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Abstract: Here, a novel hybrid method of intelligent fault identification within complex mechan-
ical systems was proposed using parallel-factor (PARAFAC) theory and adaptive particle swarm
optimization (APSO) for a support vector machine (SVM). The parallel-factor multi-scale analysis
theory was studied to reconstruct tensor feature information based on a three-dimensional matrix
for time, frequency, and spatial vectors. A multi-scale wavelet analysis was used to transform the
original multi-channel experimental data acquired from a gearbox into a three-dimensional feature
matrix of the multi-level structure. The optimal correspondence among the two-dimensional feature
signals in the frequency and time domains for the different fault modes was established by the
PARAFAC theory. An intelligent APSO algorithm was developed to obtain the optimal parameter
structures of an SVM classifier. A comparison with the existing time–frequency analysis method
showed that the proposed hybrid PARAFAC-PSO-SVM diagnosis model effectively eliminated the
redundant information in the multi-dimensional tensor features but retained the important com-
ponents. The PARAFAC-APSO-SVM hybrid diagnostic model achieved fast, accurate, and simple
fault-classification and identification results, and could provide theoretical support for the application
of the PARAFAC theory to complex mechanical fault diagnosis.

Keywords: parallel factors; fault diagnosis; SVM; APSO; hybrid diagnosis model

1. Introduction

Machinery plays a major role in the national economy and composes the core of the
whole industrial field. The traditional manufacturing industry is constantly undergoing
innovation, and advanced progress has been made as a result of the industrial revolution.
This increased use of science and technology has led to the development of big data analysis,
cloud computing, and artificial intelligence. To guarantee that mechanical productivity
meets the requirements of modern industry and everyday life, mechanical equipment
development is continuously moving towards complexity, integration, continuity, and intel-
ligence [1–3]. Modern industrial machinery is produced by large-scale production systems,
has rich performance indicators, and consists of a variety of mechanical components, which
means that the failure of small parts can cause entire production lines, or even production
plants, to stop working and producing. These failures can cause huge economic losses, can
waste resources, and can even threaten the lives of staff when immediate fault diagnosis
is not performed. Early health-monitoring of mechanical systems is crucial to identifying
failure sources, replacing degraded mechanical components, and troubleshooting faults
in a timely manner; completing these tasks can effectively reduce the risk of accidents,
decrease maintenance costs, and limit hazard potential [4–6].
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Gearboxes are devices used for transmitting motion and power and are often preferred
for constant-speed applications in mechanical equipment due to their compact structures,
fixed transmission ratios, and simple disassembly and installation procedures. However,
due to the complexity of gearing and the fact that gearboxes often work under harsh
conditions, such as high speeds and heavy loads, their primary components, such as gears,
shaft systems, and bearings, usually experience varying degrees of wear and are prone
to damage [7]. In the past century, many scholars and studies from around the world
have focused on the special challenges associated with science and industrial technology
regarding the development of original techniques for analyzing complex machinery, such
as oil analysis, noise detection, vibration analysis, and non-destructive testing. Research
regarding vibration-detection technology began before studies involving the other tech-
niques; therefore, this technology is much more mature, and its application potential is the
most extensive [8–10].

Common signal processing methods used for feature extraction for different damage
and failure types include principal component analysis (PCA) techniques, classical modal
analysis techniques, convolutional neural networks (CNNs), and singular-value decompo-
sition (SVD) algorithms [11]. Previously published research regarding the methods and
theory of performing feature extraction with signal analysis has effectively improved fault-
feature identification and provided feasible bases for gearbox failure identification and
integrity assessment. The parallel-factor decomposition model—which was first proposed
in the 1970s but not used for many years due to computer storage and computing power
limitations—has gained significant attention in recent decades as a new signal-processing
method because of its good performance, in addition to being widely used in fields such
as environmental science, clinical medicine, and image processing fields [12–14]. Parallel-
factor analysis methods are most commonly used for 3D fluorescence spectroscopy within
the environmental science and resource utilization disciplines. The theory behind the
parallel-factor method has been improved and its associated techniques have gradually
matured alongside its expansion into fields outside of chemistry [15]. Sidropoulos devel-
oped direct sequence–code division multiple access (DS–CDMA) systems by applying the
parallel-factor theory to signal processing [16]. Liang [17] proposed a new blind model by
using the parallel-factor (PARAFAC) code division of multiple-access systems for blind
signal detection in CDMA systems. Yang [18] used the tensor singular spectrum to analyze
the underdetermined observed signals for blind source separation.

