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Abstract: In this paper, the model reference adaptive system (MRAS) method has been employed
to observe speed in sensorless field-oriented control (FOC) with flux weakening (FW) and maxi-
mum torque per ampere (MTPA) operations for the interior permanent-magnet synchronous motor
(IPMSM). This paper focuses on the modified MRAS observer, which is based on the sigmoid function
as a switching function and also the adaptive sliding mode coefficient. The sliding mode strategies
are employed for the adaptation mechanism instead of the PI controller. The conventional PI-MRAS
causes oscillations in rotor speed. To solve this problem, the modified adaptive super-twisting
algorithm (STA)-based MRAS method is proposed by utilizing the sigmoid function. The proposed
modified MRAS is compared to conventional methods. Additionally, it is examined for performance
against the fast terminal sliding mode (FTSM), which is applied to the MRAS as an adaptation
mechanism in terms of sliding mode strategies. The modified STA-MRAS is explored under the ECE
and EUDC (Extra Urban Driving Cycle) drive cycles for electric vehicle applications. Finally, the
obtained results show the validity and capability of the proposed adaptive STA-MRAS in terms of
speed tracking.

Keywords: model reference adaptive system (MRAS); super-twisting algorithm (STA); fast terminal
sliding mode (FTSM); maximum torque per ampere (MTPA); interior permanent-magnet synchronous
motor (IPMSM); electric vehicle (EV)

1. Introduction

As of late, interior permanent-magnet synchronous motors (IPMSM) have been largely
utilized in high-performance variable speed in numerous industrial applications because
of their high efficiency, high power factor, high power density, wide speed range, high ratio
of torque-to-inertia, quicker response, low vibration, low noise, and basic construction.
The IPMSMs are utilized in electric vehicles (EVs), aerospace applications, power plants,
marine applications, robotic applications, lift control, and modern servo drives. Especially,
IPMSMs have been generally utilized in electric vehicle drive control due to the above-
mentioned features [1,2].

The techniques used for the control of IPMSMs in electric vehicles can be counted as
direct torque control (DTC) [3], maximum torque per ampere control (MTPA) [4], field-
oriented control (FOC) [5], and model predictive control (MPC) [6]. One of the most
distinguishing features of field-based control techniques is that they require an exact
rotor position [7]. Mechanical position sensors have disadvantages such as high cost,
lack of longevity, low reliability, and being mechanically cumbersome. Therefore, sen-
sorless control of IPMSMs can remove mechanical sensors and prevent their deficiencies
by assessing rotor position and speed data from electrical measurements with certain
digital algorithms [8].
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Recently, many model-based observer strategies have been studied for IPMSMs,
such as the model reference adaptive system (MRAS) [9], the sliding mode observer
(SMO) [10,11], the extended Kalman filter (EKF) [12], etc. The MRAS-based observer,
which is used to estimate the position and speed of the motor, has a low computational
burden and a simple algorithm [13]. The MRAS consists of an adaptation mechanism
that produces the estimated speed with the error obtained by comparing adjustable and
reference models. The design of the adaptation mechanism should ensure that the estima-
tion speed converges to the actual speed. The PI regulator is employed as the adaptive
mechanism for estimating the actual speed in the conventional MRAS. In [9], the MRAS
has been utilized for sensorless IPMSM control. Further, the MRAS strategy shows lower
oscillation than the SMO in a steady-state condition, and both techniques show similar
speed responses in a transient state.

