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Abstract: Active Disturbance Rejection Control (ADRC) is a promising approach that has emerged to
deal with uncertainties, which has received many practical applications in motion controls. This paper
presents a multivariable controller for active disturbance rejection (ADR) based on an extended state
linear observer for tracking the linear position trajectory of a mass moved by two linear slides, each
one driven by a DC motor. The linear extended state observer is used to estimate the endogenous and
exogenous disturbances of the system, which are assumed to be unknown, but bounded. Therefore,
the feedback system prevents each actuator from operating at different forward speeds, and thus
a synchronization between the two actuators is achieved by moving the common mass smoothly.
The simulation and the experimental results show the effectiveness and robustness of the controller
proposal when moving the mass with both actuators.

Keywords: linear multivariable systems; disturbance rejection; observers for linear systems; mechatronic
systems; mass driven with two linear sliders; position control

1. Introduction

At present, the use of multivariable control for different linear and non-linear systems
of the electrical, electromechanical and renewable energy types has been widely accepted
to solve very specific tasks in terms of controlling the physical variables of the system for a
desired point or for a desired trajectory; this can be found in different articles previously
published in [1–3]. In [1], use is made of the differential flatness property to calculate
the desired trajectories of each of the outputs of interest to regulate the non-linear system
“double dc/dc converter type reducer coupled to the motor of dc”. In this work, a smooth
monitoring of the voltage at the output of the first converter is carried out and at the same
time, a smooth monitoring of the angular speed of the motor is carried out. This is achieved
by means of a multivariable control based on passivity for the non-linear system proposed.

On the other hand, in [2], a multivariable control by active disturbance rejection is
proposed to regulate the angular velocity in the Permanent Magnet Synchronous Motor
(PMSM). In this work, they perform a smooth monitoring of the angular speed of the
motor and at the same time the current is regulated in its direct component in the d-q
coordinates of the non-linear system. Also, it proposes the use of ultra-models that consider
the exogenous and endogenous disturbances present in the systems and in combination
with a control technique by active rejection of disturbances based on high-gain extended
observers for differentially flat nonlinear systems, applied to synchronous motor control [4].
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In [3], an angular speed driver of a three-phase induction motor is proposed, where
the dc source of the inverter is provided by a boost-type DC/DC converter, which is fed
from an array of photovoltaic solar panels. The speed booster uses a boost converter, which
regulates its input and output voltage through a passive controller in combination with
an algebraic estimator, in order for it to work at the maximum power point, and thereby
provide the required voltage to the inverter that drives the motor. While to regulate the
speed to the induction motor a field oriented angular velocity smooth tracking control
is used.

On the other hand, active disturbance rejection control (ADRC) allows to efficiently
solve the control problem for highly disturbed linear and nonlinear dynamic systems,
where many of them are designed using the differential flatness property (controllability
and observability). Some of these dynamic systems are differentially flat, and others are
not; hence, it is necessary to resort to a partial linearization at least and in the last of the
cases to an approximate linearization to be able to make use of this property and thus be
able to design the ADRC based on extended state observers [5].

In [6], the authors use a controller for active disturbance rejection based on a GPI
observer to regulate the output voltage and balance the currents of converters connected in
parallel, DC/DC Buck–Parallel Converter.

One of the great advantages of the ADRC approach is that it does not require informa-
tion from each of the plants when they are dynamically interacting with each other. The
idea is that each subsystem takes into account its uncertainties derived from: (1) unknown
non-linearities of each subsystem, (2) the exogenous effects and (3) all the disturbances
due to the interconnection between each subsystem, which can be estimated online and
immediately canceled from each dynamic model of the subsystems [2].

The control by active disturbance rejection has become very useful to control physical
systems of the MIMO type [7–9]. In [8], linear control schemes, based on linear observers,
were proposed for robust tracking tasks of output trajectories in differentially flat nonlinear
systems. They were implemented in the control of non-holonomic vehicles, as well as in
the linear control of a chaotic Chua circuit.

The control of multivariable industrial processes becomes increasingly challenging
due to the inherent interaction between variables and perturbations [10,11].

