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Abstract: The paper proposes a new three-dimensional flexible hinge formed of several serially linked
straight- and circular-axis segments that are disposed of in two layers. The novel hinge configuration
is capable of large displacements and can be implemented in precision-compliant mechanisms that
need to cover large spatial workspaces. Based on simplified geometry, an analytical compliance
model is formulated that connects the loads to the displacements at one end of the hinge. Finite
element simulation and experimental prototype testing of actual-geometry hinge configurations
confirm the analytical model predictions. A related compliance-based analytical model evaluates
the maximum loads that can be applied to the hinge and the resulting displacements. The two
small-deformation analytical models are subsequently utilized to investigate the relationship between
geometric parameters and the hinge performance qualifiers.

Keywords: flexible hinge; series; compliance; analytical; stiffness; three-dimensional; load; displacement;
small deformations

1. Introduction

Flexible or flexure hinges are the inherent design choice for joints operating in mono-
lithic, compliant mechanisms that transmit mechanical motion between adjacent rigid
links. These joints have originally been conceived to primarily deform in bending, which
lends them the “flexure” qualifier. However, other hinge deformation capabilities, such as
torsion or axial, which had largely been regarded as “parasitic”, have been reconsidered
in more recent years’ designs to actively be engaged and realize a displacement spectrum
that bending solely cannot generate; therefore, these joints are more appropriately called
“flexible” hinges. The application domain of flexible hinges and their mechanisms is vast
and has been expanding at both the regular/macro and micro/nano scales. A sample of
engineering applications includes sensors, actuators, suspensions, antifriction bearings,
microscopes, print heads, disk drives, optical transmission systems, and robotics.

Flexure/flexible hinges are conceived as relatively thin members of either constant or
variable cross-sections whose longitudinal axes are straight, planar, or spatial, as illustrated
in Figure 1. Straight-axis hinges, such as the one depicted in Figure 1a, are one-dimensional
(1D) configurations by their longitudinal axis and have mainly been intended to function as
flexures since they bend around an axis perpendicular to their plane. The elastic properties
(compliance or stiffness) of several 1D variable cross-section flexure hinges have been
studied including geometries with longitudinal profiles such as circular—[1–3], corner-
filleted—[3,4], conic-section—[3–5], V-shaped—[6], polynomial—[7], Bézier-curves—[8],
power-function—[9], multiple-profile—[3,10,11], and NURBS—[12]. One-dimensional
hinges can be formed of a single segment or by serially coupling and axially aligning
segments of different longitudinal geometries.
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Figure 1. Flexible hinges: (a) Straight-axis, 1D with one segment; (b) 2D with several serial segments; 
(c) 3D with several serial segments. 

Expanding the deformation capabilities of straight-axis hinges are the two-dimen-
sional (2D) flexible hinges—see, for instance, the axial profile in Figure 1b. These hinges 
allow for more coupling between the motions and are thus more versatile than 1D designs. 

Various 2D hinge geometries have been studied, which are either defined by a single 
2D axial curve or by several curves (including straight lines) connected in series. Particular 
2D flexible hinges include the curvilinear-axis designs studied in [3], the three-DOF con-
figuration—[13], the bi-directional flexure joints—[14], the annulus shapes—[15], the 
spherical configuration—[16], the nonstandard designs—[17], the Z-shaped hinges—[18], 
the folded designs—[3,19], the constant-torque variants—[20], the S-shaped flexures—
[21], or the flexure designs studied in [22,23]. 

Flexible hinges with three-dimensional (3D) axes, such as the one sketched in Figure 
1c, have recently been introduced—see [24,25]—in order to enable motion capabilities that 
are necessary for spatial manipulation to cite just one of the multiple potential applica-
tions. 

The constant/variable cross-sections of 1D, 2D, and 3D flexible hinges are normally 
circular or rectangular. The deformation performance traits of flexible hinges spans a wide 
domain ranging from very stiff to very compliant. These variations are solely achieved 
through the shape of the axial curves of the component segments, their longitudinal pro-
files, and cross-sections. The 1D, straight-axis, right circular flexure hinge of Figure 1a or 
a V-shaped hinge can be really stiff, whereas a 3D hinge of constant circular cross-section, 
resembling the configuration shown in Figure 1c, is very flexible. 