The PI-based MRAS methods, which are based on active power, reactive power, or
fictitious quantity, were presented in the literature by the authors of [14–16]. These methods
operate independently from machine parameters like inductance, resistance, or flux, de-
pending on the strategy. However, the classical PI regulator was applied as an adaptation
mechanism in these studies. Furthermore, the proposed methods need to be restructured
to overcome instabilities in the regenerative mode. The PI regulator can be supplanted
by different strategies, such as sliding mode and fuzzy logic, to ensure fast convergence
and robustness in the system. The authors of [17] have presented a two-dimensional fuzzy
controller that is used to supplant the conventional PI for high-speed region operations of
the PMSM. However, the originality of the two-dimensional fuzzy logic controller against
the PI regulator needs to be revealed for different speed ranges. The ANFIS architecture has
been proposed as an adaptive mechanism of the MRAS for sensorless control of the PMSM
in low-speed operations by the authors of [18]. This method, which exhibits superior
performance and robustness compared to the SMO method, needs to be evaluated with
MRAS methods, employing various adaptation mechanisms. The sliding mode strategies
have been presented instead of the PI regulator in the literature. In [19,20], the SM-based
MRAS has been applied to the induction motor driver as a speed estimator. The sliding
mode structure used as an adaptation mechanism improves robustness. However, the
traditional sliding mode suffers from the problem of chattering. Therefore, phase lag can
occur in the sliding mode strategy, which requires a low-pass filter. Another study [21]
has applied the SM-based MRAS, which utilizes the sigmoid function as a speed estimator
for the IPMSM. Furthermore, the sigmoid function is employed instead of the signum
function to reduce the chattering effect. In [22], the super-twisting algorithm (STA)-based
MRAS has been studied as a speed estimator for the induction motor driver to test its
robustness against load disturbances. The STA, which utilizes the signum function, has
been developed to mitigate jitter in the sliding mode structure. In [23], an STA-based MRAS
observer was proposed, where the inverse hyperbolic sine function was replaced with the
signum function in the integral term of the super-twisting algorithm. In [24], the adaptation
mechanism of the MRAS observer, which consists of fuzzy logic, sliding mode, and the STA,
has been compared for speed estimation accuracy and the robustness of the wind energy
conversion system. It has been reported that the single-input fuzzy controller and STA
have shown superiority as adaptation mechanisms for the MRAS. Also, the terminal sliding
mode (TSM) strategy, which also has a fast form, has been previously reported in various
forms that used different equations [25]. Although these strategies are generally used as
speed controllers [26], there are studies where they are used as observers; for instance, the
fast terminal sliding mode (FTSM) is designed as a torque estimator [27].

In this paper, the adaptive STA technique and the FTSM are compared, and these
strategies have been employed instead of the traditional PI controller in the adaptation
mechanism. In addition, the FTSM strategy, which has been utilized as a speed controller
in the literature, is presented and tested as a speed observer for the IPMSM. Also, one of
the aims of the paper is to examine the adaptive STA strategy, which utilized the sigmoid
function for suppressing the chattering effect of the sliding mode in different operating
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conditions, such as the steady-state performance and dynamic performance of the IPMSM in
the MTPA control. On this basis, the modified MRAS speed estimator strategy is evaluated
for the EV, which utilizes the IPMSM in the MTPA control under the ECE-15 drive cycle,
which is combined with the EUDC drive cycle. The main contributions of this paper are
as follows: A modified adaptive STA-based MRAS strategy instead of the conventional
PI-MRAS for speed estimation of the IPMSM is proposed. The sigmoid function is replaced
with the signum function to suppress the chattering effect in the STA. The k1 coefficient of
the STA is tuned according to the rotor speed, while the k2 coefficient is selected at a large
enough constant value to achieve good stability in a wide speed range. The effectiveness of
the proposed speed observer has been verified by simulation results for the IPMSM, which
is utilized in the EV, which is operated by the MTPA control.

The paper is structured as follows: The mathematical equations of the IPMSM, as well
as the MTPA control strategy, are described in Section 2. The structure of the conventional
and modified MRAS are introduced in Section 3. Section 4 presents the results of the
simulation as a comparison of the conventional and sliding mode MRASs. Additionally,
the modified MRAS, which utilizes an adaptive STA using the sigmoid function for EV
application, is examined. Finally, conclusions are drawn in Section 5.

