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Abstract: The study focused on the development of -gas turbine full- and part-load operation
diagnostics. The gas turbine performance model was developed using commercial software and
validated using the engine manufacturer data. Upon the validation, fouling, erosion, and variable inlet
guide vane drift were simulated to generate faulty data for the diagnostics development. Because the
data from the model was noise-free, sensor noise was added to each of the diagnostic set parameters
to reflect the actual scenario of the field operation. The data was normalized. In total, 13 single,
and 61 double, classes, including 1 clean class, were prepared and used as input. The number of
observations for single faults diagnostics were 1092, which was 84 for each class, and 20,496 for
double faults diagnostics, which was 336 for each class. Twenty-eight machine learning techniques
were investigated to select the one which outperformed the others, and further investigations were
conducted with it. The diagnostics results show that the neural network group exhibited better
diagnostic accuracy at both full- and part-load operations. The test results and its comparison with
literature results demonstrated that the proposed method has a satisfactory and reliable accuracy in
diagnosing the considered fault scenarios. The results are discussed, following the plots.

Keywords: gas turbine; single faults; simultaneous faults; diagnostics; machine learning

1. Introduction

The performance of the gas-path components, particularly the compressor and turbine,
is critical to the overall performance of the engine, and the health status of these components
needs high attention, due to their vulnerability to various internal and external degradation
factors [1]. Performance degradation of the GT can be either temporary or permanent.
Temporary degradation can be partly recovered during operation and/or engine overhaul,
but permanent degradation means that the component needs to be replaced [2]. Fouling,
erosion, corrosion, and blade tip clearance are among the temporary degradation causes,
whereas mechanical misalignment, lack of oil for lubrication, airfoil distortion, lead to
permanent deterioration. Deterioration can be categorized as recoverable (with washing),
non-recoverable (cannot be recovered by washing during operation, but recoverable during
overhaul), and permanent (not recoverable by either washing or overhaul) [3]. Related to
the service period of the engine or the evolution time frame of the deterioration, perfor-
mance deterioration can also be classified into short-term/rapid and long-term/gradual
deterioration [4]. Short-term/rapid deterioration often happens at the early age of the gas
turbine engine as it starts its operation, or it may be the result of a single event, such as
object damage at any time during the engine’s operation. On the other hand, long-term
deterioration is formed more gradually, and is often due to the ingestion and accumulation
of different contaminants and/or high operating temperature.
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Researchers have conclusively demonstrated that fouling and erosion are the predomi-
nant issues frequently encountered in gas turbines [5]. These two faults, fouling and erosion,
have been identified as the primary causes of performance degradation and operational
inefficiencies in gas turbine systems. Even though fouling and erosion are the primary
faults found in gas turbines, some other faults have also been found to occur, including cor-
rosion, blade tip clearance, and foreign and domestic object damage. As shown in Table 1,
these physical faults cause changes in one or more of the performance parameters which
describe an individual gas-path component’s performance. The performance parameters
generally include compressor flow capacity, compressor isentropic efficiency, turbine flow
capacity, and turbine isentropic efficiency. Changes in the performance parameters cause
consequent changes in the measurement parameters (temperature, pressure, shaft speed,
and fuel flow), which are the fault indicators or symptoms in engine health monitoring.

Table 1. Summary of GT degradation component performance change indicators.

GT Physical Fault Compressor and Turbine
Performance Change Indication Reference

Fouling
↓ Compressor and turbine Γ
↓ Pressure ratio (PR)
↓ Compressor and turbine η

[6–14]

Erosion

↓ Compressor Γ
↑ Turbine Γ
↓ Compressor pressure ratio
↓ Compressor and turbine η

[8,15–18]

Corrosion
↓ Compressor Γ and η

↑ Turbine Γ
↓ Turbine η

[5,16,19–21]

Blade tip clearance ↓ Compressor and turbine η

↓ Compressor and turbine Γ [5,22,23]

Foreign and domestic
object damage

↓ Compressor and turbine η

↑/↓ Compressor and turbine Γ
↓ Compressor pressure ratio

[9,16,24]

Case Engine

The Rolls-Royce RB211-24G three-shaft gas turbine which is manufactured by Rolls
Rolls-Royce, Goodwood, England, is used as a case engine in this study. This gas turbine
engine was developed by Rolls-Royce, a British engineering company known for its high-
quality engines used in aerospace and other applications. The gas turbine engine is also
called a high-pressure ratio engine. The gas generator has two spools (meaning two rotors),
and its exhaust gases drive the power turbine. The secondary air taken from the gas
generator compressors serve as cooling and sealing air. The gas turbine has six main gas-
path components, including an intermediate-pressure compressor (IPC), a high-pressure
compressor (HPC), a combustion chamber, a high-pressure turbine (HPT), an intermediate-
pressure turbine (IPT), and a power turbine (PT) [25]. Three-shaft industrial gas turbine
configurations are shown in Figure 1.

The three-shaft gas turbine consists of a gas generator, with two shafts, and a power tur-
bine, with a single shaft. The gas generator consists of a seven-stage intermediate-pressure
compressor, a six-stage high-pressure compressor, a single-stage high-pressure turbine, and
a single-stage intermediate-pressure turbine. The intermediate-pressure and high-pressure
shafts are separated and operate at their respective optimal speeds. The intermediate-
pressure compressor is driven by the intermediate-pressure turbine, whereas the high-
pressure compressor is driven by the high-pressure turbine. That means the intermediate-
pressure compressor and intermediate-pressure turbine share the intermediate-speed shaft,
whereas the high-pressure compressor and the high-pressure turbine share the high-speed
shaft. As for the power turbine, it is a double-stage free axial turbine.
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Figure 1. Three-shaft industrial gas turbine configuration.

The laws of thermodynamics are always used to investigate gas turbine performance.
An industrial gas turbine has a compressor, combustor, and turbine [26]. Furthermore,
every open and closed-cycle power generation gas turbine works in four processes, which
are: compression, combustion, expansion, and heat rejection [27]. Air is used as a medium
of fluid for the gas turbine, and is compressed at the compressor, while combustion takes
place at the combustor. The result of combustion gases will be then entered into the
expander or turbines for production of power. Gas turbine systems work by the Brayton
cycle principle [28]. The ideal Brayton cycle is defined as a thermodynamic cycle that
consists of an isentropic and adiabatic compression of a gas, followed by an addition of
heat at constant pressure and an energy extraction that results in gaseous expansion [26],
as shown in Figure 2 below.
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2. Fault Diagnostics

Fault diagnosis is the process of identifying and determining the root cause of problems
or faults that occur in a machine or system [29]. This process involves analyzing data and
signals from various sensors, such as temperature sensors, vibration sensors, pressure
sensors, and others, to detect anomalies or deviations from no-fault operating conditions.
The goal of fault diagnosis is to quickly and accurately diagnose the problem in order to
minimize downtime and reduce repair costs [30,31]. This can be accomplished by using
various techniques, such as statistical analysis, machine learning, and artificial intelligence,
to detect patterns and anomalies in the data. Fault diagnosis is, in general, the procedure of
detecting, isolating, and identifying an impending or incipient failure condition, during
which the affected component is still operational, though in a degraded mode [32]. Fault
diagnosis is used in a variety of industries, including manufacturing, transportation, energy,
and healthcare, where it plays a critical role in ensuring the safe and efficient operation of
machines and systems [33]. The general engine diagnosis approach is shown in Figure 1.
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Fault Detection: The process of detecting or identifying the occurrence of a fault or
anomaly in a system. This involves monitoring that system to detect deviations from
normal behavior, which may indicate the presence of a fault.

Fault Isolation: The process of identifying which component or subsystem in a system
is responsible for a fault. This involves using various diagnostic techniques, such as testing,
modeling, and analysis, to isolate the root cause of the problem.

