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Abstract: Location identification is a fundamental aspect of advanced mobile robot navigation
systems, as it enables establishing meaningful connections between objects, spaces, and actions. Un-
derstanding human actions and accurately recognizing their corresponding poses play pivotal roles
in this context. In this paper, we present an observation-based approach that seamlessly integrates
object detection algorithms, human pose detection, and machine learning techniques to effectively
learn and recognize human actions in household settings. Our method entails training machine
learning models to identify the common actions, utilizing a dataset derived from the interaction
between human pose and object detection. To validate our approach, we assess its effectiveness using
a diverse dataset encompassing typical household actions. The results demonstrate a significant
improvement over existing techniques, with our method achieving an accuracy of over 95% in
classifying eight different actions within household environments.. Furthermore, we ascertain the
robustness of our approach through rigorous testing in real-world environments, demonstrating
its ability to perform well despite the various challenges of data collection in such settings. The
implications of our method for robotic applications are significant, as a comprehensive understanding
of human actions is essential for tasks such as semantic navigation. Moreover, our findings unveil
promising opportunities for future research, as our approach can be extended to learn and recognize
a wide range of other human actions. This perspective, which highlights the potential leverage of
these techniques, provides an encouraging path for future investigations in this field.

Keywords: computer vision; semantic navigation; machine learning; human pose; object detector;
algorithms

1. Introduction

The fields of tracking, robot navigation, object detection, and human pose estimation
encompass a wide range of applications and research efforts that collectively drive the
progress of intelligent systems and robotics. These areas are remarkably diverse in their
scope. For example, robot navigation involves the development of algorithms and methods
that enable robots to autonomously navigate complex and ever-changing environments,
which is proving vital in industries such as logistics and transportation. At the same time,
human pose estimation revolves around inferring the skeletal structure and body positions
of individuals, contributing to a variety of applications such as gesture recognition, sports
analysis, and enhanced human–computer interaction.

Within this area, there are some related works such as [1], which presents a comprehen-
sive review of the use of Unmanned Aerial Vehicles (UAVs), focusing on the development
of advanced learning control strategies for improved quadrotor maneuverability. In [2],
the authors propose the use of repetitive learning, specifically Iterative Learning Control
(ILC) based on optimal approaches, namely Gradient-based ILC and Norm Optimal ILC, to
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study the challenges faced by UAVs in monitoring and detecting faults in overhead power
lines due to wind disturbances and noise. Another related work is [3], which proposes a
distributed controller to address leader–follower consensus for multiple flexible manipula-
tors in the presence of uncertain parameters, unknown disturbances, and actuator dead
zones using various control techniques such as adaptive, iterative learning, and sliding
mode control.

The focus of our study is primarily on domestic environments, as they present unique
challenges and complexities when it comes to understanding human actions based on object
interactions. In these environments, the objects play a crucial role in providing valuable
information about users’ activities and needs. Although the methodology proposed in
this work has great potential in the domestic environment, its applicability could be
extended to other diverse environments, including factories and shopping centers. In these
environments, the method can still effectively interpret human actions, infer user behaviors,
and optimize navigation and automation systems.

In domestic environments, the objects in a given area can provide valuable information
about the activities taking place and the needs of the users. For example, a person lying
on the sofa may indicate that the person is either watching TV or taking a nap. However,
understanding how objects can help to identify areas or activities of users in domestic
environments can be challenging due to the large number of objects used and the different
ways in which they can be combined. Computer vision and machine learning have proven
to be useful tools for understanding how the objects can be used to improve navigation
systems [4,5], but there are still limitations in their ability to understand the complexity of
human movement and interaction with objects.

Pose estimation is also a critical component of our proposed methodology, which must
handle real-world variations like lighting and weather. Identifying precise joint coordinates
in human pose estimation is especially tough in complex domestic environments. This work
presents an innovative perspective on understanding human actions and opens up new
possibilities for the design of more intelligent navigation systems. In addition, it is expected
that this work will encourage future research in the development of the detection of more
than eight human actions trained in this work as well as more accurate and efficient systems
for understanding human actions in home environments. The results of this work could
have important implications for improving automation and intelligence in smart homes.

The main objective of this work is to develop a solution capable of enhancing the
location identification within households for navigation systems. This solution aims to
proficiently classify human actions within pre-trained homes using the Python program-
ming language. Data will be collected using a 2D video camera, which will be processed to
extract the relevant image features. Different machine learning methods will be developed
and evaluated for classification purposes. One crucial aspect of our approach is the careful
collection of data at two distinct intervals: 1 s and a total of 6 s for each action. By observ-
ing the human pose and the objects present in the interaction environment during these
specific time intervals, our method effectively captures essential temporal information for
action learning.