2. Mathematical Model of the IPMSM and MTPA Control Algorithm

The stator voltage equations of the IPMSM, which are shown in Figure 1, are defined
in the rotating reference frame (dq−axis) as follows:

ud = Rsid + Ld
d
dt

id −ωrLqiq (1)

uq = Rsiq + Lq
d
dt

iq + ωr
(

Ldid + λpm
)

(2)

where ud and uq are the dq−axis components of stator voltage; id and iq are the dq−axis
components of stator current; Ld and Lq is the dq−axis inductances; Rs is the stator re-
sistance; ωr is the rotor electrical speed; λpm is the permanent-magnet flux linkage. The
electromagnetic torque and the mechanical equations of the IPMSM are expressed by

Te = (3/2)P
[
λpmiq +

(
Ld − Lq

)
idiq
]

(3)

Te = TL + Bωm + J(dωm/dt) (4)

ωr = Pωm (5)

where P is the number of pole pairs; Te and TL are the electromagnetic torque and motor
load torque; J and B are the inertia of the rotor and the viscous friction coefficient; ωm is the
rotor’s mechanical speed.
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r mPω ω=  (5)

Figure 1. Equivalent circuit model of IPMSM (a) d-axis circuit (b) q-axis circuit.

The electromagnetic torque of the IPMSM consists of excitation torque and reluctance
torque due to its rotor having a saliency (L d < Lq

)
. Thus, the IPMSM is suitable for



Machines 2023, 11, 871 4 of 17

a wide-speed operation range with the MTPA and FW control methods, which are applied
in the constant torque region and the constant power region, respectively [28].

The curve of the MTPA can be calculated to ensure minimum current consumption
per maximum torque in the constant torque region, which represents operation below the
rated speed. Then, the dq−axis currents can be formulated considering the stator current is
constraint in the MTPA control [29].

id =
λpm

4
(

Lq − Ld
) −

√√√√ λ2
pm

16
(

Lq − Ld
)2 +

i2s
2

(6)

iq =
√

i2s − i2d (7)

The flux-weakening control is applied in the constant power area, which represents
operation above the rated speed. The limiting ellipse of the stator voltage decreases as the
rotor speed increases, on the condition that the center of the ellipse continues as before.
The equations of the stator current limiting circle and the stator voltage limiting ellipse that
will restrict the MTPA trajectory are defined as

i2d + i2q ≤ i2max (8)

u2
d + u2

q ≤ u2
max (9)

where umax and imax are the maximum value of the stator voltage and the stator current,
respectively. Hence, the voltage constraints can be derived as(

Lqiq
)2

+
(

Ldid + λpm
)2 ≤

(
u2

max/ω2
r

)
(10)

Considering the above equations, the dq−axis currents of the flux-weakening control
region for the possible maximum torque corresponding can be derived as

id =
−λpmLd +

√(
λpmLd

)2 −
(

L2
d − L2

q

)(
λ2

pm + L2
qi2max − (u2

max/ω2
r )
)

(
L2

d − L2
q

) (11)

i2q =
√

i2max − i2d (12)

The equation of the PI speed controller in the MTPA can be stated as

i∗q = kP∆ωr + kI

∫
∆ωr (13)

where kP and kI are the proportional and integral coefficients, respectively.
The cross-coupling effect is the mutual inductance between the d-axis and q-axis of

the IPMSM. The cross-coupling inductance may distort the motor voltage and current
and cause ripples in torque. IPMSMs have the dominant cross-coupling effects due to
having a relatively large inductance. Therefore, the dq−axis currents cannot be controlled
independently by ud and uq such as ωrλd and ωrλq in ud and uq expressions. The current
regulator should be designed with feedforward compensation to cancel the cross-coupling
effect, which increases as speed increases [29]. The current controller equations with the PI
controller are presented as

u∗d =

(
kP

(
i∗d − id

)
+ kI

∫ (
i∗d − id

))
−ωrλq (14)
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u∗q =

(
kP

(
i∗q − iq

)
+ kI

∫ (
i∗q − iq

))
+ ωrλd (15)

where λd = (Ldid + λpm) and λq = (Lqiq). λd are λq the d and q stator flux linkage
components, respectively.

3. Structure of MRAS Observer

The MRAS method, which consists of a reference model, an adjustable model, and
an adaptation mechanism, is designed to estimate the dq−axis stator currents and the rotor
speed. The reference model is utilized to express the actual states, while the adjustable
model is utilized to provide the estimated values. The error between the adjustable and
reference models is delivered to the adaptation mechanism. The adaptation mechanism
that generates the estimated speed adjusts the adaptive model according to the estimated
rotor speed [13]. The structure of the MRAS method is depicted in Figure 2.
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Figure 2. The MRAS speed observer.

