
Citation: Nguyen, M.-D.; Kim, S.-M.;

Lee, J.-I.; Shin, H.-S.; Lee, Y.-K.; Lee,

H.-K.; Shin, K.-H.; Kim, Y.-J.; Phung,

A.-T.; Choi, J.-Y. Prediction of Stress

and Deformation Caused by

Magnetic Attraction Force in

Modulation Elements in a

Magnetically Geared Machine Using

Subdomain Modeling. Machines 2023,

11, 887. https://doi.org/10.3390/

machines11090887

Academic Editor: Zlatko Hanić
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Abstract: This study presents an approach for calculating the stress and deformation increase
in the modulation of magnetically geared machines using a mathematical method. An analyti-
cal method is employed to obtain the magnetic force density acting on the modulation compo-
nents. Afterward, the proposed mathematical method predicts the mechanical characteristics. The
9 slots/32 poles/19 modulations model was evaluated via a comparison with the finite element
method simulation.

Keywords: magnetically geared machine; partial differential equations; subdomain modeling; ana-
lytical solution; FEM

1. Introduction

Currently, there are two approaches for addressing high-torque, low-speed appli-
cations. The first approach is a combination system of a gear and small-pole machine,
which takes up more space. The second one entails using a large-pole-number machine
that results in a complicated winding organization and increases the manufacturing cost.
Both approaches have drawbacks. Hence, magnetically geared machines (MGMs) have
become an increasingly attractive option for integrating permanent magnet synchronous
machines (PMSMs) with magnetic gears into one structure. A comprehensive overview of
the evolution and various approaches to MGMs has been presented [1–3]. Four different
winding organizations for MGMs were investigated in [4,5], in which the authors proposed
a dual-structure machine that improved the torque and reduced the cogging torque. To ob-
tain the air gap flux density, an analytical method was employed [6]. Performance analyses
of double-rotor or double-stator MGMs were also carried out in [7–12], where the authors
presented a novel “pseudo” machine whose architecture is similar to a magnetic gear, in
which the outer rotor has attached a winding having the same pole pair with the inner
rotor. Using a spoke-type magnet [13–15] was an alternative to surface-type magnets [16]
in the Vernier structure. Through changing the shape of the inner permanent magnet and
the magnetization of the outer permanent magnet, a new structure has high torque density
and high mechanical properties [17–19]. Combinations of spoke-type and Halbach-type
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rotors, as well as auxiliary teeth in the stator, were introduced [20,21]. A novel approach
involving double-fed current is illustrated in [22–25], in which the authors introduced a
novel bidirectional flux modulation concept, and [26] merged modulation and a stator
into a single structure based on bidirectional concepts. To deepen comprehension and
amplify output torque, investigations were carried out regarding gear ratios [27], parameter
analysis [28], and optimization [29]. Notably, the eccentric harmonic magnetic gear was
introduced in [30], proving particularly advantageous for applications demanding higher
transmission ratios.

The aforementioned studies mainly focused on the electromagnetic aspect and superfi-
cially dealt with the mechanical analyses. In [31], the authors utilized FEM, which required
several hours to obtain results. Ref. [32] experimentally verified a laminated structure in
modulation after simulating a relevantly simplified model.

The FEM is widely recognized as a reliable solution for electrical machine analysis
but has a significant running time when calculating problems. The subdomain analytical
method, on the other hand, offers faster computational time and results that agree well
with FEM simulations, making it a promising solution for MGM design and optimization.
A comprehensive review can be found in the literature [33]. Two analytical methods are
mainly used. The first one is based on the conformal mapping transformation method
and a 2D relative permanence function [34]. The second method, which can be named
subdomain modeling, is based on directly solving Maxwell’s equations and the boundary
and interface conditions. Researchers have applied the subdomain method to various
scenarios, such as radial-magnetization surface-mounted PMSM, Halbach array PMSM,
coaxial magnetic gear, axial-field magnetic gear, and eccentricity effects in magnetic gear,
as demonstrated in [35–39]. To consider iron parts with nonlinear cores, an enhanced 2D
subdomain method in polar coordinates was explored [40,41].