As a result, our proposed methodology presents a robust framework for learning and
classifying human actions based on the observation of poses and the objects present in
the interaction environment during specific time intervals. Tests have been conducted
attempting to classify areas as a room based solely on the presence of objects. However,
a room can be used for many common activities, such as studying or eating, so it was
decided to conduct tests by separating the data to see if it was possible to classify zones in
a home based solely on the presence of objects. In the results section, the importance of not
only using the human pose but also considering the detected objects in the environment is
observed to achieve accurate classification. The combination of these components increases
the accuracy and efficiency of the action classification process, making our solution a
valuable contribution to the field of human action recognition in home environments.
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The rest of this paper is organized as follows. Section 2 provides an overview of related
work on object, activity, and human pose recognition methods. In Section 3, we describe our
proposed methodology to support indoor location identification using machine learning
methods combining human pose and object detection. Section 4 presents the results of
experiments and performance evaluation. Finally, we summarize some discussions and
main conclusions from this research in Section 5.

2. Related Works

The different robotic applications used in this new era of data digitization are in-
creasingly advanced thanks to the integration of machine learning and deep learning
algorithms, which are sub-elements of what is known today in a general sense as artificial
intelligence [6]. These areas of research are constantly evolving with applications in various
fields, including understanding the usefulness of objects in home environments [7,8].

2.1. Classification Techniques for Activities in Homes

One of the most common approaches in research is the use of deep learning techniques
for object and activity classification in home environments. For example, the work of [9]
uses convolutional neural networks for object and activity identification in home envi-
ronments, achieving an accuracy of 92%. The article mentions some common challenges
in applying deep learning techniques for activity recognition, such as the need for large
amounts of labeled data and the need to adapt to different contexts and environments.
Specific limitations of certain deep learning techniques for activity recognition are also
described, such as the lack of ability of convolutional neural network models to model tem-
poral dynamics. Another common approach is the use of rule-based learning techniques,
as in the work of [10] that presents a prototype for an optical fall detection system based
on pose estimation, running in real time, which uses various approaches, such as machine
learning, deep learning, and a rule-based algorithm for detecting falls. All these methods
achieve an accuracy exceeding 94% when tested on publicly available datasets. However,
machine learning shows limitations in real-time applications due to the scarcity of available
training data. On the contrary, the rule-based approach demonstrates a greater capacity for
generalizing different types of fall events.

A non-invasive activity recognition system for home environments using small, easy-
to-install, and low-cost sensors is presented in [11]. The results of the experiments con-
ducted in this study indicate that the system can detect relevant activities such as toileting,
bathing, and grooming with varying accuracy rates between 25% and 89%. A novel ap-
proach to self-supervised sensor representation learning for smartphone-based human
activity recognition is presented in [12]. The method uses a multi-task temporal convolu-
tional network to identify potential transformations in raw input data. The results obtained
outperform supervised methods and surpass traditional unsupervised techniques such
as autoencoders. The study suggests that with further refinements, this approach could
further bridge the gap between unsupervised and supervised feature learning.

In addition to the aforementioned approaches, there are other works that employ
similar methods for identifying objects and their use in specific activities. For instance, the
work of [13] uses object tracking and trajectory analysis techniques for identifying object
usage patterns in home environments. Another interesting work is that of [14], which
supplies a concrete understanding of the variant sensing principles of image and video
processing, segmentation, feature extraction, classification, cross-validation, and sensitivity
analysis techniques. These techniques were combined to implement and evaluate a human
activity recognition system based on multiple modalities.

2.2. Object Detectors and Object Trackers

In recent years, different object detection algorithms have been developed that have
significantly improved the accuracy and speed of real-time detection. One of the most
popular algorithms is YOLO (You Only Look Once), which has improved in different



Machines 2023, 11, 843 4 of 20

versions over the years, with version 3 achieving high performance in terms of accuracy
and speed [5], while YOLO v4 focuses on further improving accuracy and speed [15].
Another popular algorithm is SSD (Single Shot Multibox Detector), which is a real-time
object detector that uses a single iteration of a neural network to predict the presence of
multiple objects in an image. SSD has proven to be one of the most efficient techniques for
real-time object detection [16].

The researchers in [17] propose an application for robot navigation in indoor envi-
ronments that integrates a YOLO v3 convolutional neural network (CNN) for furniture
and household object detection into the simultaneous localization and mapping (SLAM)
algorithm. The proposed application allows automatic SLAM map generation and the
simultaneous detection of rooms in unknown environments. Similarly, the authors in [18]
present a real-time computer vision-based object detection and recognition framework
to improve indoor robot navigation. The proposed system uses SLAM for navigation
and YOLO for object detection, resulting in lower computational requirements and lower
network weight.

A vision system for object detection and recognition in indoor environments is pro-
posed in [19]. This system uses Support Vector Machines, RGB, and depth images, com-
bined with several segmentation techniques and feature extraction methods based on
geometric shape descriptors and a bag of words. The author in [20] presents a novel
approach to improve the efficiency of object localization, which incorporates a dynamic
Bayesian network designed to automatically detect and update the state of an object based
on human activity, thereby improving the efficiency of object localization, which is particu-
larly beneficial for service robots in domestic environments.

Another important factor to achieve the objectives of this work is the use of object-
tracking algorithms. One of the most effective approaches for this task is object trackers
based on Kalman filtering, which use a dynamic model of the object to estimate its position
and velocity over time [21]. In recent years, deep learning has been used to improve the
accuracy and speed of object tracking, using CNN to detect the object in each frame and
then using a tracking model to track the object over time [22].