The dq−axis stator currents are calculated using the reference model of the IPMSM.
The reference model is obtained as

d
dt

[
id
iq

]
=

[
− Rs

Ld

Lq
Ld

ωr

− Ld
Lq

ωr − Rs
Lq

][
id
iq

]
+

[
1

Ld
0

0 1
Lq

][
ud
uq

]
+

[
0

−λpm
Lq

ωr

]
(16)

According to the reference model, the state space equations of the adjustable model of
the IPMSM with estimated values are defined as

d
dt

[
îd
îq

]
=

[
− Rs

Ld

Lq
Ld

ω̂r

− Ld
Lq

ω̂r − Rs
Lq

][
îd
îq

]
+

[
1

Ld
0

0 1
Lq

][
ud
uq

]
+

[
0

−λpm
Lq

ω̂r

]
(17)

where ω̂r is the estimated rotor electrical speed; îd and îq are the estimated d-axis and q-axis
current, respectively. The error matrix of the dq−axis stator currents and the error of the
rotor speed are given as

e =
[

ed
eq

]
=

[
id − îd
iq − îq

]
(18)

∆ωr = ωr − ω̂r (19)

The difference between the reference and the adjustable models, which represent the
state error, is expressed as follows:

d
dt

[
ed
eq

]
=

[
− Rs

Ld

Lq
Ld

ω̂r

− Ld
Lq

ω̂r
−Rs
Lq

][
ed
eq

]
+

[
0 Lq

Ld

− Ld
Lq

0

][
i∗d
i∗q

]
∆ωr (20)

where:
i∗d = id +

(
λpm/Ld

)
(21)
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i∗q = iq (22)

Popov’s inequality criterion is shown as in [30].

η(0, t1) =
∫ t1

0
vTWdt ≥ −γ−2

0 (23)

where γ0 is any finite positive constant. Also, vT and W are defined as follows, respectively.

vT =
[
ed eq

]
(24)

W =

[
0 Lq/Ld

−Ld/Lq 0

][
i∗d
i∗q

]
(25)

Hence, it is possible to find an error between the reference and the adjustable models.

ε =
Lq

Ld
iqed −

Ld
Lq

ideq −
λpm

Lq
eq (26)

Thus, the speed estimation algorithm can be obtained by

ω̂r = kPε + kI

∫
εdt (27)

Finally, the value of the estimated rotor angular position is acquired by combining
the estimated rotor electrical speed. Furthermore, the estimated mechanical speed can be
calculated using Equation (5).

θ̂r =
∫

ω̂rdt (28)

4. Sliding Mode-Based MRAS Observer

Traditionally, a PI controller is utilized to set the adjustable model in the adaptation
mechanism. Additionally, the error, which is the output of the reference model and the
adjustable model, can be used as a sliding surface to observe the speed by using the sliding
mode technique. Thus, the sliding mode can be used as the adaptation mechanism for
the modified MRAS observer. The target of the adaptation mechanism that is modified
is to design the MRAS to ensure fast and accurate estimating of the actual speed even in
any speed and load variations. For this reason, the STA strategy and the FTSM, which are
sliding mode strategies, are utilized to design the adaptive mechanism for estimating the
position and speed of the rotor in this paper.

4.1. The Super-Twisting Algorithm

The first-order sliding mode can cause a chattering problem at an estimated speed. In
order to suppress the chattering for the estimated speed, high-order sliding mode strategies
can be used, which do not compromise robustness [31]. The STA is a high-order sliding
mode strategy that reduces the chattering problem in first-order sliding mode strategies, as
proposed by Levant in [32]. The basic equations of the STA with perturbation terms are
given as

dx1

dt
= −k1|x̃1|0.5sgn(x̃1) + x2 + ρ1(x1, t) (29)

dx2

dt
= −k2sgn(x̃1) + ρ2(x2, t) (30)

where xi and x̃i represent the state variables and the error between the estimated and the
actual state variables, respectively. Also, ki, ρi, and sgn(.) are sliding mode coefficients,
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perturbation terms, and signum function, respectively. Therefore, the switching function is
redesigned for speed observer and it can be expressed by