Fault Identification: The process of analyzing data collected during fault detection
and isolation phases to quantify the deterioration magnitude.

Gas Turbine Diagnostics Approaches

Over the years, extensive progress has been made by engine manufacturers and the
research community in the field of gas turbine gas-path diagnostics [34,35]. Gas turbine di-
agnostic methods can be categorized into two groups: mechanical-based and performance-
based approaches. Mechanical-based condition monitoring techniques, known as non-
performance-based condition monitoring, involve various methods, including analysis of
oil and wear debris, vibration analysis, acoustics, evaluation of lubrication flow parameters,
thermography, load, and metal temperature analysis [36]. Non-performance-based con-
dition monitoring for gas turbine diagnosis has been an area of continuous evolution for
researchers [36,37]. However, the more advanced and cost-efficient method for assessing
engine health conditions lies in performance-based monitoring, which investigates the
degradation of engine performance using data-driven techniques. A study by Barad et al.
confirms the crucial need to develop performance-based diagnoses in gas turbine diagnos-
tics, highlighting the high significance of performance-based condition monitoring [38–40].
The most important components are the compressors and turbines, which are highly critical
components in gas turbines. Consequently, researchers emphasize the degradation analyses
of these components. Engine performance relies on the variation of gas-path measurements
and component performance parameters [5]. To perform a thorough health assessment us-
ing a condition-based method, it is imperative to have access to detailed information about
engine performance, as well as a comprehensive set of operating parameters. Additionally,
careful estimation of the number of measurements is crucial, as improper estimation can
lead to wrong solutions [41]. Identifying the sources of data and collecting the necessary
data and information is the primary groundwork for developing a performance-based
diagnostic model [42].

Performance-based health monitoring can be classified into two categories: model-
based (MB) and data-driven/artificial intelligence-based approaches. The model-based
technique is a highly adaptable model, capable of detecting unforeseen faults. Initially
introduced by Urban and Escher [43,44], the linear and nonlinear GPA method served as
the foundation for this technique. The diagnostic approach, based on the model-based
technique, is thermodynamic computation. Through the utilization of thermodynamic
equations, a range of parameters that rely on measurements, including pressure, temper-
ature, output power, and fuel mass flow rate, along with performance indicators, such
as component efficiency, air flow rate, and pressure ratio, can be mathematically cal-
culated [45–47]. To implement the model-based engine health monitoring technique, a
performance simulation algorithm or program is required, and the component characteris-
tics of each engine must comply with the performance simulation. The component map,
which simulates the engine’s performance, is the same as that of a real engine. However,
the engine’s component maps are typically not accessible to users, due to manufacturer
proprietary rights. Consequently, researchers in this field rely on scaled maps, which are
available online and which closely resemble the characteristics of the actual engine. Failure
to do so may lead to discrepancies between the off-design performance model and the
real engine [48–50].

Model-based methods do not maintain perfectly on the sensor noise and bias problem.
Due to this problem, a data-driven (artificial intelligence) method has emerged [51,52],
which is also called a performance-based health monitoring approach, which success-
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fully detects anticipated faults. Data-driven methods include Artificial Neural Network
(ANN) [50,53–56], Fuzzy Logic (FL) [57–60], Bayesian Belief Network (BBN) [59,61–63],
Deep Learning (DL) [64–67], Support Vector Machine (SVM) [39,68–71], K-Nearest Neigh-
bor (KNN) [72–74] and Genetic Algorithm (GA) [75–77]. In the data-driven approaches,
the data collected from the engine will be utilized to develop a diagnostic model. This
model requires data from both healthy engine conditions and various faulty conditions to
be effectively created [31]. There are three possible ways to gather the desired information:
collecting data directly from the real engine throughout its lifespan, conducting tests, or us-
ing engine demonstration or modeling. Due to the high cost associated with collecting data
directly from the engine and through tests, it is most recommended to consider gathering
data from an engine model. Using the data generated from the performance model, a gas
turbine diagnostic model can be developed and used to monitor the health status of the
engine, as shown in Figure 3.
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Some three-shaft data-driven diagnostics works have been found in the literature.
Priya and Riti [78] have developed a three-shaft gas turbine diagnostics model using fuzzy
logic. The benefits and challenges of using fuzzy logic to solve the gas turbine engine
diagnostic problem was emphasized. The diagnostic model was used to detect engine
sensor and component fault conditions. However, it was limited to fault detection and
full-load operation. Joly et al. [79] proposed an artificial neural network-based diagnostics
technique. Both single and double component faults were considered. The result proved
that artificial neural networks are a promising tool for double component fault diagnosis.
The study was limited to full-load operation and did not distinguish the types of physical
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faults, as they just considered a general fault. Ogaji et al. [80] have investigated fuzzy logic
for three-shaft industrial gas turbine diagnostics. Measurements noises were considered
and each of the single component faults were identified. However, this study was limited
to single component faults diagnosis at full-load operation. Another study, conducted by
Marinai et al. [81], investigated fuzzy logic for three-shaft aero gas turbine diagnostics. An
application of the method to a three-shaft turbofan engine provided a promising result.
The study focused exclusively on the engine’s performance during full-load operation.
Sampath et al. [82] investigated a hybrid technique. This study’s aim was to accurately
detect any deviations in the performance of components, as well as identify sensor faults.
The proposed diagnostics technique combined two advanced techniques: the Genetic
Algorithm and Artificial Neural Network. The nested neural network serves as a pre-
processing mechanism or filter, effectively decreasing the number of fault classes that need
to be examined by the genetic algorithm-based diagnostics model. By utilizing this hybrid
model, the accuracy, reliability, and consistency of the obtained results were enhanced.
However, the study was limited to full-load operation.

A three-shaft gas turbine diagnosis model was developed using artificial neural net-
work by Loboda et al. [83]. The study conducted a comparison between two types of
networks: a multilayer perceptron and a radial basis network. The multilayer perceptron is
commonly used for gas turbine fault recognition, while some studies have highlighted the
strong recognition capabilities of the radial basis network. Both networks were included in
the study to assess their performance. The results indicate that the radial basis network
is slightly more accurate than the perceptron. However, it requires significantly more
computer memory and computation time compared to the perceptron. The study was
on limited fault detection at full-load operation. Sina et al. [84] investigated a dynamic
neural network based on the multilayer perceptron network for three-shaft gas turbine
diagnostics. The detection and isolation process involved determining the difference be-
tween each network’s output and the measured engine output, which generated residuals.
These residuals were then used to effectively diagnose faults. However, the study was
still limited to single fault diagnostics at full-load operation. In another study, diagnostics
development using artificial neural network for a three-shaft gas turbine was conducted
by Mustagime and Kurt [85]. In this study, the authors developed a regression model to
investigate the relationship between flight parameters and the Exhaust Gas Temperature
(EGT) parameter. To accomplish this, they utilized multiple regression analysis, which
allowed them to analyze how various flight parameters impact the EGT parameter. Finally,
they proposed an advanced computational technique for accurate identification.

Mateus et al. [86] investigated fuzzy logic for three-shaft aircraft gas turbine diagnos-
tics. The dataset used in this study was acquired by running simulations on the Propulsion
Diagnostic Method Evaluation Strategy software developed by the National Aeronautics
and Space Administration (NASA). To evaluate the performance of the proposed model, the
results were compared to those obtained from a type-1 fuzzy classifier with rule extraction,
using the Wang and Mendel method. The analysis of the results clearly demonstrated
the effectiveness of the proposed model. The comparison to the Wang and Mendel fuzzy
classifier proved that the proposed model achieved superior performance with fewer rules.
However, the diagnosis model was limited to single component and sensor faults analysis.
Amare et al. [87] developed a hybrid diagnostic method for a three-shaft gas turbine. In
this study, an Adaptive Gas-Path Analysis (AGPA) was employed to correct measurement
data for fluctuation due to ambient conditions. The corrected data was then utilized for the
Bayesian network (BN)-based fault diagnostic development. The effectiveness of the pro-
posed method was confirmed by the test results. However, in this study, only compressor
fouling and turbine erosion were considered. In addition to this, the study was limited to
single fault detection at full-load operation ( Zhouzheng et al. [88]).