2.3. Human Pose Detectors

Human pose detection algorithms aim to detect and estimate human poses in an image
or video. This problem has been considered in computer vision for decades, but recent
advances in machine and deep learning techniques have led to significant improvement.
Human pose detectors based on deep learning are usually divided into two main categories:
regression methods and detection methods. Regression methods estimate a person’s pose
through a neural network, while detection methods use object detection techniques to
locate and estimate the pose of each person in an image.

One of the most prominent approaches is described in [23], which proposes a deep
neural network for human pose estimation from 2D images. Another interesting proposal
consists on a human pose detection approach that uses Part Affinity Fields to estimate
the pose of multiple people in real time, improving accuracy and performance speed [24].
The authors in [25] propose two methods to improve pose-sensitive detection and human
pose retrieval systems based on convolutional neural network features, offering superior
performance over previous methods.

Google has developed MediaPipe, which is a popular and powerful open-source tool
for real-time human pose detection. The library offers a variety of pre-trained models and
tools for the custom development of pose detection models, and among the most prominent
pre-trained models is the full-body pose detection model “BlazePose” [26], which uses a
deep convolutional neural network and a particle-based pose estimation architecture to
detect human body poses in real time.

Also, deep learning algorithms are used for detecting human pose. The authors
in [27] compare Convolution Neural Network–Long Short-Term Memory (CNN-LSTM)
networks with other models such as Multilayer Perceptron (MLP), Long-term Recurrent
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Convolutional Networks (LRCN) or LSTM for classifying the dance pose by excerpted
salient details attaining high-performance results, up to 98%, in some metrics as accuracy,
precision, recall, AUC or F1 score. The author in [28] uses a CNN model called the
quaternion field pose network (qfiled PoseNet) to detect the pose of objects from a single
aerial image with good results, as demonstrated in experiment on the DOTA1.5 and
HSRC2016 datasets. At the same time, the authors in [29] present PoseFormer, a purely
transformer-based approach for 3D human pose estimation in videos without convolutional
architectures involved, which achieves state-of-the-art performance on two benchmark
datasets, Human3.6M and MPI-INF-3DHP, according to extensive experiments.

In general, these studies have highlighted the promising potential of computer vision,
machine learning, and deep learning for understanding human actions within domestic
environments. Building upon this groundwork, our research presents a groundbreaking
machine learning-based methodology to better comprehend human actions through the
analysis of human movement and object interactions in home environments. Our approach
aims to greatly improve the accuracy and efficiency of understanding human actions,
opening doors to more effective and reliable applications in this field.

3. Methodology

The proposed methodology utilizes a combination of machine learning and computer
vision techniques for understanding human actions in home environments. The approach
is based on human movement and object analysis to improve the accuracy and efficiency of
semantic classification of home areas.

3.1. Description of the General Framework

In this section, we present an overview of the core features of the modules in Figure 1
to facilitate understanding the proposed methodological framework.

Figure 1. General framework.

The affordances module forms the central component of our methodology and facili-
tates the processing of object and human pose data as well as the execution of classification
tasks. It consists of five sub-modules:

• Validation: This sub-module ensures the correct reception of video data and validates
the presence of at least five human pose data points to indicate the feasibility of
data collection.

• Objects process: The objects process sub-module allows for the collection and manage-
ment of data related to different objects detected in the environment.
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• Pose process: The pose process sub-module is responsible for the collection and man-
agement of human pose data.

• Classifier: The classifier sub-module supports functionalities for the training, evalua-
tion, and validation of classification methods.

• Output: The output sub-module is where the final classification result is reproduced
or obtained.

The image resource and image publisher modules facilitate the process of retrieving
video data. Two types of resources can be used to retrieve video data: a camera or a video
file in MP4 format. These modules are responsible for providing the video data to the
affordances and the object detector modules, either from the camera or from a video file.
The connection between modules is shown with a symbol that represents an XOR logic
gate, indicating that only one of the input elements is valid and not both.

The object detector module is responsible for managing the detection of objects in the
video resource provided by the image publisher module and subsequently sending the
detection results to the affordances module. The object detector identifies objects present in
the environment, which is essential for understanding human–object interactions during
action recognition.

3.2. Procedures of the Methodology

The proposed methodology consists of five sequential steps, as illustrated in Figure 2,
which are required to enhance location identification through human pose and object detection.
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Data collection
The developed system implements a supervised data collection process, storing the

data in a standardized format using text files. Data collection occurs according to the
configuration shown in Figure 1, either through video recordings or camera input. For
instance, to gather data for the “lying on sofa” action, multiple instances of the same action
with different human poses are recorded, keeping the camera focused on the action area
without any movement. Data capture occurs at one-second intervals, starting from the first
second and concluding at the sixth second. During this period, the data is supervisedly
labeled to assign the corresponding action. To ensure balanced representation, a sufficient
amount of data has been collected for each action, with approximately the same number of
examples for all actions.
Data preprocessing

The dataset is processed to remove incomplete or incorrect data, and then it is seg-
mented into specific human actions for further analysis.

As observed in Figure 3, the full visibility of all pose points is not always achievable.
However, the library includes calculations within its model to determine values of (x, y, z)
even when the visibility is less than 0.5.