ω̂r = −k1|ε| 0.5sgn(ε)− k2

∫
sgn(ε)dt + ρ1(ε, t) (31)

The Lyapunov stability of the STA has been proven in [33]. According to [33], the STA
observer is stable when the sliding mode coefficients k1 and k2 satisfy Equations (32) and
(33), and the perturbation terms are bounded. The system can converge to the origin in a
finite time when the STA satisfies the following condition:

k1 > 2δ1, k2 > k1
5δ1k1 + 4δ2

1
2(k1 − 2δ1)

(32)

|ρ1| ≤ δ1|ε|0.5, ρ2 = 0 (33)

where δ1 is any positive constant.
Sliding mode coefficients should be large enough to ensure stability at high speeds.

However, these coefficients could lead to perturbation at low speeds. Conversely, the
coefficients may cause instability when selected too small at a high-speed range [10]. In
this study, to enhance the performance of speed estimation in a wide-speed range, the k1
coefficient is tuned according to the estimated rotor speed in the STA just to satisfy the
stability condition. k2 is applied as a constant coefficient because it is selected large enough.
Then, the adaptive k1 coefficient can be adopted as

k1 = lω̂r (34)

l is the adaptive coefficient. The adaptive sliding mode coefficient k1 is initiated with
a fixed value based on the existing stable conditions in (32). Also, a sigmoid function is
applied as a substitution of a signum function for the purpose of eliminating the chattering
problem as a switching function. The sigmoid function is given as

F(ε) =
(

2/
(

1 + e−as
))
− 1 (35)

where a is the constant parameter of the sigmoid function for regulating the slope.

4.2. Fast Terminal Sliding Mode

As mentioned in [25], the differential equation form of the FTSM, which can achieve
faster and finite-time convergence and higher steady-state tracking precision, can be re-
designed for the speed observer by the following equation:

ω̂r =
dε

dt
+ µ1ε + µ2|ε|σsgn(ε) (36)

where µ1, µ2 > 0 and 0 < σ < 1 are constants. When the system dynamic is distant from
ε = 0, the convergence speed is fast as the equation can be roughly as (dε/ dt) = −µ1ε . The
equation is around

(
dε/ dt) = −µ2|ε|σsgn(ε) , which is a terminal attractor when close to

ε = 0. The error ε can achieve 0 within a finite time with decently chosen µ1, µ2, and σ.
To satisfy the stability of the observer, the Lyapunov function V =

(
s2/2

)
> 0 and

the derivative of the Lyapunov function to achieve the reference speed at a finite time to
provide the stability criterion following equation can be defined as follows [26]:

dV
dt

= s
ds
dt
≤ 0 (37)
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where s represents the sliding mode which indicates the error signal ε.

s = s(ε) =
Lqiq
Ld

ed −
(

Ldid
Lq

+
λpm

Lq

)
eq =

λq

Ld

(
id − îd

)
− λd

Lq

(
iq − îq

)
(38)

The sliding motion is asymptotically stable when the system slips to ds(ε)/dt = 0 [23].
The differential equation of sliding variable s is as follows:

ds
dt
(ε) =

1
Ld

(
dλq

dt
id + λq

did
dt
−

dλq

dt
îd− λq

dîd
dt

)− 1
Lq

(
dλd
dt

iq + λd
diq

dt
− dλd

dt
îq− λd

dîq

dt
) (39)

As a result, by substituting (39) into (37), (37) is rewritten, and the equation can be
simplified as (ωr − ω̂r) f1 + f2 = 0. When the system reaches the sliding mode surface
s(ε) = ds(ε)/dt = 0, the estimated electrical speed term can be derived as follows:

ω̂r = ωr +
f2

f1
(40)

Thus, the electrical speed converges to the reference speed as the estimated current
tends to the actual current.