The Active Disturbance Rejection Control (ADRC) technique can evaluate and com-
pensate for system uncertainties and disturbances in real time [11]

The ADRC implemented in this work, as part of the multivariate and cooperative
control [12], estimates all the factors that affect the plant (including nonlinear dynamics,
uncertainties, coupling defects, and external disturbances due to differences in viscous
friction that can occur between one and another linear guide) as a total disturbance that is
observed and then compensated.

The ADRC has been used in mechanical systems [5,13], electromechanical systems [2,14],
thermal systems [15,16], stabilization of multi-rotor Unmanned Aerial Vehicles (UAVs) [17,18] and,
in these cases, a state observer is used to estimate the endogenous and exogenous disturbances
(bounded) and with the ADRC cancel the undesirable effects.

The proposal of this work can be implemented when there are two or more actuators
of an electromechanical system that must provide the same displacement, speed and
acceleration, that is to say that the action of each one of them is added to a single activity.

Multivariable controllers in their different ways of being implemented in practice have
the ability to synchronize at the same time as the output variables of interest to regulate,
this seen as a centralized control in the control of electromechanical systems, such as the
one presented. It is of greater importance because there is no mechanical coupling between
the two axes of two DC motors, capable of forcing each of the actuators to go at the same
speed as the other, so the importance of implementation lies in avoiding physical damage
to the overall system.

This article presents a multivariable control of a system of two parallel linear slides
to each other for smooth position tracking to displace the same mass, see Figure 1. The
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actuators of each one of the sliders present different parametric uncertainties, external
disturbances, as well as unmodeled forces. For this reason, it is important to select a
controller capable of actively rejecting internal and external disturbances of the system to
be regulated. The key to this controller is to estimate online the parametric uncertainty,
external disturbances and unmodeled dynamics [19]. The purpose of this proposal is the
synchronization of the linear positions, by following the desired trajectory in each linear
slide, to finally carry out the smooth linear displacement of the common mass. The use of
linear extended state observers (ESO’s) helps each of the ADRC’s to synchronize in terms
of angular position, and in this way, to displace the common mass. The proposed control
strategy is easy to implement and computationally light, allowing its easy implementa-
tion in Real Time. Therefore, the good performance and robustness of the controller is
guaranteed, under any uncertainty or disturbance existing in the system.
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Figure 1. System with two linear slides.

2. Materials and Methods
2.1. Mathematical Model

The problem addressed in this article is part of a 2 degree of freedom (DOF) ankle
rehabilitation system [20]. For the movement in the x axis, it is proposed to use 2 motors to
move the mass, through the use of linear slides (screw and nut).

Next, a dynamic model is proposed for the two linear slides coupled to the same mass,
see Figure 1. In mathematical modeling, only viscous damping (b2i) is considered and
friction between components is neglected. The control objective is to smoothly move the
mass, with the actuators, at the same position and speed.

The System shown in Figure 1 is represented in a schematic diagram in Figure 2. The
parameters and variables of the DC motor are shown, as well as the coupling by means of
two linear guides with screws, to convert rotational to translational movement.
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Based on Figure 2, the dynamic model of the linear slides coupled to the same mass is
obtained using the Euler-Lagrange equations as follows [21]:

Li
dii
dt

+ Riii = Vi − kbi

(
ni
pi

)
.
x (1)

(
Ii
pi

+ mpi

)
..
x +

b2i
pi

.
x = nik f iii (2)

Table 1 shows the description of the parameters and variables of the dynamic model.

Table 1. System parameters.

Variable Value Description

x - Mass displacement
m 10 kg Mass
p 0.008 m Screw pitch

i (q) - Motor electrical current
k f 0.00706 Nm/A Motor torque coefficient
kb 0.00979 Vs/rad Motor electrical coefficient
b2 0.2 Ns/m Viscous damping coefficient
L 0.00058 H Armature inductance
R 2.4 Ω Armature resistance
V V Voltage
n 0.027 Speed ratio
I 14× 10−7 kg m2 Inertia moment

In this problem, it is considered that the displacements of each linear guide are
different, so a different displacement variable (y1, z1) is used for each linear slide.