Highly flexible 3D hinges can simply be realized by increasing the hinge length 
and/or reducing the cross-section dimensions. While both options are limited by evident 
geometrical constraints, a design solution that is based on the length increase is to pack 
the component segments of a 3D hinge as densely spatially as possible, like the folded 
(accordion or serpentine) 2D hinges described in [3,19]—Figure 2 is a schematic represen-
tation of a design presented in [3]. 

 
Figure 2. Skeleton representation of a 2D folded flexible hinge. 
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Figure 1. Flexible hinges: (a) Straight-axis, 1D with one segment; (b) 2D with several serial segments;
(c) 3D with several serial segments.

Expanding the deformation capabilities of straight-axis hinges are the two-dimensional
(2D) flexible hinges—see, for instance, the axial profile in Figure 1b. These hinges allow for
more coupling between the motions and are thus more versatile than 1D designs.

Various 2D hinge geometries have been studied, which are either defined by a single
2D axial curve or by several curves (including straight lines) connected in series. Partic-
ular 2D flexible hinges include the curvilinear-axis designs studied in [3], the three-DOF
configuration—[13], the bi-directional flexure joints—[14], the annulus shapes—[15], the
spherical configuration—[16], the nonstandard designs—[17], the Z-shaped hinges—[18],
the folded designs—[3,19], the constant-torque variants—[20], the S-shaped flexures—[21],
or the flexure designs studied in [22,23].

Flexible hinges with three-dimensional (3D) axes, such as the one sketched in Figure 1c,
have recently been introduced—see [24,25]—in order to enable motion capabilities that are
necessary for spatial manipulation to cite just one of the multiple potential applications.

The constant/variable cross-sections of 1D, 2D, and 3D flexible hinges are normally
circular or rectangular. The deformation performance traits of flexible hinges spans a wide
domain ranging from very stiff to very compliant. These variations are solely achieved
through the shape of the axial curves of the component segments, their longitudinal profiles,
and cross-sections. The 1D, straight-axis, right circular flexure hinge of Figure 1a or a V-
shaped hinge can be really stiff, whereas a 3D hinge of constant circular cross-section,
resembling the configuration shown in Figure 1c, is very flexible.

Highly flexible 3D hinges can simply be realized by increasing the hinge length and/or
reducing the cross-section dimensions. While both options are limited by evident geo-
metrical constraints, a design solution that is based on the length increase is to pack the
component segments of a 3D hinge as densely spatially as possible, like the folded (accor-
dion or serpentine) 2D hinges described in [3,19]—Figure 2 is a schematic representation of
a design presented in [3].
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Figure 2. Skeleton representation of a 2D folded flexible hinge.
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Similar to 2D, highly flexible folded hinges, we propose here a new 3D monolithical
hinge, which serially couples several straight- and circular-axis segments in a folded and
compact manner to achieve large displacements with relatively small external loads. This
design can readily be implemented in flexible manipulators or joy-stick type devices that
need to cover an extended 3D workspace. The new hinge can also be implemented in
bioinspired soft robotics and actuation applications such as to those described in [26–28].

The first half of the paper derives an analytical compliance matrix model of the hinge,
which links the six 3D loads to the resulting six displacements at one end of the hinge;
the model can be used for either direct or inverse kinematic calculations. The geometric
model used to formulate the hinge compliance matrix is simplified as it excludes the
corner-filleted portions of an actual hinge. The validity of the analytic model is checked
by both finite element simulation and experimental testing of a prototype; both methods’
results are very close to the analytical model predictions. The second half part of the paper
utilizes the analytical compliance model in conjunction with stress limitations to assess
the maximum loads that can safely be applied and the resulting displacements. Both parts
comprise sections that analyze the influence of the geometric parameters on the hinge
elastic performance.