5. Electric Vehicle Model

There are reacting forces on a vehicle that can cause it to resist its movement while
the vehicle is along moving, as shown in Figure 3. These resistance forces generally
involve aerodynamic drag, rolling resistance, and grading resistance when considering
two-dimensional movement. Hence, the traction force can be expressed as follows:

Ft = 0.5ρA f Cd(v± vw)
2 + frmvg cos θ + mvg sin θ + mva (41)

where Ft is total traction force, mv is the total mass of the vehicle, a is the acceleration, g is
the gravitational acceleration, ρ is the air mass density, A f is the frontal area of the vehicle,
Cd is the aerodynamic drag coefficient, v is the vehicle velocity, vw is the wind speed, fr is
the rolling resistance coefficient, and θ is the road angle. The wind speed sign changes to
positive or negative with the vehicle’s moving direction [34].
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The vehicle velocity is related to the circumferential speed of the tire and the gear train
between the motor and the axle.

v = rwωw = rw

(
ωr

gdr

)
(42)

where rw is the radius of the wheel, gdr is the gear ratio, ωw and ωr are the angular velocities
of the wheel and rotor, respectively. Therefore, the vehicle traction power can be expressed as

Pt = Twωw = Tw

(
ωr

gdr

)
= TLωrηdr (43)
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where ηdr is the powertrain efficiency; TL and Tw are the load torque and the wheel axle
torque, respectively. Finally, the total traction force can be calculated by dividing (43) by
(42). Therefore, the load torque can be expressed as

Ft =
Pt

v
=

TLωrgdr
rω

(44)

6. Simulation Results

The simulation model is performed to validate the performance of the modified MRAS
strategy by using the IPMSM for EVs in the Matlab/Simulink platform according to Figure 4.
The parameters of the IPMSM are itemized in Table 1 [35]. The switching frequency of the
inverter is 10 kHz.
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Table 1. Three-phase IPMSM parameters.

Symbol Parameter Value

P number of pole pairs 2
Ld d-axis inductance 0.312 mH
Lq q-axis inductance 0.606 mH
Rs stator resistance 16.9 mΩ

λpm permanent-magnet flux linkage 0.099 Wb
Is maximum current 176.7 A (rms)
P maximum power 70 kW

UDC DC link voltage 360 V

Figure 5 demonstrates the MTPA curve of the dq−axis current trajectories of the step
response of the IPMSM in an MTPA control when the motor speed is increased from
a standstill to 3500 rpm under a 50 Nm load for this sample case. The motor is operated
along the MTPA curve until it reaches the base speed. The dq−axis currents of the motor
reach the MTPA point, which intersects with the constant torque curve of the motor at
a 50 Nm load in the steady-state point. Thus, the MTPA curve provides the minimum
current to achieve the desired torque. Therefore, the motor’s efficiency is increased because
the copper losses are minimized. Afterward, the motor speed is increased to 8000 rpm.
The operation type of the motor goes from MTPA to FW at the maximum torque point.
Similarly, the dq−axis currents of the motor reach the FW point, which intersects with the
constant torque curve of the motor at a 50 Nm load at the steady-state point. As a result,
a wide speed range can be obtained through the FW control for the IPMSM.
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To verify the performance of the proposed adaptive STA-MRAS strategy, it is compared
to the TSM-based MRAS, which uses a sliding mode strategy, and the conventional PI-
MRAS. The above three strategies are performed at the same parameters of speed and the
current controller in an MTPA. The parameters of the adaptive STA-MRAS are designed
as k1(0) = 3.5, k2 = 500, a = 2, and l = 0.02; the TSM-MRAS parameters are µ1 = 0.2,
µ2 = 1.25, and σ = 0.95; PI parameters are kP = 2.2 and kI = 0.5.