Using the variables and parameters (Table 1) in Equations (1) and (2), the following
dynamic model is obtained for the two sliders

L1
di1
dt

+ R1i1 = V1 − kb1

(
n1

p1

)
.
y1 (3)

(
I1

p1
+ mp1

)
..
y1 +

b21

p1

.
y1 = n1k f 1i1 (4)

L2
di2
dt

+ R2i2 = V2 − kb2

(
n2

p2

)
.
z1 (5)

(
I2

p2
+ mp2

)
..
z1 +

b22

p2

.
z1 = n2k f 2i2 (6)

The mathematical model turns out to be of sixth order. From Equations (4) and (6),
we solve for i1 and i2, and differentiating with respect to time, we calculate di1

dt and di2
dt .

Subsequently, substituting these variables in Equations (3) and (5) and making the respective
variable changes, α1 = I1

p1
+ mp1; α2 = I2

p2
+ mp2, the model is as follows

y(3)1 =
n1k f 1

α1L1
V1 −

(
b21

α1 p1
+

R1

L1

)
..
y1 −

(
n2

1k f 1kb1

α1L1 p1
+

R1b21

α1L1 p1

)
.
y1 (7)

z(3)1 =
n2k f 2

α2L2
V2 −

(
b22

α2 p2
+

R2

L2

)
..
z1 −

(
n2

2k f 2kb2

α2L2 p2
+

R2b22

α2L2 p2

)
.
z1 (8)

It is observed that the linear model given in Equations (7) and (8) is a MIMO system
with two control inputs and two outputs of interest to regulate. These equations correspond



Machines 2023, 11, 889 5 of 14

to each displacement of each linear slide; the control input is the voltage and the output is
the displacement.

Now, representing the system in state variables in its typical linear form, we have the
following:

.
y1 = x2.
x2 = x3

.
x3 =

n1k f 1
α1L1

u1 −
(

b21
α1 p1

+ R1
L1

)
x3 −

(
n2

1k f 1kb1
α1L1 p1

+ R1b21
α1L1 p1

)
x2

.
z1 = x5.
x5 = x6

.
x6 =

n2k f 2
α2L2

u2 −
(

b22
α2 p2

+ R2
L2

)
x6 −

(
n2

2k f 2kb2
α2L2 p2

+ R2b22
α2L2 p2

)
x5

(9)

Considering the multivariable linear system Equation (9) as:
.
x = Ax + Bu, y = Cx

where the state vector is defined as: x = (x1 x2 x3 x4 x5 x6)
T ∈ R6 and u = (u1 u2)

T ∈ R2,
being the matrix A as:

A =



0 1
0 0
0 −a

0 0
1 0
−b 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

1 0
0 1
−c −d

 (10)

where

a =

(
n2

1k f 1kb1
α1L1 p1

+ R1b21
α1L1 p1

)
, b =

(
b21

α1 p1
+ R1

L1

)
c =

(
n2

2k f 2kb2
α2L2 p2

+ R2b22
α2L2 p2

)
, d =

(
b22

α2 p2
+ R1

L1

)
and matrix B is defined as:

B =



0 0
0 0

n1k f 1
α1L1

0
0 0
0 0

0
n2k f 2
α2L2


(11)

Being the matrix B of rank 2 and is constituted by the column vectors B = (b1 b2).

2.2. Differential Parameterization of the Dynamic Model

This section deals with the differential flatness property of the linear dynamical system
given by Equation (9). A linear dynamic system is differentially flat if and only if it is
controllable [22]. In order to check that the MIMO dynamic system given in Equation (9) is
controllable, it must satisfy that the Kalman controllability matrix is full rank. Said matrix
in its general form is given as:

KC =
[
b1, . . . , Aγ1−1b1, b2, . . . , Aγ2−1b1, b2, . . . , Aγm−1bm

]
(12)

with γi, i = 1, · · · , m, being the Kronecker controllability indices of the system, which
obviously satisfy the following expression ∑i γi = nr. Where nr is the range of the system.
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The flat outputs of the linear MIMO system given in Equation (9) are calculated
through the following expression:

F =

 φi
...