2. New 3D Flexible Hinge Design

A rendition of the new 3D flexible hinge is illustrated in Figure 3. The hinge is formed
of several straight-axis segments that are serially combined with circular-axis segments
in two parallel layers (planes). In each of the two planes, the half circular-axis segments
have medium radii R1 and R2. A shorter (but flexible) straight-axis segment of length l
connects the two planes’ segments along a direction perpendicular to the planes. In order
to eliminate sharp corners and to mitigate large stress concentration effects at the vertices
where straight-axis and circular-axis segments intersect, short, circular-axis fillet segments
of medium radius r are utilized. The radius r is sufficiently small to avoid altering the hinge
elasticity as provided by the half-circle and straight-axis segments. All segments have the
same constant circular cross-section of diameter d. Figure 3 also shows the six loads (three
forces and three moments) that are applied at the hinge end A in the Cartesian frame Axyz.
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Figure 3. Configuration of new 3D two-layer flexible hinge with end loads.

The two-plane configuration is primarily necessary to avoid spatial superposition of
the four straight-axis segments that are parallel to the x-axis. This layered design (which can
be expanded to more than two parallel planes) also enhances the overall hinge flexibility as
it allows for additional bending due to the straight-axis segment that is parallel to the z-axis.

3. Analytical Compliance Model
3.1. Model Derivation

The aim here is to relate a three-dimensional load vector [f ] = [fx fy mz mx my fz]T that
is applied at the end A of the flexible hinge of Figure 3 to the resulting displacement vector
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[u] = [ux uy θz θx θy uz]T at the same point by means of a compliance matrix [C] in the
form: [u] = [C][f ]. The symbols f, m, u, and θ stand for force, moment, displacement, and
rotation angle, respectively. The first three elements in both [u] and [f ] are in-plane elements
(due to their effect in the xy plane) while the other three elements in the two vectors are
out-of-plane elements.

The skeleton-representation flexible hinge of Figure 4 has a simplified geometry that
eliminates all filleted (rounded) portions of the actual hinge of Figure 3. The simplified
configuration is formed of nine segments, of which five are of straight-axis and four are
semicircles. The analytical compliance model is derived based on this simplified geometry.
Due to the segment serial connection, the hinge compliance matrix is calculated as:

[C] = [CA] =
9

∑
i=1

[
C(i)

A

]
=

9

∑
i=1

[
T(i)

AOi

]T[
R(i)

]T[
C(i)

Oi

][
R(i)

][
T(i)

AOi

]
. (1)
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The global reference frame Axyz is shown in Figure 3 (the frame OXYZ represented in
Figure 4 is placed at the fixed hinge end O and is only shown for reference purposes). In
Equation (1), the local-frame compliance matrices of the nine segments are expressed as:

[
C(i)

Oi

]
=


[
C(i)

Oi ,ip

]
3×3

[0]3×3

[0]3×3

[
C(i)

Oi ,op

]
3×3

, (2)

where the subscript “ip” stands for the in-plane components and “op” represents the out-of-
plane elements. Consistent with the definition of [u] and [f ], the 3 × 3 in-plane compliance
matrix of Equation (2) is formulated as:

[
C(i)

O,ip

]
=


C(i)

ux− fx
0 0

0 C(i)
uy− fy

C(i)
uy−mz

0 C(i)
uy−mz

C(i)
θz−mz

;
[
C(i)

O,ip

]
=


C(i)

ux− fx
C(i)

ux− fy
C(i)

ux−mz

C(i)
ux− fy

C(i)
uy− fy

C(i)
uy−mz

C(i)
ux−mz

C(i)
uy−mz

C(i)
θz−mz

. (3)

The first matrix in Equation (3) defines a straight-axis segment, whereas the second
matrix characterizes a circular-axis segment. Similarly, in the same Equation (2), the out-of-
plane compliance matrices of straight-axis and of circular-axis segments are:

[
C(i)

O,op

]
=


C(i)
θx−mx

0 0

0 C(i)
θz−mz

−C(i)
uy−mz

0 −C(i)
uy−mz

C(i)
uy− fy

;
[
C(i)