In order to analyze the steady-state and dynamic condition performance of the MRAS
methods, the reference speed command is given as follows: it is increased from 0 to 500 rpm
for the low-speed condition, then changed from 500 to 3000 rpm for the MTPA control
region, and finally raised from 3000 to 6000 rpm for the FW control region. In all cases,
the motor was operated at a load torque of 50 Nm. Figure 6 illustrates the response and
fluctuations of the rotor speed in the conventional PI-MRAS, FTSM-MRAS, and proposed
adaptive STA-MRAS.
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The speed errors, which are between the actual and estimated speed for the conven-
tional PI-MRAS, FTSM-MRAS, and proposed adaptive STA-MRAS, are depicted in Figure 7.
The range of speed fluctuation is ±2 rpm, ±20 rpm, and ±36 rpm at 500 rpm under the
adaptive STA-MRAS, FTSM-MRAS, and PI-MRAS, respectively. The errors of the three
methods are around ±6 rpm, ±20 rpm, and ±36 rpm at 3000 rpm, respectively. Finally,
the adaptive STA-MRAS considerably reduces the speed error compared with the other
MRAS strategies by±7 rpm at 6000 rpm. The speed error is±10 rpm in the FTSM-MRAS at
6000 rpm. Additionally, the maximum speed error is ±33 at 6000 rpm when the PI-MRAS
is implemented.
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The proposed adaptive STA-MRAS causes less position estimation error than the STA-
MRAS with a constant sliding mode coefficient [36]. To suppress the chattering effect in
both the low-speed range and the high-speed range, the k1 coefficient is adjusted according
to the rotor speed. The sliding mode coefficient k1 has a constant value of approximately
7% of the rated speed. In other words, k1 has a positive initial value k1 = lω̂r + k1(0). That
is because the coefficient k1 is initialized with a fixed value to prevent the rotor speed from
becoming unstable due to the system, which may be unstable at the starting condition. It is
obvious that the adaptive STA-MRAS works well, as shown in Figures 6 and 7. Additionally,
Figure 8 demonstrates the sliding mode coefficient k1, which varies with the rotor speed
of the proposed adaptive STA-MRAS according to the conditions as presented in Figure 6.
Additionally, it can be seen that the estimated speed oscillates along at a time of transition
from the MTPA to FW control region due to its control algorithm for all observers, between
0.415 s and 0.425 s, as depicted in Figure 6c.
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The position estimation error of the proposed adaptive STA-MRAS is depicted in
Figure 9. The position error increases as the motor speed increases, especially in the FW
region for all observer strategies. The maximum position error oscillates around 0.1 rad at
6000 rpm for the adaptive STA-MRAS from 0.5 s to 0.8 s. Figure 10 displays the position
estimation error of the FTSM-MRAS, which is within around 0.15 rad at 6000 rpm from
0.5 s to 0.8 s. Furthermore, the position error is about 0.05 rad at 6000 rpm from 0.5 s
to 0.8 s for PI-MRAS, as illustrated in Figure 11. The adaptive STA-MRAS has a smaller
chattering effect than the FTSM-MRAS for the rotor position estimation in sliding mode
methods. In addition, the PI has a smaller deviation in the estimation of the rotor position
than the others. However, the adaptive STA-MRAS, which estimates the rotor position as
smoother and more stable when tracking the actual position, increases the performance of
the IPMSM, such as by reducing current harmonics, torque ripple, etc.
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The mismatch between motor and observer parameters causes a rotor position es-
timation error. Figure 12 depicts the performance of the MRAS observers under model
mismatches at 3000 rpm under both 25 Nm and 50 Nm load torque. The stator resistance
Rs varies between 0.75 and 1.25 pu. Furthermore, the dq−axis inductances vary within
10% of the original values. The MRAS observers can retain strong robustness during the
variation of the Rs without online estimation of the stator resistance. In particular, the
adaptive STA-MRAS converges faster to the steady state while the speed error is in a more
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acceptable range than the other methods during the stator resistance parameter changes.
However, the accuracy of the q-axis inductance Lq is required for the MRAS observers
in this study. The estimation performance varies with respect to the variation of Lq. The
MRAS observers can partially maintain their performance when the Lq and Ld parameter
values are increased. However, the estimated rotor speed becomes unacceptable when Lq
is decreased, unlike Ld. When the load torque is increased, as seen in Figure 12b,d,f, the
convergence time of the incorrectly estimated rotor speed to the actual rotor speed becomes
longer due to the step change in the parameters. Furthermore, the speed fluctuations
increase with parameter changes under increasing load torque. Generally, compared to
PI-MRAS and FTSM-MRAS, the adaptive STA-MRAS performs with better robustness
towards inductance and resistance variation. Therefore, online parameter estimation is
necessary to enhance speed accuracy and system stability.
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The simulation results demonstrate that the proposed STA-MRAS strategy exhibits
reducing speed ripples for an IPMSM controlled in a wide-speed range. The following
simulation analyzes the performance of the adaptive STA-MRAS when the motor speed
is adjusted by considering the electric vehicle velocity and its transmission system in the
drive cycles, which have dynamic load and speed conditions. Therefore, the ECE-15 and
EUDC drive cycles (Extra Urban Driving Cycle) have been employed for examining the
performance of the proposed adaptive STA-MRAS in electric vehicle (EV) applications.
A simplification is made by neglecting the headwind blows and accepting the slope angle
as 0◦. Table 2 illustrates the vehicle parameters utilized in the simulation [34].