After a comprehensive literature review, it is clearly seen that, in the previous three-
shaft gas turbine diagnostics studies, variable inlet guide vane drift and part-load oper-
ations remain unconsidered. Variable inlet guide vanes are adjustable blades located at
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the compressor inlet, controlling the airflow entering the compressor. However, over time,
these guide vanes can experience drift, meaning they may deviate from their intended
position. This drift can result in altered aerodynamic conditions, affecting the efficiency
and performance of the gas turbine. Therefore, this study’s aim is to develop a three-shaft
gas turbine diagnostic model using data-driven techniques by considering both single and
double component faults. Two physical faults, such as fouling and erosion at each of the
gas-path components, and one malfunction, called variable inlet guide vane drift (both
up- and down-drift), at both full- and part-load operation, have been considered in the
diagnostics development.

3. Diagnostics Development

The diagnostics model consists of two main components: fault detection and isolation,
and fault identification. Both are at full- and part-load operation. To develop these two
models, the 10 best diagnostics set parameters were utilized. A total of 13 single and
61 double faults classes, including clean class, were considered. Detailed fault patterns for
both single and double faults can be found in Chapter Three of this study. For the single
faults, 1092 observations were taken, with each single fault having 84 observations. On the
other hand, 20,496 observations for double faults were taken, with 336 observations for
each double fault. It is worth noting that the data obtained from the model were initially
noise-free. Hence, to simulate real-world field scenarios, sensor noise was introduced to
each of the diagnostic set parameters. Following the addition of noise, the data were then
normalized within the range of −1 to 1.

3.1. Procedure

The gas turbine design point output power is 26,025 kW. All the information about
the gas turbine engine is presented in the published paper, [89]. In addition to this, the
design point and off-design performance model were developed, validated, and presented
in the same paper, which is our previous work. Once the gas turbine performance model
was developed and validated as presented [89], the clean data was generated at both full-
and part-load conditions (80% load and 90% load, respectively). Subsequently, physical
faults were intentionally implanted and simulated to generate single and double faulty
data, as well as both full- and part-load conditions. To simulate physical faults and generate
faulty data, the relationship of physical faults and performance parameters presented
in [18,90] was used. This approach allowed for a comprehensive study of the gas turbine’s
performance under normal and faulty conditions, providing insights into its behavior
and aiding in the development of an effective diagnostics model. The procedure of the
diagnostics development is shown in Figure 4.
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3.2. Selected Diagnostics Set Measurements

Measurement selection for diagnostic model development requires careful considera-
tion. To effectively select the gas path measurements for diagnostic analysis, researchers
have employed various selection criteria. For instance, Jasmani et al. [91] conducted a com-
prehensive analysis to identify the optimal gas path diagnostic set for the RB211-24G gas
turbine. This analysis involved multiple steps, such as measurement classification analysis,
measurement sensitivity analysis, measurement correlations analysis, and measurement
subsets analysis. The researchers considered different types of faults, ranging from single
faults to faults in all components of the gas turbine. Based on their analysis, they identified
the top ten diagnostic sets for the RB211-24G gas turbine, which are listed in Table 2. This
selection process was carried out meticulously to ensure the effectiveness of the diagnostic
analysis for the gas turbine’s gas-path measurements. Hence, in this study, the suggested
diagnostics set is used.

Table 2. Selected diagnosis measurement parameters [91].

Parameters Description

P24 LPC exit pressure
T24 LPC exit temperature
P3 HPC exit pressure
T3 HPC exit temperature
P43 HPT exit pressure
P47 LPT exit pressure
T5 PT exit temperature
FF Fuel flow rate
N1 Low-pressure spool speed
N2 High-pressure spool speed

3.3. Fault Detection and Isolation Patterns

The datasets containing faulty and clean data were balanced for both single and double
faults. For single fault detection and isolation, there were 84 observations of clean data used,
and each single fault class had 84 observations as well. In the case of double faults, 336
clean data observations were used, and each double fault class also had 336 observations.
This balance between clean and faulty observations ensures that there is no bias towards
any particular class in the task of fault detection and isolation.

During training of the model, the K-fold cross-validation technique was used. This
is a widely used technique in training machine learning to evaluate their performance
and prevent overfitting [8]. It is a process that helps in estimating the generalization
performance of an algorithm, by partitioning the available data into multiple subsets and
using them for training and validation in a systematic manner. The basic idea behind
cross-validation is to divide the dataset into multiple non-overlapping subsets, or “folds”,
typically k-folds, where k is a positive integer. Each fold is then used alternately as a
validation set, while the remaining k−1 folds are used as the training set [40]. That means,
the prediction model is trained k times, each time using a different fold as the validation
set and the remaining folds as the training set. This process is repeated for each fold, and
the performance of the model is evaluated on the validation set for each fold.

The single and double faults are considered during the gas performance investigation,
as well as in the diagnostics development. The fault patterns, including both single and
double faults, are considered in the diagnostic developments presented in Appendix A,
Tables A1 and A2.

3.4. Sensor Noise Incorporation

The sensor noise was added to the diagnostics model input data because the data
generated from the gas turbine model was noise-free. The sensor noise added to each of
the diagnostic set parameters is intended to reflect the actual scenario of the field operation.
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It was taken that the level of sensor noise for each measurement would be represented as
a percentage of the standard deviation of the measured values, as indicated in Table 3. A
Gaussian random distribution technique used to incorporate the noise. The formula used
to incorporate the noise for each sensor is provided below:

Y = xi + k × σi × xi. × randn(Q,1) (1)

Table 3. Sensor noise standard deviations in % of the measured value [81,92].

Sensor P24 T24 P3 T3 P43 P47 T5 FF N1 N2

±σ (%) 0.25 0.4 0.25 0.4 0.25 0.25 0.4 0.5 0.05 0.05

Y is the noise added measurement, xi is the noise-free measurement, k is the control
parameter governing the noise level, σ is the standard deviation of the measurement’s
noise described in Table 3, and Q is the sample data size.

In this research, ±2σ has been used for sensor noise level addition. The choice of ±2σ
is because it is the most frequently applied in practice [39]. It is a good trade-off between
±1σ and ±3σ, and it is a wise decision to be balanced between taking the most tightly
clustered data around the mean and the data points that are farther from the mean.

3.5. Data Normalization

In this study, a technique called normalization was applied to the input patterns,
which involves scaling the data to fit within a specific range. To achieve this, Equation (1)
was utilized to scale the patterns into a range of [−1, 1]:

y =
(Xmax − Xmin)− (x− Y)

Ymax − Ymin
+ Xmin (2)

where:

y is the scaled value,
Xmax is the maximum scaling range,
Xmin is the minimum scaling range,
x is the value to be scaled,
Ymax is the maximum value of the parameter to be scaled, and
Ymin is the minimum value of the parameter to be scaled.

3.6. Tested Machine Learning Algorithms/Candidate

In the process of fault detection and isolation diagnostics model development, a range
of prediction techniques were considered that can be applied to the data generated from the
performance model. All prediction techniques (28 techniques, shown in Table 4) that are
available in MATLAB are tested with the option “all” to determine which one outperforms
the others in the fault detection and isolating task. The technique that outperformed the
other candidates was selected for further investigation. The goal of the further investigation
with the selected technique was to increase the accuracy by manipulating the hyperparam-
eters. This rigorous evaluation of the available prediction techniques is to ensure that the
final model is built using the most effective techniques available. This approach is intended
to increase the accuracy and reliability of the fault detection and isolation model, ultimately
leading to better performance and more effective maintenance of the system.
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Table 4. Candidate machine learning algorithms.

