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Abstract: Human–machine shared control of intelligent vehicles is considered an important tech-
nology during the industrial application of autonomous driving systems. Among the engineering
practices in driver assistance systems, shared steering control is one of the important applications
for the human–machine interaction. However, how to deal with human–machine conflicts during
emergency scenarios is the main challenge for the controller’s design. Most shared control approaches
usually generate machine-oriented results without enough attention to the driver’s reaction. By
taking the human driver and machine system as two intelligent agents, this paper proposes a game-
based control scheme to achieve a dynamic authority allocation during the lane changing maneuver.
Based on the modeling of predicted trajectories of the human driver, a human-intention-based shared
steering control is designed to achieve dynamic Nash game equilibrium. Moreover, a human-oriented
shared steering mechanism is employed to not only benefit from automated machine assistance,
but also make full play of human contributions. Using quantitative comparative analysis in lane
changing scenarios with different human–machine conflicts, a better performance by considering
both driving comfort and safety is achieved.

Keywords: human–machine interaction; shared control; game control; lane changing maneuver

1. Introduction

With the development of automated driving technology, intelligent vehicles have
received growing attention to improve driving safety and reduce human drivers’ workload
in recent years. However, there are still many challenges with the existing technologies to
achieve fully driverless vehicles in complex environments [1]. Based on the SAE standard,
human-in-the-loop control is still the main technical approach for L0∼L3 intelligent vehicles
before L4∼L5 fully automated driving. The human–machine interaction technology is
a kind of advanced driving-assistance system (ADAS) which can be used to improve
active safety, reduce driver workload [2], even reduce energy consumption [3]. A shared
control concept through the combination of manual mode and automated mode offers a
new solution to solve the control authority between the human driver and the machine’s
systems [4,5].

During the engineering practices of ADASs, steering control on the vehicle is usu-
ally implemented with traded control mode and shared control mode [6]. Traded con-
trol mode means that the human driver is considered as the independent driving input,
and the machine system is used to enhance the driver’s perception and control ability.
Human–machine interaction is a kind of master–slave relationship in this kind of steering
control. Shared control mode takes the human driver and the machine system as two
parallel control inputs [7]. Shared steering control is one of the important applications for
the lange change maneuver for intelligent vehicles. Based on the lane changing situations,
the control authority is switched between the two intelligent agents. The two intelligent
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agents possess the control authority simultaneously, and coupling results are generated
according to a certain principle [8].

The shared steering control in this paper is studied on a steer-by-wire (SBW) system
with an uncoupled mechanism. The modeling of human–machine cooperative steering
control is based on the decoupling characteristic. There are two key issues during the
design of shared steering control. The first is how to integrate different inputs from two
lane-changing participants. From the previous literature, most studies conducted the
integration of driver and machine steering input through an angle-based sharing method.
The control authority is distributed by a weight coefficient to couple inputs from the
human driver and the machine system [9,10]. The shared steering strategy is designed by
mapping the path tacking error onto the guiding steering angle. However, the angle-based
sharing method usually generates unexpected steering results, thus leading to a confused
sense for the human handling reaction [11]. To build a feedback mechanism during
human–machine interactions, this paper employs a torque-based sharing method to avoid
possible violent steering guidance from the assistance system. The torque-based human–
machine cooperative control allows the driver to remain in the control loop, and can achieve
relatively smooth authority distribution [12,13]. This kind of approach is also studied as a
haptic shared control strategy.

The second issue is how to deal with the conflict between human input and ma-
chine assistance. A variety of model-based human–machine cooperative methods have
been designed for the shared steering controller, of which the model predictive control
(MPC) [14,15] and linear quadratic regulator (LQR) [16,17] have been used to solve the
human–machine interaction in trajectory tracking control. The model-based approaches
with static numerical derivation are difficult to describe the dynamic characteristic of the
human driver reaction. To describe and address conflicts between human and machine,
game theory is an effective method to apply to such interactive decision-making systems.
The game-based approach makes the human and machine drive the vehicle in parallel,
where the choice of steering action of each control agent depends on that of the other [18].
For the research of human–machine multi-agent systems, and given the advantages of
game equilibrium strategy, this paper investigates shared steering control from a dynamic
game theory approach.

Since steering systems may be either mechanically coupled or uncoupled, the game-
theory-based controllers in previous studies were designed to receive considerable attention
for both coupled and uncoupled shared control. In coupled shared steering control, the
driver and the machine interact through a motorized steering wheel that is mechanically
coupled to the vehicle tires. By considering a torque-overlay-based shared control frame-
work, the allocation of the steering effort is calculated by the game equilibrium between the
driver and machine assistance [17,19,20]. In uncoupled shared steering control, the driver
controls the vehicle indirectly through an uncoupled steering system, such as steer-by-wire
(SBW) or active front steering (AFS). Non-cooperative approaches using game theories
have been designed to study the interaction between the driver and an AFS system from
the theoretical point of view, using the LQR and MPC techniques for modeling and con-
trol [21–24]. The main issue of coupled shared steering control is the torque conflicts due
to the different intentions of the human driver and the machine system, while uncoupled
control may cause the driver to experience a lack of control when the machine system does
not exactly follow the driver’s intention [25].