O,op

]
=


C(i)
θx−mx

C(i)
θx−my

C(i)
θx− fz

C(i)
θx−my

C(i)
θy−my

C(i)
θy− fz

C(i)
θx− fz

C(i)
θy− fz

C(i)
uz− fz

. (4)
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Generic straight-axis and circular-axis segments are depicted in skeleton representation
in Figure 5. The local-frame compliances that populate the matrices of Equations (3) and (4)
are provided in Appendix A.
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y5 

y3 x4 
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R1 

(c) (b) 

z5 O5 

x5 
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y5 

y6, x9 

O6 O7 O8 O9 

x6 y9 

y7 x8 

R2 

R1 
x, x7, y8 
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A 

Figure 5. Basic skeleton segments in local frames: (a) Straight-axis member; (b) Circular-axis member.

Figure 6 describes the axial dimensions of the nine component segments, their connec-
tion, together with the local reference frames.
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Figure 6. Component segments with defining geometry and local reference frames: (a) Back layer;
(b) Connecting segment; (c) Front layer.

With respect to the circular-axis segments, it should be noted that segments 4 and 6 of
Figures 4 and 6a have their axes rotated (mirrored) around the yi axes, and therefore their
in-plane axes are xim instead of xi—which is shown in Figure 4. This mirroring effects into
minus signs in front of the compliances C(i)

ux− fy
, C(i)

uy−mz
, C(i)
θx−my

, C(i)
θy− fz

—see [3], for instance.
The translation matrix of Equation (1) is defined as:

[
T(i)

AOi

]
=



1 0 0 0 0 0
0 1 0 0 0 0

∆yi −∆xi 1 0 0 0
0 ∆zi 0 1 0 −∆yi
−∆zi 0 0 0 1 ∆xi

0 0 0 0 0 1

, (5)

where the offsets ∆xi, ∆yi, and ∆zi represent the Cartesian x, y, z distances measured from
the end A to the local origin Oi of any of the nine segments—they are expressed in Table A1
of Appendix B; note that the offset ∆yi is zero for all segments. The rotation matrix of
Equation (1) is calculated as: [

R(i)
]
=
[

R(i)
ψ

][
R(i)
θ

][
R(i)
ϕ

]
, (6)
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where ϕ, θ, and ψ represent three consecutive coordinate rotations that enable to position
the local frame of a segment with respect to the global frame: ϕ is the rotation around the
global z-axis, θ is the rotation around the new (rotated) local x-axis, and ψ is the rotation
angle around the local z-axis resulting after the previous (last) rotation—see [3] for more
details. All segments, except segment 5, are in planes parallel to the global xy plane, and
consequently, their rotation matrix is

[
R(i)

]
=
[

R(i)
ϕ

]
since the other two rotation matrices

are unity matrices. This particular matrix is defined as:

[
R(i)

]
=

[R(i*)
]

[0]3×3

[0]3×3

[
R(i*)

];
[

R(i*)
]
=

 cosϕi sinϕi 0
− sinϕi cosϕi 0

0 0 1

. (7)

The local plane x5y5 of segment 5 is not parallel to the global plane xy, and therefore the
rotation matrices

[
R(i)
ψ

]
,
[

R(i)
θ

]
are not unity matrices—they are provided in Appendix B,

as well.