No Candidate
Algorithms Description Category

1 Fine Tree
• Split criterion: Gini’s diversity index
• Maximum number of splits is 100

Decision Trees2 Medium Tree
• Split criterion: Gini’s diversity index
• Maximum number of splits is 20

3 Coarse Tree
• Split criterion: Gini’s diversity index Maximum

number of splits is 4

4 Kernel Naïve
Bayes

• Kernel type: Gaussian
• Support: Unbounded

Naïve Bayes
Classifiers

5 Linear Support
Vector Machine

• Kerner function: Linear
• Box constraint level: 1
• Kernel scale mode: Auto
• Multiclass mode: One-vs.-One

Support Vector
Machine

6
Quadratic
Support Vector
Machine

• Kerner function: Quadratic
• Box constraint level: 1
• Kernel scale mode: Auto
• Multiclass mode: One-vs.-One

7 Cubic Support
Vector Machine

• Kerner function: Cubic
• Box constraint level: 1
• Kernel scale mode: Auto
• Multiclass mode: One-vs.-One

8
Fine Gaussian
Support Vector
Machine

• Kerner function: Gaussian
• Box constraint level: 1
• Kernel scale mode: Manual
• Manual kernel scale: 0.79
• Multiclass mode: One-vs.-One

9
Medium Gaussian
Support Vector
Machine

• Kerner function: Gaussian
• Box constraint level: 1
• Kernel scale mode: Manual
• Manual kernel scale: 3.2
• Multiclass mode: One-vs.-One

10
Coarse Gaussian
Support Vector
Machine

• Kerner function: Gaussian
• Box constraint level: 1
• Kernel scale mode: Manual
• Manual kernel scale: 13
• Multiclass mode: One-vs.-One

11 Fine K-Nearest
Neighbor

• Number of neighbors: 1
• Distance metric: Euclidean
• Distance weight: Equal

Nearest Neighbor
Classifiers

12
Medium
K-Nearest
Neighbor

• Number of neighbors: 10
• Distance metric: Euclidean
• Distance weight: Equal

13 Coarse K-Nearest
Neighbor

• Number of neighbors: 100
• Distance metric: Euclidean
• Distance weight: Equal

14 Cosine K-Nearest
Neighbor

• Number of neighbors: 10
• Distance metric: Cosine
• Distance weight: Equal

15 Cubic K-Nearest
Neighbor

• Number of neighbors: 1
• Distance metric: Cubic
• Distance weight: Equal

16
Weighted
K-Nearest
Neighbor

• Number of neighbors: 1
• Distance metric: Euclidean
• Distance weight: squared inverse
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Table 4. Cont.

No Candidate
Algorithms Description Category

17 Support Vector
Machine Kernel

• Learner: SVM
• Kernel scale: Auto
• Multiclass mode: One-vs.-One
• Iteration limit: 1000 Kernel

Approximation
Classifier

18 Logistic
Regression Kernel

• Learner: Logistic regression
• Kernel scale: Auto
• Multiclass mode: One-vs.-One
• Iteration limit: 1000

19 Boosted Trees
Ensemble

• Ensemble method: AdaBoost
• Learner type: Decision tree
• Maximum number of splits: 20
• Number of learners: 30
• Learner rate: 0.1

Ensemble Classifiers

20 Bagged Trees
Ensemble

• Ensemble method: Bag
• Learner type: Decision tree
• Maximum number of splits: 2
• Number of learners: 30

21
Subspace
Discriminant
Ensemble

• Ensemble method: Subspace
• Learner type: Discriminant
• Number of learners: 30
• Subspace dimension: 5

22 Subspace KNN
Ensemble

• Ensemble method: Subspace
• Learner type: Nearest Neighbors
• Number of learners: 30
• Subspace dimension: 5

23 RUSBoosted Trees
Ensemble

• Ensemble method: RUBoost
• Learner type: Decision tree
• Maximum number of splits: 20
• Number of learners: 30
• Learner rate: 0.1

24 Narrow Neural
Network

• Number of hidden layers: 1
• Number of neurons in the hidden layer: 10
• Activation function: ReLU
• Iteration limit: 1000

Neural Network

25 Medium Neural
Network

• Number of hidden layers (HLs): 25
• Number of neurons in the hidden layer: 10
• Activation function: ReLU
• Iteration limit: 1000

26 Wide Neural
Network

• Number of hidden layers (HLs): 1
• Number of neurons in the HL: 100
• Activation function: ReLU
• Iteration limit: 1000

27 Bi-layered Neural
Network

• Number of hidden layers (HLs): 2
• Number of neurons in the first HL: 10
• Number of neurons in the second HL: 10
• Activation function: ReLU
• Iteration limit: 1000

28 Tri-layered Neural
Network

• Number of hidden layers (HLs): 3
• Number of neurons in the first HL: 10
• Number of neurons in the second HL: 10
• Number of neurons in the third HL: 10
• Activation function: ReLU
• Iteration limit: 1000

3.7. Fault Detection and Isolation Results and Discussion
3.7.1. Single Fault Detection and Isolation

The fault detection and isolation accuracies of different techniques at 100% load
operation were developed and presented in Table 5. During development, the diagnostics
model utilized data generated when the engine model was running at full load/100%
load. The objective was to detect and isolate faults occurring during 100% load operation.
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Compared to other candidate techniques, the narrow neural network exhibits superior
performance in accurately detecting and isolating single faults at full-load operation.

Table 5. All algorithm family’s fault detection and isolation accuracy: Single fault at 100% load.

Candidate Algorithms Accuracy [%] Rank

Narrow Neural Network 98.62 1
Cubic Support Vector Machine 98.44 2
Tri-layered Neural Network 97.89 3
Wide Neural Network 97.80 4
Bi-layered Neural Network 97.80 5
Medium Neural Network 97.71 6
Fine KNN 97.06 7
Quadratic SVM 96.88 8
Weighted KNN 96.79 9
Bagged Trees 96.70 10
Fine Gaussian SVM 95.60 11
Subspace KNN 95.14 12
Linear SVM 93.95 13
Boosted Trees Ensemble 93.77 14
Medium Gaussian SVM 93.68 15
Medium KNN 93.68 16
Cubic KNN 93.40 17
SVM Kernel 93.40 18
Cosine KNN 92.94 19
Fine Tree 92.85 20
Logistic Regression Kernel 89.37 21
Coarse Gaussian SVM 83.79 22
RUSBoosted Trees 82.60 23
Medium Tree 82.50 24
Subspace Discriminant 81.59 25
Kernel naïve bays 79.76 26
Coarse KNN 72.25 27
Coarse Tree 35.80 28

The narrow neural network outperformed better shown in Table 6 was taken as
reference for further investigation to improve the network’s performance. This investigation
involved simulating the model with different numbers of hidden layer neurons within a
range of 5 to 19. Through this process, it was discovered that setting the network with
11 hidden layer neurons led to superior fault detection and isolation accuracy, particularly
for single faults occurring at 100% load condition. In Figure 5, the number of neurons in the
hidden layer versus the accuracy of single fault detection and isolation is shown, specifically
focusing on the 100% load condition. This graph provides a comprehensive understanding
of how the accuracy of fault detection and isolation fluctuates as the number of hidden
layer neurons is adjusted. Figure 6 illustrates the network architecture with the inclusion
of the 11 hidden layer neurons. The performance of the network was evaluated through
training and validation, with the accuracy results depicted in Figure 7. Furthermore, the
accuracy of the fault detection and isolation model was assessed using unseen or test data,
and the results are presented in Figure 8.