The human–machine interaction should be modeled to simultaneously enhance driv-
ing safety and reduce the degree of conflicts during shared steering control. Most of these
game-based approaches are designed using the complete information hypothesis, where the
game players can achieve full information from each other. The interaction of human and
machine is conducted to follow a predefined principle during the conflict, and the control
authority is assigned by an absolute trusting of the machine system. However, in emergency
lane-changing conditions with incomplete information, these kinds of game-based schemes
usually generate machine-oriented shared results without enough attention to the driver’s
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reaction. To solve this issue, in the game-based modeling of human–machine interactions,
the weighting matrix of optimal control inputs should be adaptive to describe this kind of
human-oriented relationship, which has not been emphasized in previous studies.

In order to address the authority distribution during lane changing conditions, the in-
tention of the human driver should be considered in the shared steering control. The at-
tention of the human driver can be easily focused again after being reminded, but the
decision of machine intelligence is limited to the performance of the sensory system. In this
paper, a long short-term memory (LSTM) network is employed as the driver’s-intent
recognition model. This paper designs a steering torque cooperative framework for lane
changing by using Nash equilibrium game theory. In the proposed framework, the shared
control not only benefits from automated machine assistance, but also make full play of
human contributions. Based on the experimental analysis in a hardware-in-the-loop (HIL)
platform, the proposed strategy is verified by comparing the performance with the game al-
gorithms from the existing literature. The main contributions of this paper are summarized
as follows.

(1) An adaptive parameter-adjustment scheme is designed to achieve dynamic Nash
equilibrium during shared steering control. By dynamically changing the authority distri-
bution coefficient, a smooth resolution of human–machine steering conflicts to improve
both driving comfort and safety can be achieved.

(2) A human-oriented shared steering control is employed to establish a flexible
interaction mechanism. Based on the conflict degree of the steering torque, the machine
system can reduce inappropriate assistance to follow the specific intention of the human
driver. The proposed adaptive game approach can avoid single machine-oriented control
results, in which the driver can play a dominant role after the recovery of human attention.

This paper is organized as follows. Section 2 gives a brief introduction of the system
architecture, and the modeling of driving paths from human and machine intelligence are
investigated, respectively. Section 3 presents the establishment of a shared steering control
algorithm using a game-based theory, and the interaction between the human driver and
machine system is resolved by a series of non-cooperative Nash games. Section 4 offers a
detailed description of the experimental verification for the proposed control strategy in the
self-developed HIL experiments. The conclusion of the human–machine shared steering
control for vehicles in this paper is summarized in Section 5.

2. Modeling of Human–Machine System

The modeling of the human–machine system was designed by combining a single-
track vehicle dynamics model with a steer-by-wire (SBW) system. Compared with the
traditional mechanical steering system, the SBW system removed the mechanical linkage be-
tween the steering column and steering actuator [26]. In this paper, human–machine shared
steering control is investigated by using the decoupling characteristics of SBW systems.
Based on the numerical models of both the human driver and machine system, the target
paths from two participants can be generated, respectively. The shared steering motion of
the vehicle is a dynamic game process between the human driver and machine system.

2.1. System Architecture

The system architecture of the shared steering control frame is shown in Figure 1.
By considering the shared control as a linear-discretized system with time sequence k, here
L1(k) and L2(k) denote the target trajectories of the machine system and human driver,
respectively; τ1(k) and τ2(k) represent the steering torque generated from the machine and
driver, respectively; x(k) is the state parameters of the controlled vehicle dynamics, which
are discretized as a time sequence. The interaction of human–machine shared control is
coupled by steering torque from each other, and the vehicle is driven by the driver and
machine simultaneously.
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Figure 1. Architecture of the shared control model with game theory.

The human driver and machine system generate the optimal driving actions according
to the respective target, which can be considered as a certain principle of game-based
equilibrium. During lange changing control, the game-based equilibrium usually generates
a compromise result to balance the different requirements of the two participants, which
may not satisfy traffic regulations. For example, the vehicle should be driven in the middle
of the lane according to traffic rules, but a neutral trajectory of the game result to make
the vehicle run along the lane line between two traffic lanes would be unreasonable [8].
It is also difficult for the machine system to discover its inappropriate decision under
complex situations, such as the driverless dilemma in [27].

To solve the above issue, game-based shared steering control can be designed as a
human-oriented mode. This means the shared principle has the ability to return control
authority to the driver after the recovery of human attention. This paper employs a
torque-based shared steering control to establish a flexible human–machine interaction
mechanism. When a conflict occurs, the machine will generate a reaction torque on the
steering handwheel to correct the driver’s action. The conflict can be resolved if the driver
accepts the proposed action of the machine. However, if the driver does not accept the
assisted machine action, the driver will increase the steering torque to maintain the original
operation. Here, the accumulation of dot products between the steering torques from the
two participants is employed to recognize the driving attention of the human. More details
of the control algorithm will be given in the following section.