The purpose of this paper is to present a 2D analytical model of a magnetic gear
machine (MGM) based on the subdomain method. To the best of our knowledge, the
analytical prediction of stress and deformation for a solid-structured modulation has not
been explored previously. To address this gap, the authors utilized subdomain modeling
to obtain the magnetic force density and proposed a purely mathematical approach for
analyzing stress and deformation.

2. Magnetic Attraction Force
2.1. Governing Partial Differential Equations (PDEs)

Figure 1 presents an MGM model and its simplified reverent transfer model employed
for the analytical method. Tables 1 and 2 list the parameters of the machine and materials.
Before solving the analytical solutions, the following assumptions are made:

• The end effects are ignored;
• The problem is two-dimensional in Cartesian coordinates;
• Magnetic vector potential A, current density J, magnetization vector M, and mag-

netic flux density vector B, have the following non-zero components, respectively:
A = [0, 0, Az]; J = [0, 0, Jz]; M = [Mr, Mθ , 0]; B = [Br, Bθ , 0];

• The core materials have infinite permeability;
• The shaft is a non-magnetic material.

Table 1. The mechanical coefficients.

Parameters Symbol Unit Value

Young’s modulus E 105 MPa 2
Shear ratio κ - 0.85

Bulk modulus G MPa 76,923
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Table 2. Specification parameters.

Parameters Symbol Unit Value

Outer magnet radius R7 mm 93.5
Inner magnet radius R6 mm 90.0

Outer modulation radius R5 mm 89.0
Inner modulation radius R4 mm 81.0

Outer stator radius R3 mm 80.0
Opening slot radius R2 mm 78.5

Slot radius R1 mm 37.0
Stack length Lstk mm 45.0

Magnet pitch ratio α - 0.9
Modulation pitch γ 2π/Pm rad 0.5
Opening slot pitch β 2π/Q rad 0.125

Slot pitch δ 2π/Q rad 0.8
Pole winding turn - - 56

Modulation number Pm - 19
Slot number Q - 9

Magnet pole pair Zp - 16
Vacuum permeability µ0 kg.m.s−2.A−2 4π 10−7

Residual flux density of magnet B0 T 1.2
Magnetic magnetization of magnet M0 A/m B0/µ0
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Through assuming 2D analysis in cylindrical coordinates, the governing partial differ-
ential equations (PDEs) for the six regions shown in Figure 1 are expressed as follows:
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∂2 Aj
z

∂r2 +
∂Aj

z
r∂r

+
∂2 Aj

z

r2∂θ2 = −µ0 J j
z (6)

It can be seen that the subdomains of modulation, air gap, and opening slot are
represented using Laplace’s equation, whereas the subdomains of magnet and slot are
described using Poisson’s equation. To apply the Fourier series expansion method to the
vector potential, it is necessary to express the right-hand side of Poisson’s equation in
Fourier form.

Figure 2 depicts the parallel magnetization at an arbitrary position of the rotor, denoted
as θ0. In the 2D polar coordinate system, the magnetic magnetization can be expressed
as follows:

MI
z =

∞
∑

n=1,2
MI

rnsin(n(θ − θ0))iI
r +

∞
∑

n=1,2
MI

θncos(n(θ − θ0))iI
θ

where

MI
rn = − 2M0

π

2Zp

∑
p=1,2

(−1)i

n+1 sin (n+1)πα
2Zp

sin nπ(i−0.5)
Zp

−


2M0

π

2Zp

∑
p=1,2

(−1)i

n−1 sin (n−1)πα
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sin nπ(i−0.5)
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−2M0
π

2Zp
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π

2Zp
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(−1)i
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
2M0

π

2Zp
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(−1)i
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(7)
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Figure 2. The parallel magnetic magnetization illustration.