φm

C−1x (13)

with φi, i = 1, · · · , m being an n-dimensional row vector of the form:

φj =

0, . . . , 1︸︷︷︸
λ−th

, . . . , 0

 (14)

with the 1 in the
(

∑
j
i=1 λi

)
-th position.

Therefore, the controllability matrix of the system is given by:

KC =
[

B, AB, A2B, A3B, A4B, A5B
]

(15)

Substituting the corresponding values in the matrix Equation (15), the matrix KC is
calculated, which results in a full rank matrix. Therefore, it is concluded that the linear
system is controllable and, therefore, differentially flat.

The calculation of the flat outlets is carried out with the help of the following definition:
Given matrix A and columns b1 and b2 of matrix B such that B = [b1, b2], the following

full rank matrix C ∈ R2x6 is calculated, whose columns belong to the Kalman controllability
matrix.

C =
[
b1, Ab1, A2b1, b2, Ab2, A2b2

]
(16)

The columns of matrix C are selected from KC ∈ R6x12 from the selection of the
Kronecker indices, where λ1 = 3 and λ2 = 3. Using Equation (12), the flat outputs are
calculated as follows

F ,
[

0 0 1 0 0 0
0 0 0 0 0 1

]
C−1x (17)

The flat outputs of the system turn out to be F1 = x1 and F2 = x4; in the case of this
system, the flat outputs have a physical interpretation, these being the angular positions of
both actuators. Expressing Equation (9) in terms of the flat outputs and their successive
derivatives, the differential parameterization of the dynamic model is defined by:

x1 = F1

F(3)
1 =

n1k f 1
α1L1

u1 −
(

n2
1k f 1kb1
α1L1 p1

+ R1b21
α1L1 p1

)
..
F1 −

(
b21

α1 p1
+ R1

L1

) .
F1

x4 = F2

F(3)
2 =

n2k f 2
α2L2

u2 −
(

n2
2k f 2kb2
α2L2 p2

+ R2b22
α2L2 p2

)
..
F2 −

(
b22

α2 p2
+ R2

L2

) .
F2

(18)

2.3. Active Disturbance Rejection Control (ADRC)

In this section, the position control for the system of the two linear slides is designed;
this multivariable controller is based on the active disturbance rejection technique. From
Equation (18), the control inputs are solved and the highest order derivatives are replaced
by auxiliary variables vaux1 and vaux2, giving the following expression:

[
u1
u2

]
=

 α1L1
n1k f 1

0

0 α2L2
n2k f 2

[vaux1
vaux2

]
+

[
Φ1
Φ2

]
(19)
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F(3)
1 = vaux1, F(3)

2 = vaux2 (20)

Φ1 =

(
n2

1k f 1kb1

α1L1 p1
+

R1b21

α1L1 p1

)
..
F1 +

(
b21

α1L1 p1
+

R1

L1

)
.
F1 (21)

Φ2 =

(
n2

2k f 2kb2

α2L2 p2
+

R2b22

α2L2 p2

)
..
F2 +

(
b22

α2 p2
+

R2

L2

)
.
F2 (22)

The functions Φ1 and Φ2 represent the endogenous and exogenous perturbations of
the system, which are assumed unknown, but bounded. These functions are estimated by
means of two Extended State Observers (ESO’s), which are calculated using the following
expression: [

F(3)
1

F(3)
2

]
=

 α1L1
n1k f 1

0

0 α2L2
n2k f 2

−1[(
u1
u2

)
−
(

Φ1
Φ2

)]
(23)

For the design of extended state linear observers, the following considerations are
assumed:

1. The flat outputs F1 and F2 are measured;
2. The nominal values of the system parameters are known;
3. The control inputs are u1 and u2 are available;
4. The disturbance functions Φ1 and Φ2 are unknown but considered as bounded;
5. The estimated variables of the disturbance functions will be denoted as z1 and η1.