In recent years, scholars have begun to investigate PARAFAC methods for degradation
monitoring of mechanical systems. Zhang et al. [19] established the parallel-factor algorithm
for integrity assessments of wind turbines. The fault information acquired by the data
acquisition and monitoring system was used to conduct effective wind farm condition
monitoring. Wang [20] used the PARAFAC method to reconstruct multi-source bearing fault
signals. Fault-condition classification of engineering systems was achieved by combining
principal component analysis with the alternating least squares method. In general, matrix
decomposition is not unique unless a constraining condition, such as orthogonality, the
Toeplitz condition, or the constant mode, is imposed. However, these harsh constraints
are not satisfied in practical applications. A new method must be sought to solve this
problem. Unlike traditional 2D signal processing methods, the PARAFAC method can
decompose 3D and multidimensional signals to obtain unique solutions under relatively
loose constraints. The PARAFAC analysis method can uncover the underlying structure and
reflect the essential characteristics of high-dimensional data and can therefore efficiently
utilize multi-channel signals for fault detection. Therefore, research regarding the use of a
PARAFAC-based method for mechanical fault diagnosis was conducted during this study.

In light of the above, it is urgent to develop theories and methods for mechanical
fault diagnosis under non-stationary operating conditions to ensure that modern industrial
production processes achieve intelligence, digital monitoring and diagnostic prediction.
This issue has become a technical limitation and is a recognized challenge when applying
fault-diagnosis technology to key mechanical equipment in engineering practice. This
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paper focuses on intelligent techniques of vibration signal analysis. The goal of this paper
is to propose an intelligent hybrid method, based on parallel-factor theory for the adaptive
diagnosis of nonstationary fault modes, that uses adaptive particle swarm optimization
(APSO) with a support vector machine (SVM) to improve fault-diagnosis intelligence
and accuracy.

2. Optimized Hybrid PARAFAC–APSO–SVM Model
2.1. Parallel Factors Model

The essence of the PARAFAC structure is the low-order multi-decomposition process
of the multi-dimensional matrices that represent multiple linear models. The parallel-factor
decomposition theory is described next.

The three-dimensional matrix, X ∈ CP×Q×N, was subjected to PARAFAC decomposi-
tion with scalar expressions, as shown in Equation (1):

Xp,q,n = ∑M
m=1 Ap,mBq,mCn,m + Ep,q,n. (1)

In Equation (1), the variable ranges are p = 1, 2, . . . P, q = 1, 2, . . . Q, n = 1, 2, . . . N, and
m = 1, 2,. . . M. The 2D moments, A, B and C, are the loading matrices of the PR multi-level
model. The sets A ∈ CP×M, B ∈ CQ×M, C ∈ CN×M, and E ∈ CP×Q×N are noise matrices.
The low-order multi-decomposition process was enlarged to a higher dimension. The
number of dimensions increased, which caused the degrees of freedom of the elements
in the matrix to also increase. The abstraction process became much more complicated.
Only 3D matrices were investigated during this study. In practice, the 3D model can also
be used to intercept profiles from different directions by using the 2D set matrix, which is
equivalent to the 3D-model representation. Figure 1 presents the 2D set matrix along the
x-axis direction within the PARAFAC model.
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Figure 1. Multi-level PARAFAC decomposition model along the x-axis.