Regarding coil magnetization, when using a double-layer winding, there are two
methods of winding organization: overlapping winding for distributed winding and non-
overlapping winding for concentrated winding. Figure 3 provides an illustration of how
the coil is accommodated in the slot for each of these methods.
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In either case, the current density of the j-th order slot can be represented in Fourier form.

Jj
z =

(
J j
0 +

∞
∑

m=1,2
J j
mcos

(mπ
δ

(
θ − θj

)))
iz

where

J j
0 =

J j−layer1
0 +J j−layer2

0
2

J j
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 2
mπ

(
J j−layer1
0 − J j−layer2

0
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sin
(mπ

2
)
↔ non− overlapping winding

0 ↔ overlapping winding

(8)

2.2. Boundary Conditions Principle

In Figure 4 without magnet excitation, the boundary condition between two adjacent
materials is applied based on three principles: Hθ1 = Hθ2, Br1 = Br2, and Az1 = Az2. For
mathematical convenience, it is preferable to choose the first and third principles, and
rewrite them in terms of vector potential as follows:

∂Az1

µ1∂r
=

∂Az2

µ2∂r
(9)

Az1 = Az2 (10)

where µ1 and µ2 are the relative permeability of the first and second materials, respectively.
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If the first material is the magnet, then (9) turns out as follows:

∂Az1

µ1∂r
+ µ0Mθ =

∂Az2

µ2∂r
(11)

In Figure 1b, the continuity of the radial components of the vector potential leads to
twelve following boundary conditions.

r = R7 →
∂AI

z
µr∂r

+ µ0Mθ = 0 (12)

r = R6 →


∂AI

z
µr∂r + µ0Mθ = ∂AI I

z
∂r

AI I
z = AI

z

(13)

r = R5 →


∂AI I

z
∂r =

Pm
∑

p=1,2

∂Ap
z

∂r

Ap
z = AI I

z

(14)

r = R4 →


Ap

z = AI I I
z

∂AI I I
z

∂r =
Pm
∑

p=1,2

∂Ap
z

∂r
(15)

r = R3 →


∂AI I I

z
∂r =

Q
∑

i=1,2

∂Ai
z

∂r

Ai
z = AI I I

z

(16)

r = R2 →

 Ai
z = Aj

z

∂Aj
z

∂r = ∂Ai
z

∂r

(17)

r = R1 →
∂Aj

z
∂r

= 0 (18)

The coefficients were determined using a Fourier series expansion shown in
Appendices A and B. The flux density at the air gap, then, is deduced from:

Br =
∂Az

r∂θ
; Bθ = −∂Az

∂r
(19)

2.3. The Maxwell Stress Tensor

The Maxwell stress tensor is given by the following equation:

σij =
1

µ0
(BiBj − 1

2 δij|
→
B |2)

where

δij =

[
0↔ i 6= j
1↔ i = j

(20)

Applying 3D cylinder coordinates, Equation (20) turns out as such:

σij =

σrr σθr σzr
σrθ σθθ σzθ

σrz σθz σzz

 =


B2

r−B2
θ

2µ0

Bθ Br
µ0

0

Br Bθ
µ0

−B2
r +B2

θ
2µ0

0

0 0 − B2
r +B2

θ
2µ0

 (21)

The force exerted over a surface S can be expressed as follows:
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F =
∫

σijdSn =
∫


B2
r−B2

θ
2µ0

Bθ Br
µ0

0

Br Bθ
µ0

−B2
r +B2

θ
2µ0

0

0 0 − B2
r +B2

θ
2µ0


dSr

dSθ

dSz

 =


∫ B2

r−B2
θ

2µ0
dSr +

∫ Bθ Br
µ0

dSθ∫ Br Bθ
µ0

dSr +
∫ −B2

r +B2
θ

2µ0
dSθ∫

− B2
r +B2

θ
2µ0

dSz

 (22)