3.2. Analytical Compliance Model Finite Element Validation

Four different hinge designs were used to compare the compliance values provided
by the analytical model (A), which is based on the simplified geometry of Figures 4 and 6
to the finite element (FE) simulation data provided by the ANSYS software 2022 R2 and
which utilizes the geometry depicted in Figure 7a where all the corners are filleted by
means of circular segments of radius r (shown in Figure 3). The simulation utilized the
following material properties: Young’s modulus E = 1.2 × 1011 N/m2 and Poisson’s ratio
µ = 0.3. Beam elements with two nodes and six degrees of freedom at each node were used
to generate the FE model depicted in Figure 7b, which captures both the original shape
and the deformed shape resulting from an axial force fz applied at one end of the device
(while the other end is fixed). The individual compliances of the matrix [C] expressed
in Equation (1) were obtained with static analysis by sequentially applying unit loads at
the free end A of the FE model and by reading the six displacements (three translation
displacements and three rotation angles) at the same point. A force fx = 1 N, for instance,
generated an x-axis displacement ux = Cux− fx , a z-axis rotation angle θz = Cθz− fx , and so
on. Several meshing densities were utilized before identifying a finite element model that
offers sufficient accuracy for a relatively small number of elements. As such, the selected
meshing model is formed of 30 elements for the two circular-axis segments of radius R1,
40 elements for the two circular-axis segments of radius R2, 10 elements for the straight-axis
segments denoted by 1, 5, 13, and 17 in Figure 7a, 3 elements for segment 5 in the same
figure, and 8 elements for all circularly filleted segments.

Table 1 shows the geometric parameters of these designs and Table 2 includes a sample
of the 21 individual compliances that form the 6 × 6 compliance matrix of Equation (1).
The specific values of Table 1 were in the dimensional range of the experimental prototype
that we tested, and which are provided in Section 3.3. The simplified-geometry analytical
model results matched the finite element data with a maximum relative error barely in
excess of 3%, as shown in Table 2. Similar differences were noted when comparing the
analytical and finite element results of a few other designs—those results are not included
here. We have also observed that the analytical compliances are slightly larger than the
finite element counterparts with consistency, except for a few sets of values of the x-related
compliance. This was a strong indication that the simplified-geometry analytical model
is sufficiently accurate and can be utilized instead of a more involved model base that
would include the fillet regions in the hinge compliance matrix. It should be noted that the
differences between the analytical model (based on a fillet-less, simplified geometry) and
the finite element model (corresponding to geometry with fillets) results are expected to
become larger for larger values of the fillet radius r. However, as mentioned already, the
fillets are used at otherwise-sharp corners to reduce stress concentration and not to alter
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the hinge flexibility, and therefore the errors related to the simplified geometry remain at
acceptable levels for small radii r.
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Table 1. 3D hinge designs with geometric parameters.

Design d [m] R1 [m] R2 [m] r [m] l [m]

1 0.002 0.015 0.025 0.0015 0.006

2 0.003 0.015 0.025 0.0015 0.006

3 0.003 0.02 0.035 0.002 0.008

4 0.003 0.02 0.04 0.0025 0.008

Table 2. Compliances by analytical model (A) and finite element model (FEA); relative percentage
differences (e) between A and FEA results.

Design Results
Cux−fx

[N−1m]
Cux−my

[N−1]
Cuz−fz

[N−1m]
Cθz−mz

[N−1m−1]
Cuy−fy

[N−1m]

1

A 6.99 × 10−4 1.098 × 10−2 1.797 × 10−3 3.28 8.647 × 10−3

FEA 6.998 × 10−4 1.081 × 10−2 1.773 × 10−3 3.227 8.4 × 10−3

e [%] 0.114 1.548 1.336 1.616 2.856

2

A 1.383 × 10−4 2.169 × 10−3 3.551 × 10−4 0.648 1.71 × 10−4

FEA 1.386 × 10−4 2.135 × 10−3 3.51 × 10−4 0.637 1.663 × 10−4

e [%] 0.216 1.567 1.155 1.698 2.749

3

A 3.67 × 10−4 3.986 × 10−3 9.516 × 10−4 0.893 4.552 × 10−4

FEA 3.67 × 10−4 3.92 × 10−3 9.397 × 10−4 0.879 4.428 × 10−4

e [%] 0 1.656 1.251 1.568 2.724

4

A 5.092 × 10−4 4.372 × 10−3 1.349 × 10−3 0.98 6.359 × 10−4

FEA 5.094 × 10−4 4.29 × 10−3 1.329 × 10−3 0.962 6.16 × 10−4

e [%] 0.039 1.876 1.483 1.837 3.129

3.3. Prototype Experimental Testing

A flexible hinge, whose photograph is shown in Figure 8, was designed and printed
in PolyJetTM Material Simulating Engineering Plastics using an Object260 Connex3 three-
dimensional printer. This is an additive manufacturing process in the family of fused
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filament fabrication (or fused deposition modeling—FDM). The basic dimensions of the
prototype (see Figure 3) are: R1 = 0.0254 m, R2 = 0.0508 m, l = 0.0063 m, r = 0.0025 m, and
the circular cross-section diameter was d = 0.0048 m.
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displacement sensor. 