The primary formula used in the PARAFAC model is expressed in Equation (2):
Xp:: = BDp(A)CT + Ep::
X:q: = ADq(B)CT + E:q:.
Xn:: = ADi(C)BT + E::n

(2)

In Equation (2), the set Dp(A) is the element of the pth row of extracted matrix A
and is constructed as a diagonal sub-matrix. The parallel-factor model has significant
advantages over 2D matrix decomposition in that it allows the fuzzy decompositions of
the column and scale to be unique in the absence of any other constraints. In terms of
the discriminating conditions of the PARAFAC set, the definition of the k-order matrix is
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introduced as the rank of set A. Set A consists of independent columns when, and only
when, the total number of columns is at least equal to r, which is defined below:

rA = Order(A) = r. (3)

The parameter k is the number of independent column vectors in set matrix A.
The required condition for the order of set matrix A is kA = k, where kA ≤ rA ≤
min{P, M} and ∀A.

There is only one solution for the three sub-matrices of the PR decomposition after
both the scale and column transformations. It is required that the k-orders of matrices A, B,
and C satisfy kA + kB + kC ≥ 2(M + 1). The sufficient condition for discriminability of the
multi-decomposition PARAFAC model is presented as follows:

min{P, M}+ min{Q, M}+ min{N, M} ≥ 2M + 3. (4)

2.2. Support Vector Machine Theory

Support vector machines were invented as a result of the binary classification problem,
which was proposed as a linear classifier model to construct binary feature spaces with the
maximum interval. The interval between the training data sets is maximized by establishing
a divided hyperplane using optimization theory, as shown in Figure 2.
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The training data set is supposed to be (t i, fi), where = 1, 2 · · · , N. The input data
and learning objectives in the classification problem are given as T = {T1, . . . , TN} and
f = {f1, . . . , fN}, respectively. The multiple features included in the input data construct
the feature space according to ti ∈ Rn. The updated objectives are bi-category objectives:
f ∈ {−1, 1}. The hyperplane exists and is regarded as the decision boundary in the feature
space in which the input data are located, and the updated optimization objectives are
divided into two classes. The distance from the geometric location of any data point to the
hyperplane is greater than or equal to 1. The decision boundary is defined according to
Equation (5):

(t·ω+ b = 0). (5)

The condition that the separation line correctly classifies all the sample data as one of
two types satisfies the separation interval. Therefore, Equation (5) can be transformed into

Fi[(ti·ω) + b] ≥ 1, i = 1, 2, · · · , N. (6)
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At this point, the classification interval margin is equal to 2/‖ω‖2. The optimal
hyperplane is constructed by a transformation into a minimum problem with constraints.
We first assume that a hyperplane has a parameter that is a geometric interval between the
plane and the data set. The constraint function is used to control the geometric interval.
When the geometric interval is smaller, the hyperplane is better. Thus, the problem of
finding the optimal plane can be transformed into the problem of finding its constraint
optimization problem by finding the minimum values of variables ω and b to produce the
minimum value of parameter ‖ω‖. The final classification hyperplane, which is obtained
after training the sample data, is determined by the sample data points at the limit surface,
i.e., the training sample points on H1 and H2 are called support vectors.

The disadvantage of using the hard-margin SVM to solve linear non-separable prob-
lems is that it easily generates classification errors. Therefore, a loss function based on
margin maximization is introduced in the proposition of a novel optimization method.
To find the maximum interval and minimize the number of misclassifications or serious
classification errors, the objective function must be adjusted by introducing a slack variable,
ξ, to reduce the constraint and by adding a penalty factor, C, to balance the ξ values,
which control the optimization tendency. The SVM expression can then be obtained, as
shown below:

min
ω,b

1
2
‖ω‖2 + C∑N

i=1 ξi, (7)

s.t.fi(ti ·ω+ b) ≥ 1− ξi. (8)

A nonlinear SVM can be obtained by mapping the original input data into the high-
dimensional feature space by using a nonlinear function in a linear SVM. However, the
nonlinear SVM has some optimization problems. By introducing the Lagrange function,
Equations (7) and (8) can be transformed into a dyadic expression according to the Karush–
Kuhn–Tucker (KKT) theory:

max
α ∑N

i αi −
1
2∑N

i ∑N
j αiαjfifjK

(
ti, tj
)