Generally, the attraction force consists of three surface directions in the integral. How-
ever, along the z-axis, the force density is constant, resulting in a zero integral for the
z-directional force. Additionally, when compared to the radial force density, the force
density in the θ-direction is relatively small and can be neglected. As a result, the average
force density acting on the modulation can be simplified as follows:

σ =

σr
σθ

σz

 =


B2

r−B2
θ

2µ0

∣∣∣∣
R5

− R4
R5

B2
r−B2

θ
2µ0

∣∣∣∣∣
R4

Br Bθ
µ0

∣∣∣
R5
− R4

R5

Br Bθ
µ0

∣∣∣∣
R4

0

 (23)

As shown in Figure 8b, during the mechanical modulation analysis, the tangential
component of the average magnetic force density appears notably smaller compared to the
radial counterpart, often rendering it negligible in the analysis.

The electromagnetic torque is derived using the Maxwell stress tensor. An integration
path along a circle with a radius within the air gap subdomain is employed, leading to the
electromagnetic torque presentation as detailed in [35].

3. Stress and Deformation Analysis in Modulation
3.1. Timoshenko Beam Model

In the beginning, in order to simplify the model shown in Figure 5, the following
assumptions are made:

• The coordinate Orθz is converted into Oxyz;
• The cross section and material properties of the beam are constant along the length;
• There is a symmetrical cross-section about x-y plane;
• The height, width, and length of a converted bar are denoted as X, Y, and Z.
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Figure 5. (a) The stress tensor in a 3D space Oxyz and Orθz. (b) The general beam.

The model depicted in Figure 5b is commonly known as the Euler–Bernoulli beam,
which assumes that both sides of the beam are free. However, in reality, in machines,



Machines 2023, 11, 887 8 of 16

one or both sides of the beam shown in Figure 6 may be fixed. This difference between
mathematical computation and finite element method (FEM) simulation introduces a
significant error, especially when the y-axis thickness (Y) is sufficiently large.
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Figure 6. (a) An illustration of the modulation being deformed one side and two sides and (b) their
simplified model for the mathematical solution.

To address this problem, a Timoshenko beam model is introduced in [42]. The Timo-
shenko beam model takes into account the effect of shear deformation, providing a more
accurate representation of the actual behavior of beams with fixed ends. Through incor-
porating the Timoshenko beam model, the error caused by the assumption of free ends in
the Euler–Bernoulli beam model can be minimized. When applying a moment, Mz, on a
surface area, A, and coefficients are given as in Table 1, the PDEs of the beam model are
expressed as follows: 

dy
dx = θx +

1
κAG

dMz
dx

dθx
dx = −Mz

EIz

(24)

where θx is the angle of rotation of the normal to the mid-surface of the beam, and the
second moment of area, Iz, is calculated similarly for both cases in Figure 6.

Iz =
Y3Z
12

(25)

3.2. Modulation Fixed at One End

Considering an arbitrary point along the beam that divides it into two sections, as
shown in Figure 6b, our focus lies on the case where one side of the beam is fixed. In this
scenario, we exclusively examine the left-side portion. The distribution of the moment
acting along the modulation can be described using the following equation:

Mzx = σyZ
−(X− x)2

2
(26)

Substituting (26) into (24), then combining the first boundary condition θx=0 = 0, the
angle, θx, is derived as:

θx = −
σyZ
EIz

(X− x)3

6
+

σyZ
EIz

X3

6
(27)
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Through applying the second boundary condition yx=0 = 0 for Equation (24), the
deformation along the length of the modulation can be defined as follows:

y =
σyZ
EIz

(X− x)4

24
+

σyZ
EIz

X3x
6

+
σyZ
κAG

−(X− x)2

2
−

σyZ
EIz

X4

24
+

σyZ
κAG

X2

2
(28)

Under uniform stress acting in the y-direction, the stress distribution in the Oxy plane
is calculated as:

σy =
yMzx

Iz
= −yσyZ

(X− x)2

2
(29)

3.3. Modulation Fixed at Both Ends

In the scenario of modulation fixed at both ends, both sections are required. Similar to
Section 3.2, the following expressions apply:

Mzx = σyZ
(

Xx
2
− x2

2
− X2

12

)
(30)

θx =
σyZ
EIz

(
x3

6
− Xx2

4
+

X2x
12

)
(31)

Notably, because of symmetry along the center of the beam, the conditions, therefore,
become θx={0;X} = 0 and yx={0;X} = 0. The deformation and stress of modulation are
given as follows:

y =
σyZ
EIz

(X− x)2x2

24
+

σyZ
κAG

x(X− x)
2

(32)

σy =
yMzx

Iz
=

yσyZ
Iz

(
Xx
2
− x2

2
− X2

12

)
(33)

4. Results and Discussion

An example, with parameters detailed in Table 2 and material characteristics presented
in Table 1, was subjected to FEM simulation and analytical analysis. Notably, the FEM
mesh for both electromagnetic and mechanical analyses is illustrated in Figure 7a.

The electromagnetic torque, air gap flux densities, and magnetic force density obtained
through the analytical method aligned closely with FEM simulation results, as depicted
in Figures 7b–d and 8a. The tangential component of the average magnetic force density
is approximately zero in Figure 8b. This leads to the neglect of tangential components in
stress analysis in this study. The non-uniform force distribution is apparent in these figures,
contributing to uneven deformation in the modulations.

Figure 9 shows non-uniform deformation as well as stress in bars. The first bar
has almost no significant influence from the magnetic force, whereas an extreme bend is
occupied in the ninth bar.

Generally, there is a strong agreement between the mathematical method and FEM
results, as depicted in Figure 10, which presents deformation and stress profiles. In the case
of two fixed ends (depicted in Figure 10b), although the stress distribution along the bar
is not entirely consistent, the maximum stress at the four corners is accurately predicted.
Notably, the scenario with two fixed ends exhibits greater stability in comparison to the
case with only one fixed end. In the latter, the maximum deformation and stress are
approximately 1/20 and 1/8 times larger, respectively.
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5. Conclusions

The proposed mathematical method was an efficient approach for obtaining mechan-
ical characteristics in the modulation. Moreover, compared with 2D magnetic attraction
force and 3D stress/deformation FEM simulations, the computational time of the mathe-
matical method was reduced from 30 s and 5 min to 2 s and 1.5 s, respectively. This allows
designers to apply optimization techniques that save time exponentially.

Continuing research based on this paper can be outlined as follows:

• Consider the non-linear characteristic of magnetic material;
• Consider the skin effect for the solid modulation;
• The influence of the on-load or unbalanced load should be ideal;
• Verify the subdomain method with the test bench’s results;
• Develop a mathematical method for a lamination-structured modulation.
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Appendix A

The following integrals are presented to shorten equations in Appendix B:

sni(n, θi, β) =

θi+β∫
θi

sin(nθ)dθ =
1
n
(cos(nθi)− cos(n(θi + β) )) (A1)

rni(n, θi, β) =

θi+β∫
θi

cos(nθ)dθ =
1
n
( sin(n(θi + β) )− sin(nθi)) (A2)

gkni(k, n, θi, β) =
θi+β∫
θi

sin(nθ)cos
(

k π
β (θ − θi)

)
dθ

=


β
2

(
sin(nθi)− 1

2kπ (cos(n(θi + 2β))− cos(nθi))
)
↔ kπ = nβ

nβ2

(kπ)2−(nβ)2

(
(−1)k(n(θi + 2β))− cos(nθi)

)
↔ kπ 6= nβ

(A3)

f kni(k, n, θi, β) =
θi+β∫
θi

cos(nθ)cos
(

k π
β (θ − θi)

)
dθ

=


β
2

(
cos(nθi) +

1
2kπ (sin(n(θi + 2β))− sin(nθi))

)
↔ kπ = nβ

−nβ2

(kπ)2−(nβ)2

(
(−1)ksin(n(θi + 2β))− sin(nθi)

)
↔ kπ 6= nβ

(A4)