Figure 4 illustrates the representation of data for different human pose points. These
representations show examples of a person doing different activities: lying (Figure 4a) or
sitting (Figure 4b) on a sofa, and performing exercises (Figure 4c). The acquisition of 3D
points is achieved using the MediaPipe library, where the input image is a 2D RGB image.
Various angles and distances have been considered for data collection, with the camera
height fixed at 1.3 m.
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(3) Feature extraction, (4) Modeling and training, (5) Model evaluation.

Data collection
The developed system implements a supervised data collection process, storing the

data in a standardized format using text files. Data collection occurs according to the
configuration shown in Figure 1, either through video recordings or camera input. For
instance, to gather data for the “lying on sofa” action, multiple instances of the same action
with different human poses are recorded, keeping the camera focused on the action area
without any movement. Data capture occurs at one-second intervals, starting from the first
second and concluding at the sixth second. During this period, the data are supervisedly
labeled to assign the corresponding action. To ensure balanced representation, a sufficient
amount of data has been collected for each action, with approximately the same number of
examples for all actions.
Data preprocessing

The dataset is processed to remove incomplete or incorrect data, and then, it is seg-
mented into specific human actions for further analysis.

As observed in Figure 3, the full visibility of all pose points is not always achievable.
However, the library includes calculations within its model to determine values of (x, y, z)
even when the visibility is less than 0.5.

Figure 4 illustrates the representation of data for different human pose points. These
representations show examples of a person doing different activities: lying (Figure 4a) or
sitting (Figure 4b) on a sofa, and performing exercises (Figure 4c). The acquisition of 3D
points is achieved using the MediaPipe library, where the input image is a 2D RGB image.
Various angles and distances have been considered for data collection, with the camera
height fixed at 1.3 m.
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Figure 3. Data collection and labeling.

(a) Representation of a human pose lying on a sofa.

(b) Representation of a human pose sitting on a sofa.

(c) Representation of a human pose working out.

Figure 4. Different representations of human pose.

Feature extraction
Feature extraction techniques will be used to obtain relevant information about objects

and human pose.
Figure 5 depicts the structure of a category sample, consisting of 6 data subsections

representing the attributes of the category at different time intervals, each separated by one
second, encompassing a total of 6 s. (1) These data are from human poses obtained through
the MediaPipe library. The content has been structured using a subset of only 9 specific
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points, which was a decision made after careful consideration to reduce computational
time. These 9 points were selected after conducting extensive data reduction experiments.
The criteria for selecting these points were based on identifying those that best represent
the most relevant information of the human pose for the classification task. It is important
to note that a total of 33 points can be obtained, but the use of 9 points was considered
sufficient to achieve optimal performance in the classification process. These obtained
data are already scaled and are represented in 3D position data from a 2D image, spatial
position values (x, y), and visibility value z. (2) The presented data correspond to the
objects detected using the YOLO v3 object detector, which utilizes the official COCO object
names list, comprising 80 categories. However, for this particular version, an exhaustive
selection of only 58 categories has been performed, representing objects commonly found
in an average household. Examples of these objects include sofas, beds, chairs, tables,
and televisions, among others, which are commonly encountered in a typical home. This
rigorous selection process has allowed us to focus the analysis on the most relevant elements
for object detection applications in home environments. (3) This value corresponds to the
category that describes the human action being represented. For instance, one of the trained
actions is “lying on bed”. In total, eight different output classes are being worked on:
reading a book, using a laptop, lying on sofa, sitting on sofa, lying on bed, drinking with a
cup, working out and playing a console.

It is essential to clarify that human pose estimation can be achieved either in 2D or
3D, with the primary difference lying in the desired type of output result. With the 2D
output, we receive a visual that resembles a stick figure or skeleton representation of the
various key points on the body. While with 3D human pose estimation, we receive a
visual representation of the key points on a 3D spatial plane, with the option of a three-
dimensional figure instead of its 2D projection. For this study, the 2D model is established
first, and then the 3D version is lifted from that visual.

Figure 5. Data structure.

Modeling and training of machine learning algorithms
Machine learning methods will be developed to comprehend human actions based

on the characteristics obtained from human pose and objects detected. A wide range of
machine learning algorithms have to determine which would be the most effective for the
classification task.

• Support Vector Machine (SVM): SVMs [30] can be used for binary classification, multi-
class classification, and regression tasks. The choice of kernel type, kernel coefficient,
and regularization parameter can have a significant impact on the performance of the
model. For example, a linear kernel may be appropriate for linearly separable data,
while a non-linear kernel like the radial basis function (RBF) may be better suited
for non-linearly separable data. The regularization parameter C controls the tradeoff
between maximizing the margin and minimizing the classification error and can be
tuned to optimize performance.
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• Gradient Boosting (GB): GB [31] is a powerful ensemble method that can be used for
classification and regression tasks. The learning rate determines the contribution of
each individual tree to the final model, and a smaller learning rate can help prevent
overfitting. The maximum depth of the trees and the number of estimators (trees) can
also be tuned to optimize performance.