(9)

s.t.∑N
i αifi = 0,αi ∈ [0, C]. (10)

In Equations (9) and (10), the parameter α is the KKT multiplier that the Lagrange
multiplier uses to impose the inequality constraint. The Gaussian radial basis kernel is
universally applicable, so it was chosen as the kernel function. The unique parameter σ
must be set up according to Equation (11):

K(ti, fi) = exp

(
−‖ti − fi‖2

2σ2

)
. (11)

The objective function can thus be ultimately expressed by Equation (12):

H(t) = ∑N
i=1 αifiK(ti, fi) + b. (12)

2.3. Improved APSO Algorithm

The traditional particle swarm algorithm finds the optimal particles by learning
from the particles’ historical experience

(
pbest) and population experience

(
gbest); this

algorithm has been widely used because of its high computational speed and robustness.
The important SVM parameters, C and σ, must be optimized to establish the optimal
decision boundaries of the 3D feature space in an SVM. C is used to control the penalties
of the misclassified training examples and σ is the kernel function parameter. A new
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particle-velocity updating strategy for PSO is proposed according to the definition of the
core PSO search formula:

vid(t + 1) = wv(t) + c1r1(pbestid − x(t))+c2r2(gbestid − x(t)), (13)

xid(t) = xid(t) + vid(t + 1). (14)

In Equations (13) and (14), νid and xid represent the particle velocity and generation,
respectively. The variable representing the inertia weight (w) decreases linearly with
successive iterations; c1 and c2 are the learning factors; r1 and r2 are mutually independent,
arbitrary numbers between 0 and 1. The particles of the APSO algorithm are updated to
pursue the optimal values of the particles in the neighborhood and to update their velocities.
The distances between a specific particle and other particles are computed one-by-one
during each iteration; lmn represents the distance between the mth particle and the nth

particle. The maximum value of lmn is lmax. The specific value lmn/lmax can also be obtained.
The value of the threshold (θ) is adaptively adjustable according to the number of cycles; θ
is defined below:

θ =
0.3g + 0.6gmax

gmax
. (15)

In Equation (15), g is the cycle index with a maximum value of gmax. When θ is equal
to 0.9 and lmn/lmax is less than θ, the nth particle is supposed to be near the mth particle.
The velocity of the particle is refreshed by an updated learning factor c3, and a random
parameter, r3. Equation (13) can then be rewritten as

vid(t + 1) = wv(t) + c1r1(pbestid − x(t)) + c2r2(gbestid − x(t)) + c3r3(qbestid − x(t)). (16)

If θ is greater than 0.9 or if lmn/lmax is greater than θ, then Equation (13) is used to
refresh the particle velocity.

Conventional PSO applies the inertia weights along with linear reduction to alter the
step length in the search process, which causes the optimization toward the extreme point
to gradually converge. A shortcoming of conventional PSO is that it is prone to falling into
local optima. An improved PSO algorithm, the APSO algorithm, is proposed to address the
drawback of local convergence without the optimization inherent to the conventional PSO.
The weights, w, of the APSO algorithm decrease according to an S-shaped function so that
wi changes dynamically. At the beginning of the optimization search when using the APSO
algorithm, the original value of wi is set as a large value to facilitate global optimization.
At the end of the optimization search process, wi is evaluated as a smaller value so it can
conduct the optimization search process. This improved strategy for updating wi in the
APSO algorithm is achieved by the definition below:

wi =
wimax −wimin

1 + exp(2et/tm − e)
. (17)

2.4. SVM Optimization with the APSO Algorithm

The APSO algorithm primarily optimizes the penalty coefficients of SVM functions and
the parameters of kernel functions, that is, a slack variable, ξ, which reduces the constraint,
and a penalty factor, C, which determines the penalty degree for the model complexity
and fitting bias. These two variables have significant impacts on the SVM regression
model. Values that are both too large and too small can affect the system’s generalization
performance. The kernel function parameters precisely define the structure of the high-
dimensional space. The optimal parameters must be selected to ensure the generalization
capability of the system. The standard for determining the optimal parameters of an SVM
classifier is based on there being the same number of iterations for both the improved and
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non-improved SVM. The higher the SVM correction rate, the better the parameters. The
optimal parameters are selected based on higher SVM classification correction rates.