Table 6. Selected algorithm used as reference for further use and investigation: Single fault at 100% load.

Algorithms Type Accuracy [%] Rank

Narrow Neural Network 98.62 1
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Network training information that gave accurate prediction for single fault at 100% load:

• Pre-set Network: Neural Network
• Number of neurons in the hidden layer: 11
• Training Data Observation: 819 (75%)
• Testting Data Observation: 274 (25%)
• Training and Validation: 4-K-fold cross validation
• Training algorithm: Levenberg Marquardt
• Predictors variables: 10
• Response Classes: 13
• Activation function: Relu
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3.7.2. Double Fault Detection and Isolation

A double fault detection and isolation model was developed specifically to detect and
isolate double faults that occur during 100% load conditions. To construct this model, data
was collected by running the engine model at 100% load. Table 7 provides a comparison of
the accuracy achieved by different techniques employed in the process. Upon comparing
the various techniques employed, it becomes evident that the medium neural network
again outperforms other methods in accurately detecting and isolating double faults when
the engine operates under 100% load conditions.

Table 7. All algorithm families fault detection and isolation accuracy: double fault at 100% load.

Candidate Algorithms Accuracy [%] Rank

Medium Neural Network 98.12 1
Wide Neural Network 97.31 2
Cubic SVM 97.27 3
Fine KNN 96.86 4
Bagged Trees 96.64 5
Quadratic SVM 96.27 6
Weighted KNN 96.25 7
Narrow Neural Network 94.41 8
Fine Gaussian SVM 93.96 9
Subspace KNN 93.94 10
Bilayered Neural Network 90.55 11
Cubic KNN 90.14 12
Medium KNN 90.06 13
Linear SVM 90.05 14
Cosine KNN 89.31 15
SVM Kernel 87.52 16
Medium Gaussian SVM 86.04 18
Trilayered Neural Network 79.92 19
Logistic Regression Kernel 75.46 20
Coarse Gaussian SVM 70.23 21
Coarse KNN 67.67 22
Kernel Naïve Bayes 61.99 23
Subspace Discriminant 58.20 24
Fine Tree 54.71 25
Boosted Trees 38.25 26
RUSBoosted Trees 27.29 27
Medium Tree 26.67 28
Coarse Tree 8.02 29

Similarly, to enhance the performance of the medium neural network mentioned in
Table 8 and improve its accuracy, a further investigation was conducted. This investigation
involved simulating the model with different numbers of hidden layer neurons, ranging
from 20 to 34. Through this iterative process, it was found that setting the network with
28 hidden layer neurons resulted in the highest accuracy. This configuration proved
to be most effective in accurately detecting and isolating double faults under full-load
operation. Figure 9 provides the number of neurons in the hidden layer versus the accuracy
of detecting and isolating double faults under a 100% load condition. To some extent, it
demonstrates that, as the number of neurons in the hidden layer increases, the accuracy of
fault detection and isolation improves. A visual representation of the network architecture
with 28 hidden layer neurons is presented in Figure 10. The accuracy of the fault detection
and isolation model, including training and validation, as well as testing with unseen data,
is presented in Figures 11 and 12. It shows the effectiveness of the model in accurately
identifying and isolating faults.



Machines 2023, 11, 832 16 of 42

Table 8. Selected algorithm used as a reference for further investigation: double fault at 100% load.

Algorithms Type Accuracy [%] Rank

Medium Neural Network 98.12 1
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Figure 10. Medium neural network for double fault isolation and detection at 100% load.

Network training information that gave the best accuracy for double fault detection
and isolation at 100% load:

• Machine learning technique: Neural Network
• Number of neurons in the hidden layer: 28
• Training Data Observation: 15,372 (75%)
• Testing Data Observation: 5124 (25%)
• Training and Validation: 4-K-fold cross-validation
• Predictors variables: 10
• Response Classes: 61
• Activation function: ReLU
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In the same fashion, both single and double fault detection and isolation model has
been developed when the engine load is at 80% and 90%, respectively. During development,
the data generated when the engine operation was at 80% load and 90% load were used.
This advanced model is designed to accurately identify and isolate potential faults that may
occur during part-load operation, at 80% load and 90% load levels. It is, again, observed
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that neural networks outperform both single and double faults at 80% load and 90% load
operation. For single fault isolation and detection at 80% and 90% load operation, the
network was investigated within the range of hidden layer neuron numbers, from 5 to
19. While investigating the selected neural network model with changing the number
of neurons within the range of neuron numbers, it is observed that setting the number
of neurons at 15 resulted in improved fault detection and isolation accuracy for single
faults at 80% load condition, and setting the number of neurons to 12 resulted in enhanced
fault detection and isolation accuracy, specifically for single faults occurring at 90% load
condition. The accuracy of the single fault detection and isolation model, including training
and validation, as well as testing with unseen data, for both the 80% load and 90% load, is
presented in Appendix B, Figures A1–A4.

For double fault isolation and detection at 80% load and 90% load, the neural network
investigation involved simulating the model with varying numbers of hidden layer neurons,
ranging from 20 to 34. By carrying out this process, it was discovered that setting the
network with 32 hidden layer neurons resulted in superior accuracy for detecting and
isolating double faults at 80% load condition, and setting the network with 30 hidden
layer neurons resulted in superior accuracy for detecting and isolating double faults at 80%
load condition. The accuracy of the double fault detection and isolation model, including
training and validation, as well as testing with unseen data, for both 80% load and 90%
load, is presented in Appendix C, Figures A5–A8.

3.8. Fault Identification Model Results

Gas-path fault identification is a process that aims to estimate or quantify of a gas
turbine’s component deterioration. The gas-path measurements, including temperature,
pressure, spool speed, and fuel flow, are utilized as inputs or predictors for a fault identifi-
cation network, which employs them to predict the health parameters of the engine, such as
flow capacity, isentropic efficiency, and drift angle. In the context of this particular research,
a significant focus was placed on VIGV (Variable Inlet Guide Vane) drift; thus, drift angle
was employed as an additional response parameter. Because of its promising effectiveness,
shown in the fault isolation and detection task, neural networks were chosen for the fault
identification task. To improve fault identification accuracy, the hyperparameters were
manipulated. For each of the single and double fault identifications at 80% load, 90%
load, and 100% load, the network was simulated with different numbers of hidden layer
neurons, ranging from 5 to 25, to identify what number of neurons should be in the hidden
layer number for improved accuracy. The single and double fault identification pattern is
presented in Appendix D, Tables A3 and A4.

3.8.1. Single Fault Identification at 100% Load

In the same fashion, through an iterative process, it was determined that the network
achieved the highest accuracy when the number of neurons in the hidden layer was set to
17. Figure 13 provides a visual representation of the model’s optimal performance in terms
of validation. In this configuration, the mean square error was calculated to be 0.156 at
209 epochs. Figure 14 shows the single fault identification at 100% load model accuracy.