Figure 8. Photograph of fabricated prototype for experimental testing.

Figure 9 shows two photographs of the experimental test apparatus with a 3D flexible
hinge in it. The mechanism was fixed to a small optical board by means of a vertical
frame provided with a movable rigid rod, which allowed it to adjust the position of the
mechanism at one of its ends along two perpendicular directions. A VC625/M voice-coil
actuator was affixed at the other end of the mechanism by means of an aluminum coupler
in order to generate motions/deformations along the z-axis. An optoNCDT 1320 laser
displacement sensor was fixed to the optical board by means of a fixture that positioned
the sensor to a z-axis location within the sensor measuring range. A carbon fiber reflective
tab was attached to the top of the actuator to allow for reliable distance measurements with
the laser displacement sensor.
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Figure 9. Photographs of experimental setup with flexible hinge: (a) 3D view; (b) Front view.

Separate experiments were performed to calibrate the actuator. Specifically, relation-
ships between the input current, the displacement, and the pushing or pulling forces
developed by the actuator were identified by attaching a force meter to a rigid stage and
allowing the actuator to pull on the meter. By finely controlling the current until the
weight of the actuator was supported by the magnetic field, the current was then reduced
slowly to zero. The polarity of the system was then reversed (to generate a pulling force)
and the current was increased slowly to determine the pulling forces developed by the
actuator under very fine gradations in current. The experiment was performed ten times
and the results were used to obtain a linear relationship between the generated force and
the displacement along the z-axis.

To account for the added mass of the aluminum coupler and the carbon fiber tab,
the input current to the actuator was adjusted until the test specimen was in the neutral
position. The difference between these measured currents and the input current pro-
ducing the neutral position in the validation of the actuator was used to obtain linear
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force–displacement relationships. To lessen the error due to static friction between the
VCA’s plunger and magnet, the apparatus was vibrated at a small amplitude by holding an
electric motor against the frame until the readings reached a steady state after each change
in current input. The displacement sensor was also calibrated separately by means of a
micrometer translation stage.

Three different experimental test runs were conducted that produced the following
values of the z-axis stiffness fz/uz: 42 N/m, 41 N/m, and 43 N/m, which resulted in an
average value of 42 N/m. The analytical model utilized the following material properties:
Young’s modulus E = 1.92 × 109 N/m2 and Poisson’s ratio 0.35. With these values, the
compliance matrix [C] of the entire device was calculated together with its inverse, the
stiffness matrix [K] = [C]−1; this generated an analytical value of the stiffness fz/uz of
42.76 N/m, which is very close to the experimental value of 43 N/m. It should be pointed
out that compared to the analytical and finite element geometric models, the fabricated
prototype has two extra straight-axis segments at its ends, which were needed to affix the
specimen in its test apparatus. However, these two segments were very short and, as it is
evident from the results, their presence did not alter fundamentally the elastic response of
the specimen.

3.4. Geometric Parameters Variation Influence on Compliances

The analytical compliance model is utilized here to study how the flexible hinge
geometric parameters d, R1, R2, and l affect the various compliances. It is legitimate to
expect that smaller diameters d, as well as larger radii R1, R2, and layer offsets l, result in
larger compliances, but it is also important to back these qualitative a priori projections by
quantitative assessment. The base (constant) values of the geometric parameters that were
used are those of Design 1 in Table 1 together with the material properties of the analytical
model, namely: d = 0.002 m, l = 0.006 m, R1 = 0.015 m, R2 = 0.025 m, E = 1.2 × 1011 N/m2,
and µ = 0.3. The plots of Figure 10 show the variation of four different compliances in terms
of one geometric parameter; the plots confirm the predictions stated above. Similar trends
are displayed by all other compliances whose plots are not included here.