A flowchart depicting the use of the APSO algorithm to optimize the SVM classifiers
is shown in Figure 3. The procedure consists of five primary steps.
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1. The parameters in the APSO algorithm are initialized; these include the number of
particles, the initial particle positions, the number of evolutionary generations, the
acceleration factor, and the maximum loop value.

2. The fitness values of the particles are computed and compared based on a given
objective function. The APSO algorithm uses the objective function in Equation (9) as
a self-adjusting fitness function.

3. The fitness values of the individual particles with optimal positions are obtained and
the optimal positions of all the particles are refreshed.

4. The fitness values for the local optimal positions of the particles are compared to the
fitness value of the particle’s global optimal position to obtain the new global optimal
particle positions.

5. Equations (13)–(16) are used to refresh the velocities and positions of the particles. If
the loop has finished or the accuracy requirement has been met, the optimal values
are output and substituted into the SVM. Otherwise, the conditional requirement has
not been met, and the process returns to Step (2) and continues from there.

3. Experimental System for the Gearbox

Five fault modes (FMs) were set up for a gearbox system to simulate gearbox failure;
these fault modes consist of a normal gear mode (FM1) and four broken gear modes
(FM2, FM3, FM4, and FM5). Four sizes of gear cracks were selected for the experimental
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testing system to simulate the gearbox fault conditions. The geometric features and dimen-
sions of the gear cracks included maximum depth (Dc), width (Wc), thickness (Tc), and
angle (Ac) values of 2.4 mm, 25 mm, 0.4 mm, and 45

◦
, respectively. There was no loading

force on the input shaft of the gearbox during the experiment. The geometric gear-crack
parameters for the five fault modes are described in Table 1.

Table 1. Geometric gear-crack parameters.

Fault Mode
Geometry Dc Wc Tc (mm)

FM1 zero zero zero

FM2 0.25Dc 0.25Wc 0.4

FM3 0.5Dc 0.5Wc 0.4

FM4 0.75Dc 0.75Wc 0.4

FM5 Dc Wc 0.4

As shown in Figure 4, the dynamic acceleration of the gearbox system was excited by
the vertical meshing mechanics of Gear 3 and Gear 4. Sensors placed vertically are more
sensitive to this failure mode than sensors placed horizontally, and they can collect more
comprehensive data of the outer cast of the gearbox. Gears 3 and 4 were chosen to simulate
actual failure modes in industrial applications. It was difficult to determine which gear
failed first. Based on existing experimental research, Gear 3 was chosen to simulate gear
failure by cracking during the experimental procedure.
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Figure 4. Mechanical transmission structure of the gearbox.

The experimental motor speed was chosen to be 2800 r/min, which caused the sam-
pling frequency to be 12,800 Hz. Initial condition parameters, such as the safety factor (1.15)
and the number of teeth in each gear, were set up. The angular velocities and characteristic
frequencies of the shafts and gears inside the gearbox were calculated based on the drive
ratio between the drive motor and the driven gears and the rotational speed of the drive
motor. In Table 2, S1 indicates the speed of the first shaft that is mounted with the first gear,
S2 indicates the speed of the second shaft that is mounted with the second and third gears,
S3 indicates the speed of the third shaft that is mounted with the fourth gear, G12 is the
meshing frequency of the first and second gears, and G34 is the meshing frequency of the
third and fourth gears.

Table 2. Rotational parameters of the mechanical transmission.