2.2. Vehicle Lateral Dynamics

In order to analyze the shared steering control, an integrated numerical model was
considered by combining the vehicle dynamics with the steering system. To simplify the
modeling of the vehicle’s motion, the single-track dynamics model shown in Figure 2 was
designed. With an assumption of constant longitudinal motion speed in the lane changing
maneuver, the lateral dynamics equations of the vehicle can be expressed as

mc
(
v̇y + vx ϕ̇

)
= Ff + Fr

Jc ϕ̈ = l f Fr − lrFr

ėϕ = ϕ̇− κ

ėy = vx sin eϕ + vy cos eϕ

ṡ = 1
1−κey

(vx cos eϕ − vy sin eϕ)

(1)

where mc is the mass of the vehicle; Jc is the yaw moment of inertia of the vehicle; vx and
vy are its longitudinal and lateral speeds; ϕ is the yaw angle of the vehicle relative to the
road; l f and lr are the distances between the front/rear axle and the center of gravity of the
vehicle, respectively; Ff and Fr are the lateral forces generated by the front and rear tires; eϕ
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is the included angle between the vehicle heading direction and the road center tangent; ey
is the lateral offset between the vehicle and the road’s center line; κ is the road curvature;
and ṡ is the component speed along the road direction.

Figure 2. Vehicle single-track dynamics model.

If the vehicle is driving on a road with little curvature (κ ≈ 0), the included angle
between the vehicle heading direction and the road center tangent eϕ is assumed to keep
in a relatively small range. Thus, parts of the lateral dynamics equations of the vehicle in
Equation (1) can be rewritten as 

ėϕ = ϕ̇

ėy = vxeϕ + vy

ṡ = vx − vyeϕ

(2)

Based on the above assumption of a small steering angle, the relationship between
the slip angle and the lateral forces generated by the vehicle tires can be considered as an
approximate linear relation. Thus, a linear tire model can be employed to approximately
calculate the lateral force generated by the front and rear tires:

Ff = 2C f

(vy + l f ϕ̇

vx
− δ f

)
Fr = 2Cr

vy − lr ϕ̇

vx

(3)

where C f and Cr represent the cornering stiffness of a single front tire or rear tire under its
static load, and δ f is the front wheel steering angle.

According to the previous study of steering systems [26], the handwheel system
can be regarded as a rigid body. During shared steering control, the modeling of the
handwheel module is considered as a one degree-of-freedom system. Based on Newton’s
laws, the elements on the handwheel module are represented by its total moments of inertia
and viscous friction coefficients. Based on this assumption, the steering dynamics function
can be described as a second-order system, and the differential equation is given as

JSW θ̈SW = τ1 + τ2 − τload (4)
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where JSW is the equivalent moment of inertia of the steering system with respect to the
steering wheel, θSW is the steering angle of the handwheel, τ1 is the assisting torque with
respect to the control conflict between the human driver and machine system, and τ2 is the
steering torque of the driver. τload is the equivalent steering load, which is composed of
the steering system’s equivalent viscous friction torque and self-aligning torque. The self-
aligning torque is calculated with respect to the steering wheel pneumatic trail in [28];
the calculation of τload can be expressed as

τload = BSW θ̈SW +
2C f dw

Ns

(
δ f −

vy + dp ϕ̇

vx

)
(5)

where dw is the width of the front wheel, dp is the pneumatic trail of the front wheel,
and BSW is the equivalent viscous friction damping coefficient of the steering system.

The steering transmission from the steering wheel angle θSW to the front wheel steering
angle δ f is assumed as a linear relation. If the transfer ratio is defined as Ns, the relation
can be described as θSW = δ f Ns. Substituting Equations (4) and (5) into Equation (1),
and denoting the lateral deviation of the vehicle from its starting point as Y , the system
state equation of the vehicle dynamic is expressed as{

ẋ = Ax + B(τ1 + τ2)

y = Cx
(6)

where
xxx =

[
θSW θ̇SW vy ϕ̇ Y ϕ

]T

AAA =



0 1 0 0 0 0
− c1

Ns
− BSW

JSW
2c1
vx

2c1dp
vx

0 0

− 2C f
mc Ns

0 c2 c3 − vx 0 0

− 2l f C f
Ic Ns

0 c3 c4 0 0
0 0 0 0 0 vx
0 0 0 1 0 0


BBB =

[
0

1
JSW

0 0 0 0
]T

CCC =

[
0 0 0 0 1 0
0 0 0 0 0 1

]
c1 =

2C f dw

Ns JSW
c2 =

2C f + 2Cr

mcvx

c3 =
2l f C f − 2lrCr

mcvx
c4 =

2l2
f C f + 2l2

r Cr

mcvx

In order to be used in the continuous control model, the above system state equation
needs to be converted to the discrete form with the sampling time Ts. If k is defined as the
discrete time instance, the equation can be rewritten as:{

x(k + 1) = Adx(k) + Bd(τ1 + τ2)

y(k) = Cx(k)
(7)

where Ad = eATs and Bd = B
∫ Ts

0 eAt dt.
In this paper, the related physical parameters of the above vehicle dynamics model

are shown in Table 1.
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Table 1. Physical paramete rs of the vehicle dynamics.