Network training information that gave accurate prediction for single fault identifica-
tion at 100% load:

• Pre-set Network: Neural Network
• Number of Neurons in the Hidden Layer: 17
• Training Data Observation: 765
• Validation Data Observation: 164
• Test Data Observation: 164
• Training Algorithm: Levenberg Marquardt
• Predictors Variables: 10
• Response Classes: 11
• Activation Function: ReLU
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• Performance: Mean Square Error
• Data Division: Random
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3.8.2. Double Fault Identification at 100% Load

To assess the accuracy of the model, simulations were conducted by varying the
number of neurons in the hidden layer, ranging from 5 to 25. Through iteration of this
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process, it was found that the network achieved the highest accuracy when the number of
neurons in the hidden layer was set to 21. Figure 15 illustrates the optimal performance
of the model in terms of validation. In this configuration, the mean square error was
calculated to be 0.176 at 391 epochs. Figure 16 shows the double fault identification at 100%
load model accuracy.
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Network training information that gave accurate prediction for double fault identifica-
tion at 100% load:

• Pre-set Network: Neural Network
• Number of Neurons in the Hidden Layer: 21
• Training Data Observation: 14,346
• Validation Data Observation: 3075
• Test Data Observation: 3075
• Training Algorithm: Levenberg Marquardt
• Predictors Variables: 10
• Response Classes: 11
• Activation Function: ReLU
• Performance: Mean Square Error
• Data Division: Random

In the same fashion, both single and double fault identification models were developed
when the engine load was at 80% and 90%. Because of its promising accuracy, shown in
the fault detection and isolation accuracy, neural network used fault identification tasks
at different loads. Through the iterative process of hidden layer neurons, it was found
that setting the network with 20 hidden layer neurons resulted in the highest accuracy for
single fault identification at 80% load. The mean square error is 0.029, and the epoch is 152.
For fault identification at 90% load, it was found that setting the network with 19 hidden
layer neurons resulted in the highest accuracy. The mean square error is 0.056 at 64 epochs.
The single fault identification neural network model at 80% load and 90% load results are
presented in Appendix E, Figures A9–A12. To investigate the double fault identification at
80% load and 90% load, simulations were conducted with varying numbers of hidden layer
neurons, ranging from 5 to 25. Again, through an iterative process, it was determined that
the double fault identification at 80% load network achieved the highest accuracy when the
number of neurons in the hidden layer was set to 25, while the double fault identification
at 90% load network achieved the highest accuracy when the number of neurons in the
hidden layer was set to 23. The mean square error of the double fault identification at 80%
load network is calculated to be 0.154, and the training process stopped at 259 epochs, while
the mean square error of the double fault identification at 90% load network is calculated
to be 0.156, and the training process stopped at 209 epochs. The double fault identification
neural network model at 80% load and 90% load results are presented in Appendix F,
Figures A13–A16. The summary of the faults isolation and isolation accuracy presented in
Table 9, and the summary of the fault identification accuracy presented in Table 10.

Table 9. Single and double faults detection and isolation model accuracy at different loads summary.

Single Faults Detection and Isolation Double Faults Detection and Isolation

80% Load 90% Load 100% Load 80% Load 90% Load 100% Load

Validation
accuracy 99.6% 99.8% 99.8% 99.4% 99.3% 99.5%

Test
accuracy 98.9% 98.2% 98.9% 98.7% 98.4% 98.1%

3.9. Comparison of Diagnostics Results with Available Literature

One way to assess the effectiveness of a newly proposed diagnostic method is by
conducting a direct comparison with existing methods. This approach involves evaluating
the diagnostic performance of the new method relative to others. However, it is important
to ensure that the methods being compared have specifically addressed similar gas turbine
problems with the same configurations and levels of complexity [93]. By doing so, a fair
and meaningful evaluation can be carried out. Therefore, to compare the diagnostics
model accuracy, one of the latest three-shaft gas turbine diagnostic models were found and
used for comparison. Mingliang et al. [94] have developed the diagnostics model. The
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have considered 13 single faults, while double faults remained unconsidered. The have
considered fouling and foreign object damage in the compressors and fouling, erosion, and
foreign object damage in the turbines. They did not consider erosion in the compressors.
The model that they developed is only for fault detection and isolation at full-load; fault
identification tasks and part-load operations are not considered in their study. Even
though there is a difference on considering the type of physical faults in the fault detection
and isolation, their study is used for comparison because of the similarity of the engine
configuration and the number of single faults considered. The fault detection and isolation
accuracy of their model and our model at full load is 99.3% and 89.9%, respectively. The
comparison shows that the diagnosis model proposed in this research has a promising
accuracy. Furthermore, in this research, both single and double faults at full- and part-load
operations are considered, which made the developed diagnostics model comprehensive.

Table 10. Single and double faults identification model accuracy at different loads summary.

Single Faults Detection and Isolation Double Faults Detection and Isolation

80% Load 90% Load 100% Load 80% Load 90% Load 100% Load

Training
accuracy 99.14% 98.08% 96..79% 96.86% 96.79% 96.35%

Validation
accuracy 98.88% 97.87% 96.75% 96.82% 96.75% 96.31%

Test
accuracy 97.67% 96.77% 96.63% 96.74% 96.63% 95.98%

All
accuracy 98.86% 97.87% 96.76% 96.83% 96.76% 96.28%

4. Conclusions

The results shows that the neural network group demonstrated high detection and
isolation accuracy for single faults at each load condition. The fault detection and isolation
model’s accuracy is higher than the fault identification model’s accuracy. Because the
number of double faults considered are greater than the number of single faults, the
detection and isolation accuracy of single faults are greater than the accuracy of double
faults detection and isolation models at each load. However, the fault detection and
isolation model accuracy achieved for all three load conditions were between 99.3% and
99.5% for the training and validation, and between 98.1% and 98.7% for the test data. The
single and double fault identification model accuracies for all the three load conditions
ranges between 96% and 99%. Even though the computation time does not matter that
much, as there are high-performance computers, the increase of hidden layer neurons
causes the computation time to increase. A comprehensive investigation has been done,
and the results indicate that the developed neural network models exhibit high accuracy
in fault detection, isolation, and identification tasks, suggesting their effectiveness in
diagnosing faults in the gas turbine system.
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Nomenclature

AANN Autoassociative neural network
AI Artificial intelligence
ANN Artificial neural network
BBN Bayesian belief network
CBM Compound annual growth rate
CC Combustion chamber
DCF Double component fault
DD Data driven
DL Deep learning
DOD Domestic object damage
FDI Fault detection, isolation
FF Fuel flow
FL Fuzzy logic
FOD Foreign object damage
GA Genetic algorithm
GPA Gas-path analysis
GT Gas turbine
HPC High-pressure compressor
HPT High-pressure turbine
LPC Low-pressure compressor
LPT Low-pressure turbine
MB Model-based
MLPNN Multilayer perceptron neural network
MRO Maintenance repair and overhaul
N1 Low-pressure spool speed
N2 High-pressure spool speed
P24 Low-pressure compressor exit pressure
P3 High-pressure compressor exit pressure
P43 High-pressure turbine exit pressure
P47 Low-pressure turbine exit pressure
PT Power turbine
SVM Support vector machine
T24 Low-pressure compressor exit temperature
T3 High-pressure compressor exit temperature
T5 Power turbine exit temperature

Appendix A. Fault Pattern

Table A1. Single fault pattern.

Fault Description Fault ID Fault Magnitude
Ambient

Temperature
Range

Observation

Clean 0 0%

−233.15 K to
313.15 K at

4 increments

84

LPC Fouling 1

25%, 50%, 75% and
100%

84

HPC Fouling 2 84

HPT Fouling 3 84

LPT Fouling 4 84

PT Fouling 5 84

LPC Erosion 6 84

HPC Erosion 7 84

HPT Erosion 8 84

LPT Erosion 9 84

PT Erosion 10 84
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Table A1. Cont.

Fault Description Fault ID Fault Magnitude
Ambient

Temperature
Range

Observation

VIGV Updrift 11 1.65◦, 3.25◦,
4.875◦, 6.5◦ 84

VIGV Downdrift 12 −1.65◦, −3.25◦,
−4.875◦, −6.5◦ 84

Table A2. Double fault pattern.