Drive Motor
(r/min)

Shaft Torque
(N/m)

S1
(Hz)

G12
(Hz)

S2
(Hz)

G34
(Hz)

S3
(Hz)

2800.00 14.79 11.11 533.33 33.33 800 20
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The vibration-signal acquisition system used for gearbox fault diagnosis in this study
is displayed in Figure 5. Accelerometers (352C67-PCB) were installed on the gearbox cast.
The vertical and horizontal components of the vibration signals were collected with a
dynamic simulator (Spectra Quest). The vibration data were transmitted to a computer via
a digital signal processor. The vibration signals of both data channels were synchronously
acquired and analyzed using the proposed method.
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4. Results and Discussion
4.1. Simulated Signal

The purpose of testing the numerical signals was to assess the capability of the pro-
posed method, which was based on the parallel-factor analysis principle with signal
processing, for fault-feature extraction. The simulated signal in Equation (18) was used to
represent the fault modes of the gears in the gearbox because it is characteristic of the fault
frequencies and impulses. The chosen fault modes were incipient cracks in the inner ring
of the bearing. The simulated signal was defined according to the following:

y(t) = ∑i Hkx(t− kT)
x(t) = exp(−λt)cos(2πfnt).

Hk = 1 + H0cos(2πfrt)
(18)

In Equation (18), the function y(t) is the periodic shock signal. The rotation frequency
(f r) was 20 Hz, while the intrinsic frequency (fn) was 0.5 kHz. The frequency (fs) of the
accelerometer used for collecting vibration data was 1.6 kHz. There were 8192 data points
within one vibration-signal group. The attenuation factor (λ) was 700, the displacement
constant (H0) was 0.3, the repetition period (T) was 1/120, and the fault characteristic
frequency (f i) was 120 Hz.

Figure 6 depicts the time and frequency features of the characteristic impulse signal
used to simulate the fault-feature information of the inner ring failure of the bearing. The
basis wavelet function with “cmor3-3”, a complex Morlet wavelet, was used to transform
the simulated signal into a 2D continuous wavelet factor matrix. A 1 × 200 × 8192 third-
order tensor was constructed as the input to the PARAFAC model to obtain the loading
values, the residual variance, and the normal distribution rate, which provided the channel,
frequency, and time information, respectively.

Multi-scale parallel factorization with three-level decomposition was proposed to
analyze the simulated signal. As shown in Figure 7, Mode 2 depicts the frequency-domain
features under the three-level decomposition. The visible impulse signals of the simulated
signal in Mode 2 had frequency peaks near 5000 Hz and in the 0–100 Hz range, which reflect
the frequencies of the original signal shown in Figure 6. The characteristic low frequencies
that indicate failure were not clearly extracted. The simulated signal from Equation (18)
was used to test the proposed method. Figure 6 depicts the frequency components that
are included in Equation (18). Figure 7 depicts the multi-level parallel factorization of the
simulated signal, which exhibits the same frequency components and ranges as the original
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signal in Equation (18). The analog signals can therefore be used as a reference to verify the
effectiveness of the proposed method.
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Figure 7. Multi-level parallel factorization of the simulated signal.

The signal in Mode 3 shows the time-domain information after the multi-level decom-
position with parallel factorization. Figure 8 shows the frequencies of the three component
signals in Mode 3 after a Fourier transform was performed. There were frequency peaks
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at 20 Hz and 120 Hz, 240 Hz, and 360 Hz, which correspond to the rotational frequen-
cies, the failure frequencies, and the harmonic frequencies, respectively. The developed
parallel-factor algorithm was thus proven to be effective because it produced similar re-
sults as the traditional time–frequency domain signal-processing method for signal-feature
extraction during mechanical fault diagnosis. The results show, however, that the proposed
multi-scale parallel-factor algorithm is more accurate and efficient than the traditional
time–frequency domain signal-processing methods.
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Figure 8. Spectrum analysis of the simulated signal.

4.2. PARAFAC–APSO–SVM Optimization

The vibration signal obtained from the gearbox was analyzed with the PARAFAC–
APSO–SVM method. The rotational speed of the input rotor of the motor was chosen to
be 2800 r/min. The five failure modes (F1, F2, F3, F4, and F5) represented different crack
depths under no-load running conditions. The data group contained three sets of sampled
signals for each mode. There were 8192 sampled data points in each vibration-signal set.