Machines 2023, 11, x FOR PEER REVIEW 10 of 15 
 

 

quantitative assessment. The base (constant) values of the geometric parameters that were 
used are those of Design 1 in Table 1 together with the material properties of the analytical 
model, namely: d = 0.002 m, l = 0.006 m, R1 = 0.015 m, R2 = 0.025 m, E = 1.2 ×‧1011 N/m2, and 
µ = 0.3. The plots of Figure 10 show the variation of four different compliances in terms of 
one geometric parameter; the plots confirm the predictions stated above. Similar trends 
are displayed by all other compliances whose plots are not included here. 

 
Figure 10. Compliance plots showing variation with the: (a) Diameter d; (b) Layer offset l; (c) Inner 
radius R1; (d) Outer radius R2. 

While the compliances display nonlinear variations with d, l and R1, as illustrated in 
Figure 10a–c, they increase quasi-linearly with R2, as shown in Figure 10d. 

4. Stress Limitations to Load and Displacement with Analytical Compliance Model 
The load [f] that can safely be applied at one end of the hinge is limited and can be 

assessed in terms of the maximum stress levels. With the safe load, the maximum dis-
placement [u] can be determined by means of the hinge compliance matrix as [u] = [C][f]. 
Under load, the flexure hinge cross-section is subjected mainly to bending around two 
axes, axial load, and torsion. As a result, normal stresses σ and tangential stresses τ do 
occur, which can be combined into an equivalent normal stress σeq by means of available 
yield criteria, such as the von Mises criterion, according to which: 

σ = σ + τ → σ = σ + τ2 2 2 2
max max3 3eq a . (8)

Equation (8) also includes its limit formulation, which utilizes the allowable stress σa 
that is generated by maximum stresses/loads. Presumably, the fixed end O of the flexible 
hinge in Figure 3 is carrying the maximum load, which would generate the maximum 
stresses. However, as shown in the same Figure 3, utilizing O to express the loads would 
remove the (bending) effect of the force fz (because fz passes through O), which is nonethe-
less a relevant component, especially when the flexure hinge is utilized in a piston-type, 
translation motion along the z-axis. Consequently, one can select another point, relatively 
close to O, for instance point O2 of Figures 4 and 6a, which is the other end of segment 1. 
In order to simplify notation point O2 is denoted by D in the following, as also shown in 

R1 [m] 

l [m] d [m] 

(a) (b) 

 

R2 [m] 

(d) (c) 

Figure 10. Compliance plots showing variation with the: (a) Diameter d; (b) Layer offset l; (c) Inner
radius R1; (d) Outer radius R2.



Machines 2023, 11, 825 10 of 14

While the compliances display nonlinear variations with d, l and R1, as illustrated in
Figure 10a–c, they increase quasi-linearly with R2, as shown in Figure 10d.

4. Stress Limitations to Load and Displacement with Analytical Compliance Model

The load [f ] that can safely be applied at one end of the hinge is limited and can
be assessed in terms of the maximum stress levels. With the safe load, the maximum
displacement [u] can be determined by means of the hinge compliance matrix as [u] = [C][f ].
Under load, the flexure hinge cross-section is subjected mainly to bending around two axes,
axial load, and torsion. As a result, normal stresses σ and tangential stresses τ do occur,
which can be combined into an equivalent normal stress σeq by means of available yield
criteria, such as the von Mises criterion, according to which:

σeq =
√
σ2 + 3τ2 → σa =

√
σ2

max + 3τ2
max. (8)