Fmk(m, k, β, δ) =
θi+β∫
θi

cos
(

k π
β (θ − θi)

)
cos
(
m π

δ

(
θ − θj

))
dθ

=


β
2 cos

(
kπ
2β (β− δ)

)
↔ m

δ = k
β

m π
δ

(m π
δ )

2−
(

k π
β

)2

(
(−1)ksin

(mπ
2δ (β + δ)

)
+ sin

(mπ
2δ (β− δ)

))
↔ m

δ 6=
k
β

(A5)

Appendix B

From (1) to (8), vector potential in sub-domains can be rewritten as:

AI
z =

∞

∑
n=1,2

(
rn AI

n + r−nBI
n + Pnsin(nθ0)

)
sin(nθ) +

(
rnCI

n + r−nDI
n + Pncos(nθ0)

)
cos(nθ) (A6)

AI I
z =

∞

∑
n=1,2

(
rn AI I

n + r−nBI I
n

)
sin(nθ) +

(
rnCI I

n + r−nDI I
n

)
cos(nθ) (A7)



Machines 2023, 11, 887 13 of 16

Ap
z = Ap

0 + ln(r)Bp
0 +

∞

∑
h=1,2

(
rh π

α Cp
h + r−h π

α Dp
h

)
cos
(

h
π

α

(
θ − θp

))
(A8)

AI I I
z =

∞

∑
n=1,2

(
rn AI I I

n + r−nBI I I
n

)
sin(nθ) +

(
rnCI I I

n + r−nDI I I
n

)
cos(nθ) (A9)

Ai
z = Ai

0 + ln(r)Bi
0 +

∞

∑
k=1,2

(
rk π

β Ci
k + r−k π

β Di
k

)
cos
(

k
π

β
(θ − θi)

)
(A10)

Aj
z = Aj

0 + ln(r)Bj
0 −

µ0

4
r2 J j

0 +
∞

∑
m=1,2

(
rm π

δ Cj
m + r−m π

δ Dj
m +

µ0(
m π

δ

)2 − 4
r2 J j

m

)
cos
(

m
π

δ

(
θ − θj

))
(A11)

where [
Pn = µ0r

n2−1 (−M I
θn + nMI

rn)↔ n 6= 1

Pn = 0.5µ0ln(r)r(−M I
θn + nMI

rn)↔ n = 1

Based on the above forms of vector potential and boundary conditions presented from
Equations (12) to (18), coefficients are calculated via solving the following equation system:

1
µr

(
Rn−1

7 nAI
n − nR−n−1

7 BI
n + P′nsin(nθ0)

)
+ µ0MI

θnsin(nθ0) = 0 (A12)

1
µr

(
Rn−1

7 nCI
n − nR−n−1

7 DI
n + P′ncos(nθ0)

)
+ µ0MI

θncos(nθ0) = 0 (A13)

1
µr

(
Rn−1

6 nAI
n − nR−n−1

6 BI
n + P′nsin(nθ0)

)
+ µ0MI

θnsin(nθ0) =
(

Rn−1
6 nAI I

n − nR−n−1
6 BI I

n

)
(A14)

1
µr

(
Rn−1

6 nCI
n − nR−n−1

6 DI
n + P′ncos(nθ0)

)
+ µ0MI

θncos(nθ0) =
(

Rn−1
6 nCI I

n − nR−n−1
6 DI I

n

)
(A15)

Rn
6 AI I

n + R−n
6 BI I

n = Rn
6 AI

n + R−n
6 BI

n + Pnsin(nθ0) (A16)

Rn
6 CI I

n + R−n
6 DI I

n = Rn
6 CI

n + R−n
6 DI

n + Pncos(nθ0) (A17)

Rn−1
5 nAI I

n − nR−n−1
5 BI I

n =
Pm

∑
p=1,2

(
Bp

0
R5

1
π

sni(n, θp, γ) +
∞

∑
h=1,2

(
h

π

α

(
Rh π

α −1
5 Cp

h − R−h π
α −1

5 Dp
h

) 1
π

gkni
(
k, n, θp, γ

)))
(A18)