Fault Description Fault ID Fault Magnitude
Ambient

Temperature
Range

Observation

Clean 0 0%

−233.15 K to
313.15 K at

4 increment

336

LPC Fouling &
HPC Fouling 1

25%, 50%, 75% and
100%

336

LPC Fouling &
HPC Erosion 2 336

LPC Erosion &
HPC Fouling 3 336

LPC Erosion &
HPC Erosion 4 336

LPC Fouling &
HPT Fouling 5 336

LPC Fouling &
HPT Erosion 6 336

LPC Erosion &
HPT Fouling 7 336

LPC Erosion &
HPT Erosion 8 336

LPC Fouling &
LPT Fouling 9 336

LPC Fouling &
LPT Erosion 10 336

LPC Erosion &
LPT Fouling 11 336

LPC Erosion &
LPT Erosion 12 336

LPC Fouling &
PT Fouling 13 336

LPC Fouling &
PT Erosion 14 336

LPC Erosion &
PT Fouling 15 336

LPC Erosion &
PT Erosion 16 336

HPC Fouling &
HPT Fouling 17 336

HPC Fouling &
HPT Erosion 18 336

HPC Erosion &
HPT Fouling 19 336

HPC Erosion &
HPT Erosion 20 336
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Table A2. Cont.

Fault Description Fault ID Fault Magnitude
Ambient

Temperature
Range

Observation

HPC Fouling &
LPT Fouling 21

25%, 50%, 75% and
100%

−233.15 K to
313.15 K at
4 increment

336

HPC Fouling &
LPT Erosion 22 336

HPC Erosion &
LPT Fouling 23 336

HPC Erosion &
LPT Erosion 24 336

HPC Fouling &
PT Fouling 25 336

HPC Fouling &
PT Erosion 26 336

HPC Erosion &
PT Fouling 27 336

HPC Erosion &
PT Erosion 28 336

HPT Fouling &
LPT Fouling 29 336

HPT Fouling &
LPT Erosion 30 336

HPT Erosion &
LPT Fouling 31 336

HPT Erosion &
LPT Erosion 32 336

HPT Fouling &
PT Fouling 33 336

HPT Fouling &
PT Erosion 34 336

HPT Erosion &
PT Fouling 35 336

HPT Erosion &
PT Erosion 36 336

LPT Fouling &
PT Fouling 37 336

LPT Fouling &
PT Erosion 38 336

LPT Erosion &
PT Fouling 39 336

LPT Erosion &
PT Erosion 40 336

LPC Fouling &
VIGV Updrift 41

1.65◦, 3.25◦,
4.875◦, 6.5◦

336

HPC Fouling &
VIGV Updrift 42 336

HPT Fouling &
VIGV Updrift 43 336

LPT Fouling &
VIGV Updrift 44 336

PT Fouling &
VIGV Updrift 45 336
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Table A2. Cont.

Fault Description Fault ID Fault Magnitude
Ambient

Temperature
Range

Observation

LPC Fouling &
VIGV Downdrift 46

−1.65◦, −3.25◦,
−4.875◦, −6.5◦

−233.15 K to
313.15 K at

4 increment

336

HPC Fouling &
VIGV Downdrift 47 336

HPT Fouling &
VIGV Downdrift 48 336

LPT Fouling &
VIGV Downdrift 49 336

PT Fouling &
VIGV Downdrift 50 336

LPC Erosion &
VIGV Updrift 51

1.65◦, 3.25◦,
4.875◦, 6.5◦

336

HPC Erosion &
VIGV Updrift 52 336

HPT Erosion &
VIGV Updrift 53 336

LPT Erosion &
VIGV Updrift 54 336

PT Erosion &
VIGV Updrift 55 336

LPC Erosion &
VIGV Downdrift 56

−1.65◦, −3.25◦,
−4.875◦, −6.5◦

336

HPC Erosion &
VIGV Downdrift 57 336

HPT Erosion &
VIGV Downdrift 58 336

LPT Erosion &
VIGV Downdrift 59 336

PT Erosion &
VIGV Downdrift 60 336
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Appendix B. Single Fault Detection and Isolation
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Network training information that gave accurate prediction for single fault at 100% load:

• Pre-set Network: Neural Network
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• Number of Neurons in the Hidden Layer: 15
• Training Data Observation: 819 (75%)
• Testing Data Observation: 274 (25%)
• Training and Validation: 4-K-fold Cross-validation
• Training Algorithm: Levenberg Marquardt
• Predictors Variables: 10
• Response Classes: 13
• Activation Function: ReLU
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Network training information that gave accurate prediction for single fault at 100% load:

• Pre-set Network: Neural Network
• Number of Neurons in the Hidden Layer: 12
• Training Data Observation: 819 (75%)
• Testing Data Observation: 274 (25%)
• Training and Validation: 4-K-fold Cross-validation
• Training Algorithm: Levenberg Marquardt
• Predictors Variables: 10
• Response Classes: 13
• Activation Function: ReLU
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Network training information that gave better accurate for double fault detection and
isolation at 80% load:

• Machine Learning Technique: Neural Network
• Number of Neurons in the Hidden Layer: 32
• Training Data Observation: 15,372 (75%)
• Training Data Observation: 5124 (25%)
• Training and Validation: 4-K-fold Cross-validation
• Predictors Variables: 10
• Response Classes: 61
• Activation Function: ReLU

Network training information that gave better accurate for double fault detection and
isolation at 90% load:

• Machine Learning Technique: Neural Network
• Number of Neurons in the Hidden Layer: 30
• Training Data Observation: 15,372 (75%)
• Training Data Observation: 5124 (25%)
• Training and Validation: 4-K-fold Cross-validation
• Predictors Variables: 10
• Response Classes: 61
• Activation Function: ReLU



Machines 2023, 11, 832 31 of 42

Machines 2023, 11, x FOR PEER REVIEW 32 of 44 
 

 

• Machine Learning Technique: Neural Network 
• Number of Neurons in the Hidden Layer: 32 
• Training Data Observation: 15,372 (75%) 
• Training Data Observation: 5124 (25%) 
• Training and Validation: 4-K-fold Cross-validation 
• Predictors Variables: 10 
• Response Classes: 61 
• Activation Function: ReLU 

 
Figure A7. NN double fault detection and isolation model training and validation confusion matrix 
at 90% load. 

Figure A7. NN double fault detection and isolation model training and validation confusion matrix
at 90% load.

Machines 2023, 11, x FOR PEER REVIEW 33 of 44 
 

 

 
Figure A8. NN double fault detection and isolation model unseen dataset test confusion matrix at 
90% load. 

Network training information that gave better accurate for double fault detection and 
isolation at 90% load: 
• Machine Learning Technique: Neural Network 
• Number of Neurons in the Hidden Layer: 30 
• Training Data Observation: 15372 (75%) 
• Training Data Observation: 5124 (25%) 
• Training and Validation: 4-K-fold Cross-validation 
• Predictors Variables: 10 
• Response Classes: 61 
• Activation Function: ReLU 

Appendix D. Fault Identification Pattern 

Table A3. The input/predictors and output/responses parameters for single faults identification 
model. 

NO Fault Description Predictor Response 
1 Clean 

P24 
T24 
P3 
T3 
P43 
P47 
T5 
FF 
N1 
N2 

All components  𝛥𝜂 &  𝛥𝛤 are zero 
2 LPC Fouling 𝛥𝜂௅௉஼ & 𝛥𝛤௅௉஼  
3 HPC Fouling 𝛥𝜂ு௉஼ & 𝛥𝛤ு௉஼ 
4 HPT Fouling 𝛥𝜂ு௉் & 𝛥𝛤ு௉் 
5 LPT Fouling 𝛥𝜂௅௉் & 𝛥𝛤௅௉் 
6 PT Fouling 𝛥𝜂௉் & 𝛥𝛤௉் 
7 LPC Erosion 𝛥𝜂௅௉஼ & 𝛥𝛤௅௉஼ 
8 HPC Erosion 𝛥𝜂ு௉஼ & 𝛥𝛤ு௉஼ 
9 HPT Erosion 𝛥𝜂ு௉் & 𝛥𝛤ு௉் 

10 LPT Erosion 𝛥𝜂௅௉் & 𝛥𝛤௅௉் 
11 PT Erosion 𝛥𝜂௉் & 𝛥𝛤௉் 

Figure A8. NN double fault detection and isolation model unseen dataset test confusion matrix at
90% load.