• Extreme Gradient Boosting (XGB): XGB [32] is a popular variant of gradient boosting
that is known for its speed and performance. In addition to the hyperparameters men-
tioned above for gradient boosting, XGBoost also includes regularization parameters
like L1 and L2 regularization as well as a subsampling ratio parameter that controls
the fraction of observations used to train each individual tree.

• Light Gradient Boosting Machine (LGBM): LGBM [33] is another variant of gradient
boosting that is designed for efficient performance on large datasets. In addition to
the hyperparameters mentioned above for gradient boosting, LightGBM also includes
hyperparameters like the number of leaves per tree and the minimum gain to split a
node that can be used to optimize performance.

• K-Nearest Neighbors (K-NN): K-NN [34] is a simple but effective non-parametric
method that can be used for classification and regression tasks. The number of
neighbors and the distance metric used to compute distances between points are
the two main hyperparameters that can be tuned to optimize performance. A larger
number of neighbors can help prevent overfitting, while different distance metrics
like Euclidean distance or cosine distance may be more appropriate depending on the
dataset and problem being solved.

Table 1 summarizes the main hyperparameters of each method and the values that
have been used for each of them in the experiments conducted in this study.

Table 1. Classification methods and hyperparameters used.

Method Hyperparameters

Support Vector Machine (SVM) Kernel type: RBF
Kernel coefficient: 0.001
Regularization C: 1

Gradient Boosting (GB) Learning rate: 0.1
Maximum depth: 3
Criterion: friedman mse
Number of estimators: 100

XGBoost (XGB) Objective: multi:softprob
Booster: gbtree
Maximum depth: None
Number of estimators: 100

LightGBM (LGBM) Learning rate: 0.1
Maximum depth: −1
Number of leaves: 31
Number of estimators: 100
Boosting type: gbdt

K-Nearest Neighbors (K-NN) Number of neighbors: 5
Metric: minkowski
Leaf size: 30
Weights: Uniform

Model evaluation
The accuracy and efficiency of the machine learning method will be evaluated using

the test data. Additionally, the hyperparameter optimization process was applied after
obtaining the initial results. To evaluate the performance of the proposed framework, the
concept of the confusion matrix [35] is used. Let n be the number of different classes; a
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confusion matrix of size n × n associated with a classifier shows the actual and predicted
classification values.

Table 2 illustrates a 2 × 2 confusion matrix in which each cell has a specific interpreta-
tion as follows:

• tp: indicates the number of positive instances classified accurately.
• fp: is the number of actual negative instances classified as positive.
• fn: indicates the number of actual positive instances classified as negative.
• tn: is the number of negative instances classified accurately.

Table 2. Confusion matrix.

Predicted Positive Predicted Negative

Actual Positive tp fn
Actual Negative fp tn

The confusion matrix provides the basis for obtaining various performance mea-
sures [36,37]. In this study, the following metrics are used to evaluate the performance of
the machine algorithms.

The accuracy metric is a measure commonly used to evaluate the performance of a
classification model. It represents the proportion of correctly classified instances out of the
total number of instances in a dataset. The accuracy of a classification model is calculated
using the following equation:

Accuracy =
tn + tp

tn + fp + fn + tp

The recall metric, also known as sensitivity or true positive rate, measures the ability
of the model to correctly classify instances of a given class out of all the instances that
truly belong to that class. The recall of a classification model is calculated using the
following equation:

Recall =
tp

tn + fn

The precision metric is a performance measure that assesses the accuracy of a model’s
predictions for each class. It measures the proportion of correctly classified instances for a
given class out of the total number of instances predicted to be in that class. The recall of a
classification model is calculated using the following equation:

Precision =
tp

tp + fp

The F1 metric is a performance measure that provides a balanced assessment of the
model’s performance by taking into account both the precision and the recall for each class.
It is the harmonic average of the precision and recall, where an F1 score reaches its best
value at 1 (perfect precision and recall) and worst at 0. Therefore, this score takes both
false positives and false negatives into account. The F1 score of a classification model is
calculated using the following equation:

F1 =
2tp

2tp + fp + fn

The Matthews Correlation Coefficient (MCC) is a performance measure that quantifies
the quality of predictions in multi-class classification tasks. It takes into account the tp, tn,
fp, and fn for each class and calculates a correlation coefficient that ranges between −1 and

+1, where values of +1, 0, and −1 indicate an accurate prediction, a random prediction and
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a mismatch between the predicted and actual classes, respectively. The MMC measure of a
classification model is calculated using the following equation:

MMC =
tp × tn − fp × fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)

The Area Under the Curve (AUC) is a metric derived from the Receiver Operating
Characteristic (ROC) curve, which plots the tp rate against the fp rate for different clas-
sification thresholds. In multi-class classification, the AUC metric is typically calculated
by averaging the pairwise comparisons between each class and the rest. It represents
the probability that a randomly selected instance from one class will be ranked higher
by the model than a randomly selected instance from another class by the model. The
AUC ranges from 0 to 1, where a higher value indicates better discrimination and overall
classification performance.

Cohen’s kappa coefficient (κ) is a statistical measure used to assess the degree of
agreement between the predictions of a multi-class classification model and the true class
labels. It measures the agreement between the predicted class labels and the true class labels,
taking into account both correct predictions and misclassifications. A kappa coefficient
of 1 represents a perfect agreement, while a coefficient close to 0 indicates no better than
chance agreement.