Rn−1
5 nCI I

n − nR−n−1
5 DI I

n =
Pm

∑
p=1,2

(
Bp

0
R5

1
π

rni(n, θp, γ) +
∞

∑
h=1,2

(
h

π

α

(
Rh π

α −1
5 Cp

h − R−h π
α −1

5 Dp
h

) 1
π

f kni
(
k, n, θp, γ

)))
(A19)

Rh π
α

5 Cp
h + R−h π

α
5 Dp

h =
∞

∑
n=1,2

(
Rn

5 AI I
n − R−n

5 BI I
n

) 2
γ

gkni
(
k, n, θp, γ

)
+
(

Rn
5 CI I

n − R−n
5 DI I

n

) 2
γ

f kni
(
k, n, θp, γ

)
(A20)

Ap
0 + ln(R5)Bp

0 =
∞

∑
n=1,2

(
Rn

5 AI I
n − R−n

5 BI I
n

) 1
γ

sni(n, θp, γ) +
(

Rn
5 CI I

n − R−n
5 DI I

n

) 1
γ

rni(n, θp, γ) (A21)

Rn
4 AI I I

n + R−n
4 BI I I

n =
Pm

∑
p=1,2

(
Bp

0
R4

1
π

sni(n, θp, γ) +
∞

∑
h=1,2

h
π

α

(
Rh π

α −1
4 Cp

h − R−h π
α −1

4 Dp
h

) 1
π

gkni
(
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n + R−n
4 DI I I

n =
Pm

∑
p=1,2

(
Bp

0
R4

1
π

rni(n, θp, γ) +
∞

∑
h=1,2

h
π

α

(
Rh π

α −1
4 Cp

h − R−h π
α −1

4 Dp
h

) 1
π

f kni
(
k, n, θp, γ

))
(A23)
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)
(A24)

Ap
0 + ln(R4)Bp
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∑
n=1,2

(
Rn

4 AI I I
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) 1
γ

sni(n, θp, γ) +
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4 CI I I

n − R−n
4 DI I I

n

) 1
γ
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R
k π

β

2 Ci
k + R

−k π
β

2 Di
k =

∞

∑
m=1,2

(
R2

m π
δ Cj

m + R2
−m π

δ Dj
m +

µ0(
m π

δ

)2 − 4
R3

2 J j
m

)
2
β

Fmk(m, k, β, δ) (A30)

Ai
0 + ln(R2)Bi

0 = Aj
0 + ln(R2)Bj

0 −
µ0
4 R2

2 J j
0

+ δ
βmπ

∞
∑

m=1,2

(
R2

m π
δ Cj

m + R2
−m π

δ Dj
m + µ0

(m π
δ )

2−4
R2

2 J j
m

)(
sin
(

mπβ
δ

)
− sin

(mπ
δ

(
θi − θj

))) (A31)

m π
δ

(
R2

m π
δ −1Cj

m − R2
−m π

δ −1Dj
m

)
+ 2R2 J j

mµ0

(m π
δ )

2−4

= 2
βmπ

1
R2

Bi
0

(
sin
(

mπβ
δ

)
− sin

(mπ
δ

(
θi − θj

)))
+

∞
∑

k=1,2
k π

β

(
R2

k π
β−1Ci

k − R2
−k π

β−1Di
k

)
2
δ Fmk(m, k, β, δ)

(A32)
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R2 J j

0 =
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δ

1
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R1
m π

δ −1m
π

δ
Cj

m − R1
−m π

δ −1m
π

δ
Dj

m +
2R2 J j

mµ0(
m π

δ

)2 − 4
= 0 (A34)

1
R1

Bj
0 −

µ0

2
R1 J j

0 = 0 (A35)

Through reformatting the given equations into a matrix and vector, we can employ
mathematical software (MATLAB) to find a numerical solution.
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