Symbol Description Value

mc Vehicle mass 1406 kg
Jc Vehicle yaw moment of inertia 1802 kg·m2

vx Vehicle cruising speed 20 m/s
l f Distance from vehicle center of gravity to front axle 1.016 m
lr Distance from vehicle center of gravity to rear axle 1.562 m
C f Cornering stiffness of one single front wheel 70,000 N/rad
Cr Cornering stiffness of one single rear wheel 50,000 N/rad
JSW Moment of inertia of steering system 0.1 kg·m2

BSW Steering system linear damping coefficient 0.8 Nm·s/rad
Ns Steering system angle reduction ratio 16
dw Width of front wheel 0.2 m
dp Front wheel pneumatic trail 0.008 m

2.3. Driver System Modeling

Based on the above discussion, the prediction of the motion generated from the human
side is necessary during shared control of the vehicle. The prediction model to describe the
driver’s lange change maneuver can be divided into two parts: driver’s-intent recognition
and trajectory prediction.

The driver’s-intent recognition model was designed to obtain the driving behaviors
from the human, including lane keep (LK), left lane change (LLC), and right lane change
(RLC). The relationship between vehicles in contextual traffic is an important reference
factor to determine the driving behaviors of humans. To describe the interaction between
the controlled vehicle and other surrounding vehicles, this paper defines a lane-change
traffic scene as shown in Figure 3. The traffic flow includes the ego vehicle (EV) and obstacle
vehicles (OVs). Di and TGi are the distances and time gaps between the EV and other
surrounding vehicles.

OV1 OV2

OV3 OV4

OV5 OV6

EV

x

y

Figure 3. The scene of the traffic flow grid graph.

Based on the traffic information in Figure 3, a long short-term memory (LSTM) network
was employed as the driver’s-intent recognition model. With a special memory function
structure, LSTM algorithm is believed to have an excellent prediction performance for the
sequence variables [23]. However, there also exists a shortcoming that limits it to be used
in multi-variable and multi-step sequence data, because the model usually transforms the
two-dimensional data into one-dimensional data, which will drop some important features.
To obtain an accurate prediction for driver behavior in lane change maneuvers, this paper
proposes the augmentation of the LSTM algorithm with a convolutional neutral network
(LSTM-CNN) for sequences classification.

The structure of the motion prediction model based on the LSTM-CNN model is
shown in Figure 4. As shown in Figure 4, the input sequence includes the state variable of
the EV and the interactions between the other OVs. The input sequence of the LSTM-CNN
model can be expressed as Ninput = [y, vy, TGi], where y and vy are the lateral position and
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lateral velocity of the EV and TGi is the time gap between the EV and other surrounding
vehicles. The output value of the motion prediction model is expressed as Noutput, which
represents three kinds of driver motion behavior: lane keep (LK), left lane change (LLC),
and right lane change (RLC). The sequence folding layer with the name “Seq-fold” was
used to preprocess the data sequence from Niutput. Furthermore, the convolutional neutral
layer with the name “Conv” can restore sequence data and extract the feature. Then, the
“Conv” follows the batch normalization (BN) and rectified linear unit (Relu) to improve
the generalization and expression ability of the network model. A sequence unfold layer
(Seq-unfold) combines the output of the Relu layer and the Seq-fold layer, which is the
input of the lstm layer (Lstm). Finally, the fully connected layer (FC) and a softmax layer
(Softmax) obtain the prediction result Noutput via mapping and sorting.

Conv

Input sequence

Driver LC intention

FC

Softmax

Seq-unfold

Lstm

Seq-fold

BN

Relu

Figure 4. The structure of LSTM-based motion prediction model.

The LSTM-CNN model was trained and tested by the next-generation simulation
(NGSIM) dataset, which includes real traffic trajectory data conducted by the United Stated
Federal Highway Administration. The NGSIM dataset includes the concrete information
for all the vehicles, such as Vehicle ID, Position X, Position Y, Vehicle Speed, Lane ID,
and so on. In this paper, we selected 7134 data samples from the NGSIM dataset to train
the proposed LSTM-CNN model. The details of the driver’s-intent recognition model
can be found from our previous literature [29]. By using the time gap information of the
ego vehicle in contextual traffic, an improved prediction accuracy with about 90% can be
achieved to describe the driver’s lane change behavior.