3.3. Experimental and Testing Areas

The experiments were carried out in three different types of homes, focused on areas
such as bedrooms, living rooms, study areas, dining rooms, exercise areas, rest rooms, and
game rooms (Table 3).

Table 3. Areas classes.

Class Area Human Action

0 Reading room Reading a book
1 Study room Using a laptop
2 Rest room Lying on sofa
3 Living room Sitting on sofa
4 Bedroom Lying on bed
5 Dining room Drinking with a cup
6 Exercise area Working out
7 Game room Playing console

Table 3 provides an overview of different classes along with their corresponding areas
and associated human actions. Figure 6 shows some of the images from the recordings of
the different actions. As mentioned before, they were recorded from different angles and
distances without changing the height of 1.3 m.

The proposed methodology is designed to handle challenges in human pose estimation,
including robustness to real-world variations such as lighting and weather. Special attention
is given to capturing complex body positions by utilizing carefully collected data and
feature extraction techniques. The system is designed with control mechanisms to handle
suddenly interrupted actions, ensuring data validity. Additionally, the proposed methods
can be adapted to handle multiple persons and their interactions.
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Figure 6. Examples of recordings of a person performing different actions.

4. Results and Experiments

In this section, we describe the experiments and results conducted to evaluate our
methodology. For this research, it was decided to conduct three experiments in order
to detect house areas: (i) using only objects of interest; (ii) using only the human pose
data; and (iii) combining the use of objects of interest and the human pose data. The
aim is to assess the importance and relevance of these types of data when applying a
machine-learning method for classification. By examining these data separately, we seek
to understand the individual impact of each on the classification process. This approach
allows for a clearer and more precise understanding of how each type of data contributes
to the model’s performance and its ability to classify effectively.

It is important to note that our proposed system is designed to capture a person’s range
of motion within the context of single-person interaction scenarios. The training data used
for the machine learning models includes a wide variety of body positions and movements
to ensure that the system can accurately detect different human actions. However, the
system can be adapted to multiple persons as well by incorporating additional data for
multi-person scenarios.

For each experiment, we report a table summarizing the average of each of the perfor-
mance metrics and the computation time, as well as the confusion matrices of the methods
with the best and worst classification results.

Table 4 provides a description of the object data, the human pose data, and the
combined object and human pose data. It includes information about the target type, the
number of columns and rows in each dataset, the number of features, and the number of
folds used for cross-validation. Note that for each experiment, the dataset was divided into
training and testing subsets. Specifically, 70% of the data was used for training, while the
remaining 30% was used as a testing set.
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Table 4. Object, pose, and a combination of object and pose data description.

Description Object Human Pose Object and Human Pose

Target Multi-class Multi-class Multi-class
Dataset rows: 1606, columns: 343 rows: 1603, columns: 217 rows: 1601, columns: 559
Train set rows: 1124, columns: 343 rows: 1122, columns: 217 rows: 1122, columns: 559
Test set rows: 482, columns: 343 rows: 481, columns: 217 rows: 481, columns: 559
Features 342 216 558
Folds 10 10 10

4.1. Classification Using Objects of Interest

In this section, we present the results obtained solely using object data, considering
the same data structure. These results are of paramount importance, as they provide a
detailed understanding of the influence of objects on the performance of the machine
learning method. By analyzing only the object data, we can gather specific information
regarding their relevance and contribution to the accurate classification of instances. This
investigation offers a comprehensive and insightful perspective on the pivotal role played
by object data in our analysis.

Figure 7 shows the confusion matrices obtained from the SVM (Figure 7a) and k-NN
(Figure 7b) methods, with the true class labels on the x-axis and the class predictions on the
y-axis. The first diagonal contains the correct classifications, while all other entries show
misclassifications. As can be seen, the largest errors come from misclassifying classes 0
(reading room) and 7 (game room). For example, in the confusion matrix of Figure 7a, it
can be seen that 22 instances of class 0 are incorrectly predicted as class 7, while 7 and 17
instances of class 7 are incorrectly predicted as class 0 and 6 (exercise room), respectively.
Similar results are observed in the confusion matrix of Figure 7b.

The results of the experiments are summarized in Table 5, which shows the average
of the performance metrics for each of the five classification methods evaluated and the
average computation time in seconds. As we can see, GB demonstrates the highest accuracy
of 72.97%, which is followed closely by XGB at 72.53% and LGBM at 72.08%. These methods
exhibit competitive performance in terms of AUC, with GB achieving the highest value
of 95.08%.

Table 5. Performance comparison using only objects in the environment.

Method Accuracy AUC Recall Prec. F1 κ MCC Time (s)

GB 0.7297 0.9508 0.7297 0.7512 0.7286 0.6910 0.6941 1.0510
EGB 0.7253 0.9488 0.7253 0.7394 0.7251 0.6859 0.6881 0.1990
LGBM 0.7208 0.9469 0.7208 0.7360 0.7202 0.6809 0.6832 0.7050
K-NN 0.6754 0.9078 0.6754 0.6935 0.6690 0.6290 0.6337 0.1580
SVM 0.7297 0.9508 0.7297 0.7512 0.7286 0.6910 0.6941 0.1470

Regarding the recall metric, GB again outperforms the other methods with a score
of 72.97%. This indicates its ability to correctly identify positive cases. However, it is
important to note that all the methods have similar recall scores, suggesting reasonable
performance across the board.