Subsequently, the estimated variables of the flat outputs and their successive deriva-
tives are denoted by:

Y1 = F̂1; dF̂1
dt = Y2; d2 F̂1

dt2 = Y3;

G1 = F̂2; dF̂2
dt = G2; d2 F̂2

dt2 = G3
(24)

From Equation (23), the linear extended state observers given in (LESO 1) Equation (25)
and (LESO 2) Equation (26) are designed [14,23]:

d
dt Y1 = Y2 + λ5(F1 −Y1)
d
dt Y2 = Y3 + λ4(F1 −Y1)

d
dt Y3 =

( n1k f 1
α1L1

)
u1 + z1 + λ3(F1 −Y1)

.
z1 = z2 + λ2(F1 −Y1).
z2 = z3 + λ1(F1 −Y1).

z3 = λ0(F1 −Y1)

(25)

d
dt G1 = G2 + λ5(F2 − G1)
d
dt G2 = G3 + λ4(F2 − G1)

d
dt G3 =

( n2k f 2
α2L2

)
u2 + η1 + λ3(F2 − G1)

.
η1 = η2 + λ2(F2 − G1)

.
η2 = η3 + λ1(F2 − G1).

η3 = λ0(F2 − G1)

(26)

The coefficients {λ5, λ4, λ3, λ2, λ1, λ0} of the observers are constant and selected by
means of a sixth order Hurwitz polynomial. On the other hand, the design of the position
controllers by active disturbance rejection is carried out from Equation (19), and these are
given by:

u1 =

(
α1L1

n1k f 1

)
vaux1 (27)

u2 =

(
α2L2

n2k f 2

)
vaux2 (28)
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The desired dynamics imposed by the auxiliary variables vaux1 and vaux2, and by the
adaptation of the values estimated by the extended state observers are

vaux1 = F(3)
1d − k2

(
Y3 −

..
F1d

)
− k1

(
Y2 −

.
F1d

)
− k0(Y1 − F1d)− z1 (29)

vaux2 = F(3)
2d − k2

(
G3 −

..
F2d

)
− k1

(
G2 −

.
F2d

)
− k0(G1 − F2d)− η1 (30)

where the coefficients {k2, k1, k0} are constant and selected such that the closed-loop
third-order characteristic polynomial is Hurwitz and the variables

{
F(3)

1d ,
..
F1d,

.
F1d, F1d

}
and

{
F(3)

2d ,
..
F2d,

.
F2d, F2d

}
are the desired reference variables constructed using a tenth-order

Bézier polynomial.

2.4. Desired Reference Trajectory

The ankle rehabilitation machine must guarantee safe rehabilitation movements. Given
that, the movements must be smooth and continuous. The desired reference trajectories are
given by the following tenth-order Bezier polynomial.

x1d(t) =


0

x10
x1 f

0 ≤ t < ti
ti ≤ t < t f

t > t f

(31)

x10 = xi0 +
(

xi f − xi0

)(
a0 − a1µ + a2µ2 − a3µ3 + a4µ4 − a5µ5)

µ = t−ti
t f−ti

where xi0 = x1d(ti) is the initial desired position and xi f = x1d

(
t f

)
is the final desired

position. The parameters of the Bezier polynomial were selected as: a0 = 252, a1 = 1050,
a2 = 1800, a3 = 1575, a4 = 700 and a5 = 126.

2.5. System Stability Analysis ESO-ADRC

From Equations (25) and (26), the test of the dynamic error of the output of the
extended state observers is verified. Setting the output estimation error as follows

eo = Fi − F̂i (32)

where i = {1,2}. The first derivative of eo, for the flat output F1, is given by:

deo
dt =

.
F1 − dF̂1

dt =
( .

F1 −Y2

)
− λ5eo

.
eo + λ5eo =

( .
F1 −Y2

) (33)

Finding the time derivative of Equation (33)

..
eo + λ5

.
eo =

(
..
F1 −

dY2

dt

)
=
( ..