Machines 2023, 11, 832 32 of 42

Appendix D. Fault Identification Pattern

Table A3. The input/predictors and output/responses parameters for single faults identification model.

NO Fault Description Predictor Response

1 Clean

P24
T24
P3
T3
P43
P47
T5
FF
N1
N2

All components ∆η
& ∆Γ are zero

2 LPC Fouling ∆ηLPC & ∆ΓLPC

3 HPC Fouling ∆ηHPC & ∆ΓHPC

4 HPT Fouling ∆ηHPT & ∆ΓHPT

5 LPT Fouling ∆ηLPT & ∆ΓLPT

6 PT Fouling ∆ηPT & ∆ΓPT

7 LPC Erosion ∆ηLPC & ∆ΓLPC

8 HPC Erosion ∆ηHPC & ∆ΓHPC

9 HPT Erosion ∆ηHPT & ∆ΓHPT

10 LPT Erosion ∆ηLPT & ∆ΓLPT

11 PT Erosion ∆ηPT & ∆ΓPT

12 VIGV Updrift VIGVUPDRIFT

13 VIGV Downdrift VIGVDOWNDRIFT

Table A4. The input/predictors and output/responses parameters for double faults identification model.

NO Fault Description Predictor Response

1 Clean

P24
T24
P3
T3
P43
P47
T5
FF
N1
N2

All components ∆η & ∆Γ are zero

2 LPC Fouling & HPC Fouling

ηLPC , ∆ΓLPC , ∆ηHPC & ∆ΓHPC
3 LPC Fouling & HPC Erosion

4 LPC Erosion & HPC Fouling

5 LPC Erosion & HPC Erosion

6 LPC Fouling & HPT Fouling

ηLPC , ∆ΓLPC , ∆ηHPT & ∆ΓHPT
7 LPC Fouling & HPT Erosion

8 LPC Erosion & HPT Fouling

9 LPC Erosion & HPT Erosion

10 LPC Fouling & LPT Fouling

ηLPC , ∆ΓLPC , ∆ηLPT & ∆ΓLPT
11 LPC Fouling & LPT Erosion

12 LPC Erosion & LPT Fouling

13 LPC Erosion & LPT Erosion

14 LPC Fouling & PT Fouling

ηLPC , ∆ΓLPC , ∆ηPT & ∆ΓPT
15 LPC Fouling & PT Erosion

16 LPC Erosion & PT Fouling

17 LPC Erosion & PT Erosion

18 HPC Fouling & HPT Fouling

ηHPC , ∆ΓHPC , ∆ηHPT & ∆ΓHPT
19 HPC Fouling & HPT Erosion

20 HPC Erosion & HPT Fouling

21 HPC Erosion & HPT Erosion
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Table A4. Cont.

NO Fault Description Predictor Response

22 HPC Fouling & LPT Fouling

P24
T24
P3
T3
P43
P47
T5
FF
N1
N2

ηHPC , ∆ΓHPC , ∆ηLPT & ∆ΓLPT
23 HPC Fouling & LPT Erosion

24 HPC Erosion & LPT Fouling

25 HPC Erosion & LPT Erosion

26 HPC Fouling & PT Fouling

ηHPC , ∆ΓHPC , ∆ηPT & ∆ΓPT
27 HPC Fouling & PT Erosion

28 HPC Erosion & PT Fouling

29 HPC Erosion & PT Erosion

30 HPT Fouling & LPT Fouling

ηHPT , ∆ΓHPT , ∆ηLPT & ∆ΓLPT
31 HPT Fouling & LPT Erosion

32 HPT Erosion & LPT Fouling

33 HPT Erosion & LPT Erosion

34 HPT Fouling & PT Fouling

ηHPT , ∆ΓHPT , ∆ηPT & ∆ΓPT
35 HPT Fouling & PT Erosion

36 HPT Erosion & PT Fouling

37 HPT Erosion & PT Erosion

38 LPT Fouling & PT Fouling

ηLPT , ∆ΓLPT , ∆ηPT & ∆ΓPT
39 LPT Fouling & PT Erosion

40 LPT Erosion & PT Fouling

41 LPT Erosion & PT Erosion

42 LPC Fouling & VIGV Updrift ηLPC , ∆ΓLPC , VIGVUPDRIFT

43 HPC Fouling & VIGV Updrift ηHPC , ∆ΓHPC , VIGVUPDRIFT

44 HPT Fouling & VIGV Updrift ηHPT , ∆ΓHPT , VIGVUPDRIFT

45 LPT Fouling & VIGV Updrift ηLPT , ∆ΓLPT , VIGVUPDRIFT

46 PT Fouling & VIGV Updrift ηPT , ∆ΓPT , VIGVUPDRIFT

47 LPC Fouling & VIGV Downdrift ηLPC , ∆ΓLPC , VIGVDOWNDRIFT

48 HPC Fouling & VIGV Downdrift ηHPC , ∆ΓHPC , VIGVDOWNDRIFT

49 HPT Fouling & VIGV Downdrift ηHPT , ∆ΓHPT , VIGVDOWNDRIFT

50 LPT Fouling & VIGV Downdrift ηLPT , ∆ΓLPT , VIGVDOWNDRIFT

51 PT Fouling & VIGV Downdrift ηPT , ∆ΓPT , VIGVDOWNDRIFT

52 LPC Erosion & VIGV Updrift ηLPC , ∆ΓLPC , VIGVUPDRIFT

53 HPC Erosion & VIGV Updrift ηHPC , ∆ΓHPC , VIGVUPDRIFT

54 HPT Erosion & VIGV Updrift ηHPT , ∆ΓHPT , VIGVUPDRIFT

55 LPT Erosion & VIGV Updrift ηLPT , ∆ΓLPT , VIGVUPDRIFT

56 PT Erosion & VIGV Updrift ηPT , ∆ΓPT , VIGVUPDRIFT

57 LPC Erosion & VIGV Downdrift ηLPC , ∆ΓLPC , VIGVDOWNDRIFT

58 HPC Erosion & VIGV Downdrift ηHPC , ∆ΓHPC , VIGVDOWNDRIFT

59 HPT Erosion & VIGV Downdrift ηHPT , ∆ΓHPT , VIGVDOWNDRIFT

60 LPT Erosion & VIGV Downdrift ηLPT , ∆ΓLPT , VIGVDOWNDRIFT

61 PT Erosion & VIGV Downdrift ηPT , ∆ΓPT , VIGVDOWNDRIFT
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Appendix E. Single Fault Identification
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• Training Algorithm: Levenberg Marquardt
• Predictors Variables: 10
• Response Classes: 11
• Activation function: ReLU
• Performance: Mean Square Error
• Data Division: Random
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Network training information that gave accurate prediction for double fault identifica-
tion at 80% load:

• Pre-set Network: Neural Network
• Number of Neurons in the Hidden Layer: 25
• Training Data Observation: 14,346
• Validation Data Observation: 3075
• Test Data Observation: 3075
• Training Algorithm: Levenberg Marquardt
• Predictors Variables: 10
• Response Classes: 11
• Activation Function: ReLU
• Performance: Mean Square Error
• Data Division: Random

Network training information that gave accurate prediction for double fault identifica-
tion at 90% load:

• Pre-set Network: Neural Network
• Number of Neurons in the Hidden Layer: 23
• Training Data Observation: 14,346
• Validation Data Observation: 3075
• Test Data Observation: 3075
• Training Algorithm: Levenberg Marquardt
• Predictors Variables: 10
• Response Classes: 11
• Activation Function: ReLU
• Performance: Mean Square Error
• Data Division: Random
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