Based on the recognition of driver intention, the trajectory of the lane change maneuver
in the short-term future can be predicted. The physics-based prediction method assumes
that the vehicle’s dynamic parameters are constant in the preview time. The prediction
effect of the physical-based methods in a short period of the time needs fewer calculation
resources than that of the machine-learning-based methods. Based on the algorithm in [30],
here, a constant turn rate and acceleration (CTRA) model was adopted to predict the
driver’s driving trajectory of the lane change maneuver in the predicted time domain.
The state variable of the CTRA model can be expressed as follows:

xCTRA = (X, Y, ϕ, Ẋ, Ẏ, ϕ̇) (8)

where X and Y mean the vehicle’s longitudinal and lateral displacement relative to the
world coordinate system, ϕ is the yaw angle of the vehicle, and Ẋ, Ẏ, and ϕ̇ represent the
velocity variables of the vehicle by differentiation, respectively.

If the sampling time is defined as ∆t, by iterating from the current step t to the
predicted time domain, a set of predictive vehicle states in the limited step Np is expressed
as xCTRA(t), xCTRA(t + ∆t), ..., xCTRA(t + Np∆t). As shown in Figure 5, the blue segment
sequences represent the prediction of driver trajectories in a predetermined time range.
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The prediction of the driver’s trajectories were achieved with the combination of segment
sequences, and the sampling time was set as 0.1 s in this case.

0 50 100 150 200 250

x (m)

0

1

2

3

4

y
 (

m
)

Prediction path

Vehicle real path

Figure 5. The predicted trajectory segments and the driver’s real trajectory.

Based on the predicted trajectory, an assessment model was designed to evaluate the
risk level of the driver’s behaviors within a predetermined time domain. Time gap (TG)
and time to collision (TTC) are widely used for vehicles’ risk assessments to avoid collisions.
Since the TG shows time headway to the preceding vehicle with more stringent constraints,
here, this paper proposes a risk assessment model based on the TG. To evaluate the degree
of influence of contextual traffic on the LC maneuver, we define the time gaps between the
ego vehicle and the front/rear vehicles as TG f and TGr, respectively. Thus, the risk level R
of the vehicle trajectory in specific time can be expressed as

R =
α f

TG f
+

αr

TGr

TG f =
x f − xEV

vEV

TGr =
xEV − xr

vr

(9)

where α f and αr are the risk coefficients for the front and rear vehicles. xEV , x f , and xr are
the longitudinal position of the ego vehicle, front, and rear vehicles. vEV and vr are the
longitudinal velocity of the ego vehicle and rear vehicle.

By using the prediction segments of the lane change maneuver, the predictive vehicle
states xCTRA(t) are substituted into Equation (9). The sum of the driving risk assessment
for the driver’s behaviors in the predicted time domain can be expressed as:

R∗ =
Np

∑
n=0

R(xCTRA(t + n∆t)) (10)

Here, R∗ can show the environmental risk during the lane change maneuver, which is
based on the consideration of the TGs for the surrounding vehicles in Figure 3. The traffic
vehicles with a larger TG will result in a smaller risk R∗. The driving risk assessment will be
employed to take authority allocation between the human driver and machine assistance.

3. Design of Game-Based Shared Control Algorithm

During human–machine interactive steering control, the motion of the vehicle is
commanded at the same time from two intelligent agents. The specific shared control
process between the machine system and the human driver can be viewed as a series of
non-cooperative Nash games [21]. In this type of game, the steering torques from the
machine intelligence and the human driver are coupled to generate the final steering action.
The machine system and the human driver formulate their own strategies independently,
but are aware of each other’s actions and their possible impact on the vehicle’s movement.
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When the prediction time domains of the machine and the driver are defined to have the
same length Np, the cost functions for the torque inputs from both participants at time
instance k are given as

J1(τ1, τ2) =
k+Np−1

∑
j=k

‖ y(j)− y1(j) ‖2
Q1

+
k+Np−1

∑
j=k

R1τ1(j)2

J2(τ1, τ2) =
k+Np−1

∑
j=k

‖ y(j)− y2(j) ‖2
Q2

+
k+Np−1

∑
j=k

R2τ2(j)2

(11)

where τ1(j) and τ2(j) are the torque input sequences from the machine system and human
driver, y1(j) and y2(j) are the target planned-path sequences from the machine system and
human driver, and y(j) is the synthetic path sequence by the human–machine interaction.
Qi = diag(qY, qϕ) is the weight coefficient matrix of the lateral displacement and yaw angle
tracking error, which corresponds to the tracking performance of the vehicle. R1 and R2
are the weight coefficients of the amount of steering torque input corresponding to the
machine intelligence and human intelligence.

