the second derivative of the capacitor voltage
is

x(2)2 (t) = − rx1

LC
− x2

LC
+

U(t)
LC
− ẋ3(t)

C
≥ Umax

LC
+

x(1)3 max
C

, t ≥ t1,

due to positiveness of x2(t), x1(t), t ≥ t1. Bounds (46) are checked fully.
Taking into account the expressions for the perturbation ξ(t) and its derivative

ξ̇(t) = −
x(2)3 (t)

C
− r

LC
ẋ3(t)

estimation (47) can be easily checked with the help of (46).
This concludes the proof of Theorem 1.

4. Simulation Results

Experiment 1. For the numerical example, the parameters of the control plant and the
output voltage are chosen according to Table 2.

Table 2. The simulation parameters.

L, [H] C, [F] r, [Ohm] x2d, [V]

110× 10−6 5× 10−3 0.2 28

The harmonic functions are used to describe the external load behavior and the input
voltage variations:

R(t) = 8 + 2 sin(120t) + 2.7 sin(180t) Ohm, LL(t) = (3− 2.5 cos(280t))× 10−3 H;

U(t) = 84 + 25 sin(50t) V.
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The bounds for the time-varying functions in the form (2) are written as:

R0 = 3.3 Ohm, R1 = 726 (Ohm/s), R2 = 11.628× 104 (Ohm/s2);

L0 = 5.5× 10−3 H, L1 = 0.7 H/s, L2 = 196 (H/s2), L3 = 54880 (H/s3);

L(t) ≥ Lmin = 0.5× 10−3 H, R(t) ≤ Rmax = 12.7 Ohm;

Umin = 59 V, Umax = 109 V, U(1) = 1250 (V/s).

(81)

By using the data from Table 2, (81) and the initial conditions for plant (1) from Table 3,
the following computations are made based on the referenced expressions:

(1) ẋ3(t0), x(2)3 (t0)—from (38) and (41) under L(t) ≥ Lmin and R(t) ≤ Rmax;
(2) λV , λ30, λ31, λ32—from (26), (36), (37) and (40);

(3) X1, X2, X3, X(1)
3 , X(2)

3 —from (35)–(37) and (40);

(4) ∆, x1 max, x2 max, x3 max, x(1)3 max, x(2)3 max—from (46), (64) and (70) with kor from Table 3;
(5) T1, T2, T3, T4, Tc—from (44), (60) and (63);
(6) α, γ, M+, M−, Σ, Σ(1)—from (13), (48) and (47).

The calculation results are listed in Table 3.

Table 3. The parameters, coefficients and the variables’ bounds calculations.

x1(t0), A x2(t0), V x3(t0), A ẋ3(t0), A/s x(2)3 (t0), A/s2 λV , (1/s) λ30, (1/s) λ31, (1/s)

7 15 2.4 ≤ 9.432× 104 ≤ 2.666× 109 912 456 345.45

λ32, (1/s) X1, A X2, V X3, A X(1)
3 (A/s) X(2)

3 (A/s2) kor ∆, V

218.2 204.13 21.43 2.4944 9.451× 104 2.668× 109 1.11 0.063

x1 max, A x2 max, V x3 max, A x(1)3 max, (A/s) x(2)3 max, (A/s2) T1, s T2, s T3, s

12 28.063 10.79 6.5× 103 1.788× 108 0 7.7× 10−3 12.4× 10−3

T4, s Tc, s α, s−1 M−, V
(H×F) M+, V

(H×F) Σ, V
(H×F) Σ(1), V

(H×F×s) γ, (rad/s)

0 12.4× 10−3 909.1 5.091× 107 5.636× 107 5.225× 106 3.798× 1010 995.9

Condition (48) of Theorem 1 can be easily checked with the help of the data from
Table 3

M− − Σ− Σ(1)

α
= 3.91 · 106 V

(H×F) > 0;

M+ − U(1)

αLC
− Σ− Σ(1)

α
= 6.865 · 106 V

(H×F) > 0.

The following filters are introduced to show the low-frequency components of the
corresponding signals

µẋ1av = −x1av + x1(t), µU̇av = −Uav + U(t)u(t),

where µ = 10−3 s is the filter parameter and x1av, Uav are the smoothed signals of variables
x1(t), U(t)u(t), respectively.

The simulation results of Experiment 1 with Tc from Table 3 are depicted in Figure 5.
The Dorman-Prince numerical integration method (ode 5) is used with sample time
ts = 10−7 s.

Experiment 2. For the second numerical example, several integration steps are used
according to Table 4. The results of this experiment are depicted in Figures 6 and 7. Due
to finite switching frequency, there are high-frequency oscillations in the output voltage
and the inductor current [35,36]. The maximum of the half of the difference between the
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local 392 peak and valley of the current oscillation is denoted as ∆x1 . Table 4 is filled by the
maximum of the voltage regulation errors x2(t) and ∆x1 data.

(a)

(c)

(b)

(d)

Figure 5. The simulation results of the closed-loop system (28). (a) Plots of x1(t), x1av(t); (b) Plots of
x2(t), x2d; (c) Plot of x3(t); (d) Plots of U(t)u(t), Uav(t).

Table 4. The steady-state error and the current oscillations for several integration steps.

ts 5× 10−6 10−7 10−8

|x2|, V 9.5× 10−3 5.27 · 10−4 3.17 · 10−5

∆x1 , A 6 4.023 0.749

Theorem 1 declares that the output error converges to zero asymptotically. The
switching period or ON/OFF time of the relay control inputs depends on the oscillation
amplitude of variable x2(t). The lower oscillation amplitude yields a lower period or
higher switching frequency. Therefore, for the infinite small oscillation amplitude, the
switching frequency is infinitely large. In practice, the switching frequency is always
upper bound [1–5]. It is seen that the smaller error corresponds to the smaller sample time
ts or the smaller switching period. Therefore, in practice, the output voltage regulation
accuracy depends on the switching frequency of the power switch. This is the main practical
limitation of the designed control law. It is necessary to note that this restriction is similar
to all existing control approaches.
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Figure 6. The steady—state output error at various integration steps.

Figure 7. The inductor current graphs at various integration steps.

5. Conclusions

In this paper, the problem of the output voltage stabilization of the down-step voltage
converter has been studied. The class of functions that describes the behavior of the time-
varying external load is introduced. It was shown that the closed-loop system stability
can be provided by appropriate choices of the converter and controller parameters under
sufficient lower bounds of the input voltage. The robustness and effectiveness of the
designed control law is proven with the help of the Lyapunov method function. The
solvability condition that guarantees the internal stability of the load current and its first
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two derivatives is derived for the considered class of load parameter functions. Future
works may be devoted to finite switching frequency controller consideration, which will
be used in practice. Another research branch may be concerned with electric drive control
under time-varying load torque.
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