Precision analysis reveals that GB achieves the highest score (75.12%), indicating its
superior ability to avoid false positives compared to the other methods. Similarly, GB
achieves the highest F1 score (72.86%), which balances precision and recall, demonstrat-
ing its robust performance. In addition, when evaluating the κ and MCC metrics, GBC
consistently outperforms the other methods, indicating its overall superiority.

Finally, although GB has a remarkable performance, it is important to consider the
trade-off between performance and computation time. GB has a longer computation time
of 1.0510 s compared to the other methods, while K-NN has the shortest computation time
of 0.1580 s.
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(a) Confusion matrix from SVM method using objects.

(b) Confusion matrix from K-NN method using objects.

Figure 7. Examples of confusion matrices using objects of interest.

4.2. Classification Using Human Pose Data

In this section, we present the results obtained solely using human pose detection data.
These findings are significant because they provide a comprehensive understanding of the
influence of human pose on the performance of the machine learning method. By focusing
solely on the human pose recognition data, we gain specific insights into its relevance and
contribution to achieving accurate instance classification.

Figure 8 shows the confusion matrices obtained from the LGBM (Figure 8a) and SVM
(Figure 8b) methods. On the one hand, as can be seen from the confusion matrix in Figure 8a,
the LGBM method shows a low rate of misclassifications. On the other hand, the analysis
of the confusion matrix obtained with the SVM method (Figure 8b) shows that the classes
0 (reading room), 4 (bedroom), and 7 (game room) are the most frequently misclassified.
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(a) Confusion matrix from LGBM method using human pose.

(b) Confusion matrix from SVM method using human pose.

Figure 8. Examples of confusion matrices using human pose.

The average of the performance metrics and the average computation time in seconds
are summarized in Table 6. As we can see, LGBM has the highest accuracy with 97.86%,
which is closely followed closely by XGB at 96.52% and GB at 95.99%. These methods
exhibit exceptional performance in accurately classifying instances.

Table 6. Performance comparison using human pose.

Method Accuracy AUC Recall Prec. F1 κ MCC Time (s)

LGBM 0.9786 0.9992 0.9786 0.9799 0.9785 0.9755 0.9757 12.8920
EGB 0.9652 0.9984 0.9652 0.9673 0.9648 0.9602 0.9606 9.1760
GBM 0.9599 0.9986 0.9599 0.9634 0.9597 0.9541 0.9547 51.5040
K-NN 0.9251 0.9909 0.9251 0.9308 0.9239 0.9144 0.9155 0.2540
SVM 0.6809 0.9445 0.6809 0.7274 0.6734 0.6353 0.6445 0.2770
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In terms of the AUC, which measures the ability of the model to discriminate between
classes, the LGBM method achieves the highest value at 99.92%, which is closely followed
by XGB at 99.84% and GB at 99.86%. These high AUC values indicate the methods’ excellent
discrimination capability.

The recall metric, which measures the ability of the models to correctly identify positive
instances, shows consistently high scores for all models, with the LGBM method achieving
the highest recall at 97.86%, which is closely followed by XGB at 96.52% and GB at 95.99%.

Precision analysis reveals that the LGBM method achieves the highest precision score
(97.99%), indicating its superior ability to avoid false positives compared to the other meth-
ods. Similarly, LGBM achieves the highest F1 score (97.85%), which balances precision and
recall, demonstrating its robust performance. In addition, the LGBM classifier consistently
outperforms the other methods when assessing κ and MMC metrics, indicating its overall
superiority in terms of agreement and correlation.

Finally, although the LGBM outperforms the other methods in terms of performance
metrics, it is worth noting that the computation time for LGBM is significantly higher
compared to the other methods with a value of 12.8920 s, while K-NN has the shortest
computation time of 0.2540 s.

4.3. Classification Combining Human Pose and Objects of Interest

In this section, we present the results obtained by considering both object data and
human pose, using the same data structure as previously presented. The analysis of these
results reveals the fundamental importance of incorporating both object and human pose
data to enhance classification models. This integration of information provides a more
comprehensive and accurate understanding of the instances to be classified, enabling
superior performance in machine learning methods. By combining object and human
pose information, relevant features and patterns crucial for classification are captured and
utilized, leading to a substantial improvement in the accuracy and effectiveness of the
models. These findings highlight the crucial relevance of including object and human pose
data in the analysis and enhancement of classification algorithms.

Figure 9 shows the confusion matrices obtained from the LGBM and SVM classification
methods. As can be seen from the confusion matrix in Figure 9a, the LGBM method
performs well. On the contrary, the SVM method (Figure 9b) obtains several classification
errors, with the highest number of errors when classifying the instances of class 7, where
38 out of 60 instances are misclassified.