Here, τ∗i is defined as the optimized steering torque allocation strategy under Nash
equilibrium. Then, a dynamic programming inverse order method is applied for the
solution of τ∗i . Before using the linear quadratic programming algorithm, Equation (11)
needs to be converted to its standard format:

τ∗i = argmin
τi

k+Np−1

∑
j=k

‖ x̃(j) ‖2
Q̃i

+
k+Np−1

∑
j=k

Riτi(j)2

, i = 1, 2 (12)

where x̃(j) =
[

y(j) Li(k)
]T Q̃i =

[
KT

i QiKi −diag
(
yT

i Qi
)

−diag
(
QT

i yi
)

0

]
K1 =

[
C −I2 02×(2Np−1)

]T
K2 =

[
C 02×Np −I2 02×(Np−1)

]T

According to Hamilton formalism, the optimal torque input of the participants under
Nash equilibrium has the following form:

τ∗i = −R−1
i B̃T

i Pi x̃ (13)

We refer to −R−1
i B̃T

i Pi as the torque feedback matrix under Nash equilibrium, where

B̃i =
[

Bi 0
]T . Matrix Pi is obtained by solving a series of discrete Riccati equations:

Pi = P0
i

Pk−1
i = Pk

i + Ts[
(

Ãk − Sk
3−iP

k
3−i

)T
Pk

i + Pk
i

(
Ãk − Sk

3−iP
k
3−i

)
− Pk

i Sk
i Pk

i + Q̃k
i ]

Sk
i = B̃iR−1

i B̃T
i

P
Np
i = 0

(14)

During the solution of the above algorithm, the iterative calculation of P
Np
i is started

with the initial value as zero. Based on the value of Pk
i , Pk−1

i can be derived using the
forward iterative calculation. By using the rolling optimization approach, the results of τ∗i
can be recalculated in each computing cycle.

The game-based functions in Equation (12) describe the torque interactions between
the machine system and human driver. It can be observed from the cost function that the
larger Qi/Ri is, the more attention the participant pays to the path tracking accuracy. Since
R1 and R2 are the weight coefficients of the amount of steering torque input corresponding
to the machine intelligence and human intelligence, the allocation of shared steering
control can be conducted via the adjusting of the related weight coefficient. As illustrated
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in [18], in the non-cooperative game model, the penalty coefficients R1 and R2 have a
significant effect on the performance of the vehicle’s lateral movement. The dynamic
authority allocation strategy of the game theory is based on the driving risk assessment
and human–machine interaction. Here, the relation of two penalty coefficients can be
expressed as:

R1 = µ(K)R2 (15)

where K is the dynamic authority allocation coefficient and µ(K) is the nonlinear fitting
function of K.

Based on the ego vehicle’s risk assessment, the machine intelligence compensates the
human driver’s control input to reduce unsafe driving actions. Since the control strategies
of machine intelligence cannot cover all possible driving scenarios, a human-oriented mode
is necessary to consider to return final control right to the driver. To describe the conflict
between the two participants, the dot product of the torques from the human driver and
machine system can be accumulated to show the degree of conflict β.

β∗ = β0

Np+k−1

∑
j=k

τ1 · τ2

 (16)

where β0 is the gain coefficient of integral accumulation. An increased cumulative quantity
of the steering torques represents a high intervention from the human driver, which is
also used to recognize the degree of driving attention. The machine system can reduce
unnecessary assistance to follow the driving intention of the human driver. This kind of
adaptive game control strategy can achieve a dynamic authority distribution by considering
both driving comfort and safety.

Based on the above analysis of human–machine interactions, the shared control strat-
egy can be designed using the driver torque and the ego vehicle’s risk assessment. Here, the
design of the nonlinear fitting function of µ(K) in Equation (15) is calculated using a fuzzy
logic controller. The fuzzy control method is widely used in many studies because the
control process can be smoother and more effective. Moreover, the fuzzy control method
can integrate expert experience and make parameter design more flexible.

The fuzzy controller has two input variables, such as the degree of conflict β∗ and
a comprehensive driver’s risk assessment R∗, and one output is the dynamic authority
allocation coefficient K. The fuzzification of these variables employed five associated
linguistic values: very small (VS), small (S), medium (M), big (B), and very big (VB).
The fuzzy rules were generated based on a substantial amount of simulation experience,
which had a basic principle: the more hazardous the ego vehicle’s situation and the smaller
the driver torque, the higher the dynamic authority allocation coefficient. With regard to
the above fuzzy logic, the fuzzy surface of the game-based shared controller is shown in
Figure 6.
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Figure 6. Fuzzy surface of the shared controller.
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4. Experiments and Analysis

In order to verify the performance of game-based shared steering control, hardware-
in-the-loop (HIL) experiments were conducted on a self-developed driving simulator.
The structure of the experimental platform for a steer-by-wire system is shown in Figure 7.
The steering-assisted motor on the handwheel module is used to generate control torque
from the machine intelligent system. The handwheel angle and torque signals are col-
lected by installed sensors. The real-time control is conducted by a rapid control prototype
dSPACE PX20. The game-based algorithmic model was built under MATLAB/Simulink
environment. The related parameters of shared control algorithm are shown in Table 2.
The sampling rate of the system was selected as 10 ms. CAN bus communication was
applied between the handwheel module and the real-time controller. To simulate a human–
machine interaction progress, traffic scenarios with vehicle dynamic models were con-
structed in the automotive simulation environment.