F1 −Y3

)
− λ4eo (34)

The third time derivative of eo is

...
e o + λ5

..
eo + λ4

.
eo + λ3eo =

(
...
F1 −

dY3

dt

)
= −Φ1 − z1 (35)

The fourth time derivative of eo, is obtained by

e(4)o + λ5
...
e o + λ4

..
eo + λ3

.
eo = −

.
Φ1 −

.
z1

e(4)o + λ5
...
e o + λ4

..
eo + λ3

.
eo + λ2eo = −

.
Φ1 − z2

(36)
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The fifth time derivative of eo can be expressed by

e(5)o + λ5e(4)o + λ4
...
e o + λ3

..
eo + λ2

.
eo + λ1eo = −

..
Φ1 − z3 (37)

The sixth time derivative of eo is the dynamics of the estimation error and is given by

e(6)o + λ5e(5)o + λ4e(4)o + λ3
...
e 0 + λ2

..
eo + λ1

.
eo + λ0eo = −

...
Φ1 (38)

It is concluded that the unperturbed version (Φ1(t) = 0) of the observation error
dynamics can be specified to become asymtotically exponentially stable through the choice
of suitable Hurwitz design coefficients:

Pd−obs(s) =
(

s2 + 2ξωos + ω2
o

)3
(39)

Hence,
λ5 = 6ξωo; λ4 =

(
12ξ2 + 3

)
ω2

o ;
λ3 =

(
8ξ2 + 12

)
ξω3

o ; λ2 =
(
12ξ2 + 3

)
ω4

o ;
λ1 = 6ξω5

o ; λ0 = ω6
o

For the flat output F2, the same procedure applies.
Let Φ1(s) denote the Laplace transform of the disturbance signal Φ1(t). The estimation

error dynamics is described by the perturbed band-pass stable filter,

Ẽ0(s) =
−s3Φ1(s)

(s6 + λ5s5 + λ4s4 + λ3s3 + λ2s2 + λ1s + λ0)
(40)

which enjoys infinite attenuation at very low, and at very high frequencies [23].
Finally, applying the final value theorem [24] to Equation (40):

lim
t→∝

ẽ0(t) = lim
s→0

sẼ0(s) = 0

3. Results
3.1. Simulation Results

Using the Matlab-Simulink environment, simulation results of the multivariable active
disturbance rejection control system in closed loop were obtained. The simulation consisted
of implementing the two controllers, Equations (27) and (28), as well as the extended state
observers, (LESO 1) Equation (25) and (LESO 2) Equation (26). Figure 3 shows the block
diagram of the implemented control scheme.
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Figure 4a shows the response of the linear position x1, as well as the desired refer-
ence position x1d. The desired trajectory, Bezier polynomial, starts from the rest position
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(x1d = 0 m), and in 15 s it reaches the final position (x1d = 0.2 m). Similarly, in the desired
path for the second linear guide. Figure 4b shows the response of the control input u1 which
does not exceed the nominal voltage limit of +12 V, while Figure 4c shows the estimation
of the first flat output F1 and Figure 4d shows the response of the error of linear position
x1 − x1d corresponding to the first slider, which is about 4.5× 10−6 peak amplitude. It can
be seen that the control u1 (voltage) is applied smoothly to follow the desired trajectory,
increasing until reaching the maximum value (12 V) for the midpoint of the trajectory, to
subsequently decrease the voltage and, thus, decelerate and reach smoothly to the desired
position value.
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Figure 4. Simulation results: first flat output responses. (a) Real and desired trajectories, x1 and x1d,
(b) Control input u1, (c) Observed variable F1, (d) Error x1 − x1d.

Figure 5a shows the response of the linear position x4, as well as the desired reference
position x4d. Figure 5b shows the response of control input u2 which does not exceed the
nominal voltage level +12 V, and with a behavior similar to the control u1. Figure 5c shows
the estimate of the second flat output F2. Figure 5d shows the response of the position error
x4 − x4d, which has an approximate peak value of 4.5× 10−6 m.
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3.2. Experimental Results

The experimental results obtained from the closed-loop system platform show the
advantages of using this control technique. The first one is that the control law does not
require knowledge of all the plant parameters; secondly, it is only required to measure
the flat outputs of the system. Third, it actively estimates unknown internal and external
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disturbances. This information is fed back to the controller to reduce its effects on the
plant. Fourth, it synchronizes the positions and speeds of the actuators from the initial
displacement. Fifth, the torque demand produced by the two actuators is equal.