Table 7 shows the classification results and the average computation time in sec-
onds when combining the environmental objects and the human pose. As we can see,
among the methods, LGBM achieved the highest accuracy (98.66%), AUC (99.99%), and
F1 score (98.65%). It also showed high recall, precision, κ, and MCC values, indicating its
effectiveness in correctly classifying instances.

Table 7. Performance comparison combining human pose and environmental objects.

Method Accuracy AUC Recall Prec. F1 κ MCC Time (s)

LGBM 0.9866 0.9999 0.9866 0.9876 0.9865 0.9847 0.9849 13.9950
GB 0.9768 0.9996 0.9768 0.9783 0.9767 0.9735 0.9737 56.8530
EGB 0.9723 0.9996 0.9723 0.9741 0.9722 0.9684 0.9687 14.4640
K-NN 0.9250 0.9896 0.9250 0.9343 0.9259 0.9143 0.9156 0.3240
SVM 0.8277 0.9824 0.8277 0.8482 0.8275 0.8031 0.8062 0.8160

Similarly, the GB and XGB methods also performed well with accuracy scores of
97.68% and 97.23%, respectively. These methods showed comparable results in terms of
AUC, recall, precision, F1 score, κ, and MCC.

In contrast, the K-NN and SVM methods achieved relatively lower accuracy scores
of 92.50% and 87.05%, respectively. These methods demonstrated lower performance in
terms of AUC, recall, precision, and F1 score compared to the boosting methods.
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(a) Confusion matrix from LGBM method combining objects and human pose.

(b) Confusion matrix from SVM method combining objects and human pose.

Figure 9. Examples of confusion matrices combining objects and human pose.

Finally, Table 8 shows the accuracy comparison between the three different analyses. It
is worth noting that including both object data and human pose data in the analysis led to
improved classification results for all methods except the K-NN algorithm. The combination
of object and human pose features allowed for a more comprehensive understanding of
the data and improved the models’ ability to accurately classify instances. In this table,
it can be observed that when both sources of information, the detected objects, and the
detected human pose, are used, the precision of the methods ranges from a maximum of
0.9866 to a minimum of 0.8277, with an average of 0.9368. However, if only the information
from the detected objects is considered, the precision of the methods reaches a maximum
of 0.7297 and a minimum of 0.6754. In this case, the average precision is 0.71618, which
is significantly lower than the average precision obtained with the combination of both
sources of information. The same trend applies to the precision obtained from the human
pose data alone. With a maximum precision of 0.9786 and a minimum of 0.6809, the average
precision is 0.90194, which is also lower than the average precision when using both sources
of information.
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Table 8. Accuracy Comparison of Machine Learning Methods.

Method Objects Human Pose Objects and Human Pose

LGBM (LightGBM) 0.7208 0.9786 0.9866
GB (Gradient Boosting) 0.7297 0.9599 0.9768
EGB (Extended Gradient Boosting) 0.7253 0.9652 0.9723
K-NN (K-Nearest Neighbors) 0.6754 0.9251 0.9250
SVM (Support Vector Machine) 0.7297 0.6809 0.8277

5. Conclusions and Discussion

This study demonstrates that the inclusion of both object data and human pose data has
proven beneficial in improving the classification results of various models. The combination
of these two sources of information enables achieving a precision of up to 0.9866 in the
best-performing model, surpassing the classification achieved when only one of them is
utilized. However, it is worth noting that employing a greater number of classes than the
ones used in this study (eight) might not yield equally successful results.

From the results obtained, it can be concluded that the combination of object data
and human pose data has certain advantages. Object data can be used to classify rooms,
but there are cases where it does not provide enough information to distinguish between
two different rooms that may contain the same type of object. The average accuracy in
experiments using only object data was 0.71618. The movement of people, as seen through
human pose, can also be used to classify different rooms, as people perform different
actions in different places. However, there are also cases where the actions are similar and
the classification may fail. The average accuracy of the experiments using only human pose
information was 0.90194. Combining both types of information allows us to classify the
rooms more accurately. The average accuracy in this case was 0.9368.

While the majority of the models benefited from the inclusion of both object and
human pose data, it is noteworthy that the K-NN algorithm did not show the same level of
improvement. This could be attributed to the specific characteristics of the K-NN algorithm,
which relies heavily on distance-based metrics for classification. It is possible that the
inclusion of human pose data, which represents spatial relationships rather than direct
object attributes, did not align well with the distance-based nature of the K-NN algorithm.
Further investigation and experimentation with different algorithms specifically tailored to
handle both types of data may be warranted to fully explore their potential synergies.

The results and methodology presented in this study could serve as a starting point
for future research in the field of semantic navigation planning for robots by understanding
human actions for the identification of location in home environments.

In addition, it is important to highlight that the system’s versatility extends beyond
single-person interactions. The methodology can be adapted and extended to handle
multi-person scenarios, offering potential applications in various settings such as facto-
ries and shopping centers. Future research efforts can explore techniques to incorporate
multi-person pose estimation, further enhancing the system’s capabilities and enabling
it to cater to diverse user scenarios. Furthermore, the proposed methodology addresses
challenges related to robustness in dealing with sudden interruptions by carefully collect-
ing data at specific time intervals to effectively capture essential temporal information for
action learning.
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