The vibration data acquired from the gearbox were processed by the PARAFAC model.
The established PARAFAC model is sensitive to the number of factors. If the number
of PARAFAC factors is estimated too high, the model error cannot be decreased, while
if the number is too low, one valid solution cannot be obtained. In the present study,
cross-validation was proposed to achieve an initial estimate of the number of PARAFAC
factors while maintaining the accuracy of the PARAFAC multi-decomposition. The cross-
validation process consisted of designating a portion of the data as missing and removing
it, fitting the model to the remaining data, and then calculating the residuals between
the fitted and actual missing data points. If the residual was too large, the model was
considered to have poor performance. As shown in Figure 9, when there were more than
four factors, the residual percentage of the cross-validation method was relatively low,
which indicates that the residuals between the fitted data points and the actual missing
data points were too large. This proves that an excessive number of PARAFAC factors can
cause a decrease in cross-validation accuracy. Too few factors cannot yield an effective
solution either. To ensure the highest cross-validation accuracy, the maximum number of
factors was selected. The number of factors was set to fall within the range of one to seven
for the cross-validation. The figure shows that the variation percentages in the fit and the
cross-validation were much better, equal to 86.7% and 85.3%, respectively, when there were
four factors.
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Figure 9. Cross-validation estimations.

Kernel consistency estimation is another effective method of calculating the number of
factors. It is based on the principle that the number of factors can be calculated by assessing
the similarity between the super-diagonal matrix and the core 3D data matrix within the
constructed parallel-factor model. This method was chosen to validate the number of
factors determined by cross-validation during this study.

Kernel consistency estimation was proposed by Bro et al. [17] and its feasibility has
been widely recognized. This method determines an initial estimated value by calculating
the similarity between the super-diagonal matrix (T) in the model and the core 3D data
matrix (G). The kernel consistency (δ) is defined according to Equation (19):

δ = 100×

1−

F
∑

d=1

F
∑

e=1

F
∑

f=1
(gdef − tdef)

2

F

, (19)

where gdef represents an element in matrix G, tdef is an element in matrix T, and F is
the number of factors. In the ideal PARAFAC model, the similarity between T and G
reaches 100%. In general, if the kernel consistency value is greater than or equal to 60%,
the PARAFAC model is considered to be trilinear. If the kernel consistency value is less
than 60%, the PARAFAC model is considered to have deviated from the trilinear. A more
accurate estimate of the F-value can be obtained from its variation pattern.

Figure 10 shows the results of the kernel consistency test. The yellow line represents
the target value. The red points are non-zero data points, and the blue points are zero data
points, which were within the basic agreement range with respect to the target curve. The
consistency rate was approximately 100%.
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4.3. Feature Extraction with the PARAFAC Data

The vibration signals collected in the normal and fault modes were processed. The
continuous wavelet transform, with the wavelet basis function “cmor3-3”, was used to
extract the time- and frequency-domain information from the vibration signals. As ex-
plained in Section 4.1, the analysis of the simulated signal verified that the data had higher
resolution under the frequency and time loading models; thus, the normal and fault infor-
mation, which was obtained using parallel-factor decomposition, could be characterized
for the three models. The information for the two mode types was extracted from the
binary conditions, that is, the normal and fault conditions. Figures 11 and 12 show the
vibration signal analysis performed with PARAFAC multi-decomposition under normal
and fault conditions. There were four components for the time loading and the frequency
loading. Eight features were calculated for the PARAFAC factors of Modes 2 and 3; these
included the mean value, the root mean square value, the root mean, the center of gravity
frequency, the root mean square frequency, the standard deviation, the cliff value, and the
skewness, which are defined in Equations (20)–(27). One set of feature vectors consisted of
64 parameters.