Figure 7. Hardware-in-the-loop platform of shared steering control.

Table 2. Parameters of adaptive shared control strategy.

Symbol Description Value

Np Control prediction time domain length 20
ay,max Upper limit of lateral acceleration value 2 m/s2

α f Weighting factor for the evaluation of risk level 1.5
αb Weighting factor for the evaluation of risk level 1.1
β0 Weight coefficient for the degree of conflict 0.01

Based on the degree of consistency of the control inputs from the human driver and
machine system, different traffic scenarios were designed to show the efficiency of the
proposed game-based shared steering algorithm. The test was conducted on the previously
mentioned HIL experimental platform. The performance of shared control with a consistent
human–machine goal and conflicting goal were analyzed in the lane changing scenarios.

In order to further verify the performance of the proposed strategy, the benefits of
the proposed shared control strategy against other methods are discussed. In each of the
following experimental scenarios, the proposed method with adaptive game parameters is
analyzed by comparing the control results with the conventional game-based assistance
with the fixed parameters in [19].
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The tests on the HIL experimental platform were conducted with different human
drivers. We recruited six volunteers to take shared steering control in a lane change
environment. These six human drivers were completely familiarized with the driving
simulator through at least 10 driving tests. During the experiment, a predefined route for
lane changing was drawn in the simulated environment for the reference of the human
driver. In order to reveal the driver’s effort during the shared steering control, we used
an index DE to denote the steering burden of the driver. Moreover, another index LA was
defined to denote the comfort and safety during lane change control. Here, the values of
DE and LA are evaluated by using the average of all participants’ results. If the total time
step for lane changes is set as n, these indexes are calculated by

DE =

√√√√√ n
∑

i=0
τ22

n

LA =

√√√√√ n
∑

i=0
ay2

n

(17)

In this paper, the steering behavior of the human driver was performed under limit-
handling conditions to reduce the influence of psychological factors. Therefore, the target
paths were predefined to validate the proposed control model, which are shown in Figure 8.
The road to traverse on was configured as a straight lane with the controlled vehicle starting
from the left side, and a single static obstacle was located in front of the vehicle. Based
on the state of the driver’s attention, three kinds of lane changing scenarios with different
driver target paths were analyzed to show the effect of shared steering control. Case
1 is a cooperative scenario where the driver makes an earlier collision avoidance than
the machine’s planning. Case 2 is a cooperative scenario where the driver makes a later
collision avoidance than the machine’s planning. The control effect from the machine was
minimized in the first case to reduce the interference, and increased in the second case
to correct the driver’s later action. Case 3 is a conflict scenario where the driver resists
against the lane change by keeping forward driving behavior. This scenario was used
to verify the return of final control to the human driver if the human does not trust the
machine’s decision.
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Figure 8. Target paths of machine and driver in the lane changing scenarios.

In this lane changing scenario, the vehicle was driving with constant longitudinal
velocity from the beginning of experiment. From the general automobile safety standard,
a safe distance is not less than 30 m if the vehicle is driving with a speed of 40 km/h [17].
Here, the velocity of the simulated vehicle was set as 40 km/h. The driver was assumed to
notice the danger at a 40 m longitudinal position before the obstacle and perform an early
lane change motion to promptly avoid the obstacles. Meanwhile, the machine intelligent
system was assumed to take avoidance action at a 60 m longitudinal position before the
obstacle. The proposed adaptive game-based shared steering control is compared with a
previous shared control approach with fixed game parameters. The simulation result is
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shown in Figure 9. X is the longitudinal distance and Y is the lateral distance of the lane
change trajectory.
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Figure 9. Experimental result when driver makes a timely response to avoid obstacle. (a) Driv-
ing trajectories with different control methods; (b) Steering torque efforts of human and machine;
(c) Control of adaptive game coefficient.

4.1. Case 1: Scenario with Early Collision Avoidance

Since the target path of the driver is different from that of the machine’s planning, it
can be found from Figure 9 that the human driver makes a timely lane change to avoid
the obstacle in advance. The synthetic path by the compared method is a compromise
result, where the vehicle runs along a neutral trajectory between two target paths. Since the
prediction of the human driver is a safe action, the synthetic path by the proposed method
can achieve a human-oriented result to reduce the intervention from the machine system.
The steering torque shows the conflict of the driver and machine system. The proposed
method has a smaller steering torque, which is a benefit of the adaptive game-based
shared control.

From Figure 10a, the driver’s effort index DE and comfort index LA were employed to
evaluate the performance of shared steering control. These indexes were calculated using
Equation (17). Lateral acceleration and driver steering torque can be used to show the
smoothness and comfort during the avoidance motion. To analyze the conflict of steering
torques from the human driver and machine system, the coverage ratio of the torque
conflict and torque assistance are shown in Figure 10b. It can be found that the proposed
method can reduce the conflict of steering torques from the two participants, which brings
an improved driving experience.