Table 2. Parameters of the electric vehicle.

Symbol Parameter Value

mv Vehicle total mass 1313 kg
A f Vehicle frontal area 1.746 m2

gdr Gear ratio 5
ρ Air mass density 1.225 kg/m3

ηdr Transmission efficiency 0.95
rw Radius of the wheels 0.29 m
Cd Aerodynamic drag coefficient 0.3
fr Rolling resistance coefficient 0.009
g Gravitational acceleration 9.8 m/s2

In this paper, the IPMSM operates under MTPA control up to the nominal speed of the
motor, which corresponds to 77 km/h of vehicle velocity. Above the nominal speed, FW
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control is employed. Furthermore, the maximum speed of the EUDC is 120 km/h, which is
equal to almost 5500 rpm for the IPMSM.
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Figures 13–15 demonstrate the rotor speed, developed electromagnetic torque, and
dq−axis current obtained by the adaptive STA-MRAS, respectively. Furthermore, the rotor
speed fluctuated during the transition from the MTPA to the FW control region operation
and vice versa because the reference speed oscillated around the base speed, from time
472 s to 474 s, as illustrated in Figure 13. Moreover, the dq−axis current, which oscillates,
causes torque ripples in transient states, as shown in Figures 14 and 15. The absolute
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value of the d-axis component increases quickly when entering the FW region. For this
reason, the torque fluctuation will be bigger for the IPMSM above the base speed. Also, the
estimation errors of the adaptive STA-MRAS for different conditions in the drive cycle are
summarized in Table 3. Table 3 reports torque performances such as max, min, mean values,
and mean absolute percentage error (MAPE) alongside speed and current performance
for the modified STA-based MRAS. The MTPA control region is more stable than the FW
region for the IPMSM in terms of ripple of speed, torque, and current. Nevertheless, the
modified STA-MRAS gives almost the same performance in terms of the mean absolute
percentage error of the torque for both operating conditions.
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Table 3. Performance of the adaptive STA-MRAS for MTPA and FW control in steady-state conditions.

Operating
Condition

Torque
Speed
Error

Id_Avg Id_Ripple Iq_Avg Iq_RippleMax.
Value

Min.
Value

Mean
Value MAPE

3200 rpm, 14.5 Nm
(in MTPA) 18.65 Nm 11.84 Nm 15.27 Nm 6.88% 35 rpm −1.29 A 1.92 A 25.61 A 1.56 A

5500 rpm, 28.9 Nm
(in FW) 36.38 Nm 25.02 Nm 30.46 Nm 6.74% 60 rpm −211.42 A 2.47 A 31.51 A 1.93 A

7. Conclusions

This article presents the MRAS strategy, which is based on the adaptive STA approach
for sensorless control of the IPMSM operating under the MTPA control algorithm. The
proposed adaptive STA-MRAS is compared with both the conventional PI-MRAS and the
FTSM-MRAS. Hereby, the FTSM-MRAS is utilized to compare with the adaptive STA-MRAS
as a method using the sliding mode strategy. The results demonstrate the adaptive STA-
MRAS can be provided with speed estimation accuracy and robustness of the system under
parameter variation to other strategies without the online estimation of motor parameters.
Additionally, the simulation results conclude that the proposed STA-MRAS has reduced
the chattering effect, and the estimated rotor speed is more accurate in both dynamic and
steady-state conditions.

Moreover, the performance of the modified STA-MRAS has been examined in the
traction drive of the electric vehicle under the combined ECE and EUDC drive cycles. The
simulation tests have confirmed that the proposed strategy exhibits acceptable estimation
errors and has accurate estimation capability under different speed and load conditions.
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