Figure 6 shows the experimental platform. You can see the two horizontal linear sliders
that use endless screws to produce the displacement of the common mass. The two 12 V
DC geared motors (construction: Permanent Magnet), with Magnetic Hall encoder, drive
the sliders. Also seen is the National Instruments MY-RIO board, which is programmed
in the LabView environment. Therefore, the controllers and observers for the motors are
programmed in LabView. In addition, the viscous friction component in each of the sliders
was modified, with the intention of causing a difference in parametric uncertainty in the
platform.
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Figure 6. Experimental platform of the two slides coupled to the same mass.

Figure 7a shows the two responses of the linear position of the sliders, where the
linear position of the second slider has a slight delay with respect to the desired reference;
however, in the final time programmed in the reference, the two positions of each slider
reach the reference at the same time. It is worth mentioning that in the path of the two
responses x1 ≥ x4, which represents a challenge for the controller (ADRC) to synchronize
the positions and speeds of both actuators. Figure 7b,c show the control input responses
u1 and u2, which are physically the forces for both sliders that smoothly slide the same
mass. There is a difference between them before reaching 5 s, since the first slider presents
a different viscous friction in sliding.
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Extended State Observers (ESO’s) estimate internal and external disturbances to later
reduce them using the multivariable controller; this can be observed in the responses shown
in Figures 8 and 9.
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Figure 9. Experimental results of the sliders: (a) Real and desired trajectories, x4 and x4d, (b) Control
input u2, (c) Observed variable F2, (d) Error x4 − x4d.

Figure 8a shows the position tracking response x1 together with its desired trajectory
reference x1d. Figure 8b shows the response of the control input of motor 1, u1, and Figure 8c
shows the observed variable, F1; finally, Figure 8d shows the response of the actual position
error minus the desired position, x1 − x1d; the value of the maximum error is 5× 10−4 m,
so it can be considered an acceptable error.

Figure 9a shows the tracking of the desired trajectory, x4d, together with the real
trajectory, x4; Figure 9b shows the control input of motor 2, u2, and Figure 9c shows the
observed variable, F2; Figure 9d shows the actual position error minus the desired position,
x4 − x4d. The value of the maximum error is 5× 10−4 m, so it can also be considered an
acceptable error.

The input signals of the controllers with active disturbance rejection (ADRC), u1 and
u2, can be seen in Figures 8 and 9, which do not exceed 12 Volts.

During the experimental tests with the physical linear guides, Figure 6, the common
mass was made to move a distance of 0.2 m, verifying the robustness and advantages
that ADCR is capable of when coinciding with minimum error, the actual and desired
trajectories. It was also possible to graph the signal delivered by the extended state linear
observers, (LESO’s), F1 and F2, as can be seen in Figures 8c and 9c.
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4. Discussion

The ADRC based on extended state linear observers, implemented in this multivariable
electromechanical system for smooth trajectory tracking, estimates the factors that affect the
plant, including nonlinear dynamics, uncertainties, mismatches and external disturbances
due to viscous friction differences that can occur on each linear guide.

Based on the simulation and experimental results, a good performance of the controller
can be observed in the synchronization of the angular positions of the two actuators, to
finally make the linear displacement smoothly follow the desired trajectory of the mass
coupled in common, having a maximum error of 5× 10−4 m.

5. Conclusions

The combination of Extended State Linear Observers (ESO’s) with the Active Distur-
bance Rejection Control (ADRC) technique achieves a robust cooperative control system in
the face of parametric and external disturbances that occur in the system. Therefore, in this
particular case, it has been achieved that the two actuators (DC motors) can be coupled
during the displacement of the common mass, making each of the linear guides have an
equal advance, that is, x1 = x4. This eliminates the possibility that when the two linear
guides move unequally, they produce undesirable torque on the table that supports the
common mass, causing significant damage to the system. Both the simulations and the
tests carried out verify the effectiveness of the controllers as well as that of the observers.
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