4.2. Case 2: Scenario with Late Collision Avoidance

The design of this lane changing scenario is similar to that of Case 1. To avoid the
static obstacle located in front of the driving vehicle, the machine system was still assumed
to take avoidance action at a 60 m longitudinal position before the obstacle. The difference
was that the driver was assumed to take a later action due to the inattention of the human.
The driver’s target path for the lane change was started at an 80 m longitudinal position
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before the obstacle, where it was difficult to conduct the available behavior to avoid the
obstacle. Here, the shared control model was employed to correct the unsafe behavior of
the driver. The simulation result is shown in Figure 11.
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Figure 10. Performance analysis of different control approaches. (a) Evaluation indexes of shared
steering control; (b) Coverage ratio of torque assistance and conflict.
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Figure 11. Experimental result when driver makes a late response to avoid obstacle. (a) Driving trajec-
tories with different control methods; (b) Steering torque efforts of human and machine; (c) Control
of adaptive game coefficient.

From the experimental results in Figure 11, it can be found that synthetic paths to
avoid obstacles were achieved with the assistance of shared control between the human
driver and machine system. The authority distribution parameter of game controller R1
was adjusted to balance the requirements from the two participants. Based on the adaptive
game control strategy in Equation (16), the value of R1 was reduced to increase the authority
distribution of machine assistance. Since the compared method was conducted with a fixed
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game parameter R1, the synthetic path was a compromise result with more serious torque
conflict. From the evaluation results of lateral acceleration and driver steering torque in
Figure 12, the proposed game controller with adaptive parameters had a better performance.
The proposed controller can save more than 30% of the steering effort compared with the
previous strategy used in the comparison.
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Figure 12. Performance analysis of different control approaches. (a) Evaluation indexes of shared
steering control; (b) Coverage ratio of torque assistance and conflict.

4.3. Case 3: Scenario with Human–Machine Conflicting Goals

The attention of human driver can be easily focused again after being reminded, but the
machine system will not discover its inappropriate decision under complex situations, such
as the driverless dilemma in [27] and the incorrect detection of the sensory system in [31].
In this scenario, based on the different understandings of the complex traffic environment,
the human driver and machine system were assumed to have conflicting driving goals.
The target path of the human driver was a straight driving line along the road, and the
target path of the machine system was a lane change motion to avoid an obstacle. The driver
was arranged to maintain the original forward driving and resist the assistance from the
machine system. The experimental result is shown in Figure 13. With the proposed adaptive
shared steering algorithm, a human-oriented game control can be realized by considering
the real intention of the human driver. This kind of adaptive shared control framework has
a human-oriented characteristic during the solution of decision conflict.

Based on the degree of conflict between the two participants, an adaptive game
parameter R1 was adjusted according to the intentional action of the human driver. The in-
tention of the driver was identified by the cumulative amplitude of the steering torque.
From the result in Figure 13, it can be found that the synthetic path is returned to a straight
driving line after a period of struggle. The synthetic path by the compared method is
a compromise path which cannot achieve a flexible shared control in accordance with
the driver’s intention. From the evaluation results of the lateral acceleration and driver
steering torque in Figure 14a, the proposed game controller with adaptive parameter has a
better control smoothness and comfort than the compared method. From the compared
results in Figure 14b, the coverage ratio of the torque conflict was reduced significantly.
The compared method with a machine-oriented control framework cannot pay enough
attention to the driver’s reaction. The proposed adaptive game approach can avoid single
machine-oriented control results, in which the driver can play a dominant role after the
recovery of human attention.
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Figure 13. Experimental result when driver deliberately resists the assistance from machine system.
(a) Driving trajectories with different control methods; (b) Steering torque efforts of human and
machine; (c) Control of adaptive game coefficient.
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Figure 14. Performance analysis of different control approaches. (a) Evaluation indexes of shared
steering control; (b) Coverage ratio of torque assistance and conflict.

5. Conclusions

In this paper, a game-based shared steering control framework is built to have a flexible
human–machine interaction mechanism. Different from previous studies, the prediction of
the motion generated from the human driver is integrated into the shared steering control
based on the LSTM-CNN model. In addition, the Nash equilibrium solution is derived
using the optimum control method. Compared with previous works, an adaptive weighting
matrix for the game solution is proposed to pay enough attention to the driver’s reaction.
The performance of game-based shared steering control is verified with HIL experiments.
From the results of different traffic scenarios, the proposed algorithm has benefits to
simultaneously enhance driving safety and reduce the degree of conflicts. Moreover,
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the proposed adaptive game approach can avoid single machine-oriented control results,
in which the driver can play a dominant role after the recovery of human attention.

The shared steering control in this paper is focused on the lateral performance in a
predefined driving environment. The driving targets of the human driver and machine
system can be predicted using a numerical model. However, the controlled vehicle in real
situations with nonlinear and dynamic disturbances is difficult to have accurate prediction
results. Game-based control theory has a high requirement for the complete information
from each participant. How to improve the robustness of the shared control framework is
still an unsolved issue for our future study.
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