−
x =

1
A∑A

a=1 x(a), (20)

xr =

(
1
A∑A

a=1

√
|x(a)|

)2
, (21)

xrms =

√
1
A∑A

a=1 x2(a), (22)

Fc =
∑A

a=1 fA·x(a)
∑A

a=1 x(a)
, (23)

Frms =
∑A

a=1 fA·x(a)
∑A

a=1 x(a)
, (24)

σx =

√
1

A− 1∑A
a=1

[
x(a)− −x

]2
, (25)

K =
∑A

a=1

[
x(a)− −x

]4

(A− 1)σx4 , (26)
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S =
∑A

a=1

[
x(a)− −x

]3

(A− 1)σx3 . (27)
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Figure 11. Vibration-signal analysis performed with PARAFAC under normal conditions.

4.4. Fault Diagnosis Based on the APSO–SVMPSO–SVM Model

There were 160 sets of feature vectors for one gearbox mode. The total number of
vector sets for the normal mode and the four fault modes was 800. Seven hundred groups
of vibration signals were considered to be training data and the other one hundred groups
were the testing input features for the SVM classifier and the optimized APSO–SVM
model. The parameters set for the PSO algorithm included a particle swarm size of 20,
200 iterations, an acceleration factor (C1) of 1.5, and an acceleration factor (C2) of 1.7.
Figure 13 presents a comparison between the true values and the values predicted by the
SVM classifier. Figure 14 depicts a comparison between the true values and the values
predicted by the APSO–SVM model. The classification correction rate of the SVM model
was 93% and the classification correction rate of the optimized APSO–SVM model was 98%.
The APSO–SVM model had significant advantages over the SVM classifier because of the
optimized SVM variables.
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Table 3 shows a comparison between the correction rates of the four classifiers, which
was used to test the differences between their fault-condition classification capabilities. The
CWT–SVM classifier model used the wavelet packet energy of the vibration signals within
a single channel as the input feature vectors for the SVM. The S–PARAFAC–SVM model
used the parallel factors of the vibration signals within a single channel as the input feature
vectors for the SVM. The D-PARAFAC-SVM used the parallel factors of a dual-channel
vibration signal analysis as the input feature vectors for the SVM. The D–PARAFAC–APSO–
SVM model used the parallel-factors of a dual-channel vibration signal analysis as the
input feature vectors for the SVM with APSO optimization.

Table 3. Comparison between the four types of classifiers.

Classifier Correction Rate Running Time (s)

CWT–SVM 72% 2.624

S–PARAFAC–SVM 90% 2.437

D–PARAFAC–SVM 93% 3.151

D–PARAFAC–APSO–SVM 98% 16.593

As shown in Table 3, the correction rate and running time of the CWT–SVM clas-
sifier were 72% and 2.624 s, respectively. The correction rate and running time of the
S–PARAFAC–SVM classifier were 90% and 2.437 s, respectively, which represented signifi-
cant improvements over the CWT–SVM results. The correction rate and running time of
the D–PARAFAC–SVM classifier were 93% and 3.151 s, respectively. The D–PARAFAC–
SVM classifier had a much better correction rate than the S–PARAFAC–SVM classifier,
which indicates that dual-channel PARAFAC data analysis is superior to single-channel
PARAFAC vibration signal analysis. The D–PARAFAC–APSO–SVM classifier had a 98%
correction rate, which was the highest correction rate of the four classifiers. Therefore,
it was verified that dual-channel PARAFAC data analysis had a significantly improved
classification capability when it was combined with the advantages of APSO optimization
for an SVM.

5. Conclusions

In this study, the parallel-factor multi-level decomposition theory was investigated
with the goal of proposing a hybrid method for multi-channel, multi-scale data mining.
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Compared to traditional dimensionality reduction methods, parallel factor models retain
more signal fault information, thereby improving the accuracy of fault feature extraction.

A larger classification correction rate for the condition monitoring of gear failures in
a gearbox was achieved by using the developed PARAFAC–APSO–SVM classifier. The
parameters of a traditional SVM were optimized using APSO to improve the recognition
of different gearbox failure modes. In future work, it will be necessary to improve the
reliability and robustness of the classifier for use in complex industrial applications.
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