Equation (8) also includes its limit formulation, which utilizes the allowable stress σa
that is generated by maximum stresses/loads. Presumably, the fixed end O of the flexible
hinge in Figure 3 is carrying the maximum load, which would generate the maximum
stresses. However, as shown in the same Figure 3, utilizing O to express the loads would
remove the (bending) effect of the force fz (because fz passes through O), which is nonethe-
less a relevant component, especially when the flexure hinge is utilized in a piston-type,
translation motion along the z-axis. Consequently, one can select another point, relatively
close to O, for instance point O2 of Figures 4 and 6a, which is the other end of segment 1.
In order to simplify notation point O2 is denoted by D in the following, as also shown
in Figure 6a. To evaluate the normal and tangential stresses on the cross section at D,
we need to transfer the original load located at A, which is [f ]; this is achieved by the
following translation:

[ fD] = [TDA][ f ] or
[

fDx fDy mDz mDx mDy fDz
]T

= [TDA]
[

fx fy mz mx my fz
]T . (9)

The translation matrix of Equation (9) is calculated as in Equation (5) with the following
offsets (measured from A to D in the global frame at A):

∆x = R1, ∆y = 0, ∆z = −l . (10)

The six components of [fD] allow expressing the axial force resultant N, the bending
moment resultants My, Mz, as well as the torsion moment resultant Mt applied to the cross
section at D:

N = fDx = fx, My = mDy = my + l fx + R1 fz, Mz = mDz = mz − R1 fy, Mt = mDx = mx − l fy . (11)

Assuming that Mz is positive and given that N and My are positive, as shown in
Equation (11), the maximum normal stress is expressed as:

σmax =
d
√

M2
y+M2

z

2I + N
A =

d
√
(my+l fx+R1 fz)

2
+(mz−R1 fy)

2

2I + fx
A ,

=
(

32
πd3

)√(
my + l fx + R1 fz

)2
+
(
mz − R1 fy

)2
+
(

4
πd2

)
fx

(12)

where A = πd2/4 and I = πd4/64 are the circular cross-section area and axial moment of
inertia. The maximum normal stress occurs at a point P on the circumference of the circular
cross-section, as illustrated in Figure 11. The neutral axis of the cross-section (a line that is
the locus of zero normal stresses) is defined by the equation:

σ =

(
Mz

I

)
y +

(
My

I

)
z +

N
A

= 0 → β = tan−1
(
−

My

My

)
(13)
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and passes through points M and N. The neutral axis, together with its inclination angle β,
are drawn and identified in Figure 11.
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Figure 11. Hinge cross section with bending moments, neutral axis, and resulting normal stress.

The maximum tangential stress, which is due to the torsion moment Mt occurs on the
circumference, as well, and has the following equation at any point, including P:

τmax =
Mtd
2Ip

=

(
16

πd3

)(
mx − l fy

)
, (14)

where Ip = πd4/32 is the circular cross-section polar moment of inertia. The maximum
normal stress of Equation (12) and the maximum shear stress of Equation (14) are substi-
tuted in the limit expression of Equation (8); the resulting expression can be regarded as an
equation enabling to determine only one of the six load components of [f ].

Of the multitude of possibilities, we are analyzing the case where all load components
at A are zero except for fz. Equation (8), together with Equations (12) and (14), as well as
[u] = [C][f ], yield:

fz =
πd3σa

32R1
; ux = Cux− fz fz, uy = Cuy− fz fz, θz = Cθz− fx fz, θx = Cθx− fx fz, θx = Cθy− fx fz, uz = Cuz− fz fz. (15)

As pointed out in Equation (15), the force fz depends only the hinge diameter d and the
inner radius R1. However, any of the six displacements/rotations expressed in the same
Equation (15) are functions of all four parameters defining the hinge configuration through
their respective compliances. The following Figures 12–14 plot the variations of fz and uz
when d, l, R1, and R2 range the intervals utilized in the graphics of Figure 10 for the base
(constant) values of Design 1 described in Table 1.
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As seen in Figure 12, when the diameter values range from 0.001 m to 0.0035 m,
the force fz increases nonlinearly up to a value of approximately 70 N. Conversely, the
hinge endpoint displacement uz decreases nonlinearly, which indicates that the compliance
defining uz in Equation (15) is dominant and its decrease outweighs the force increase.

Increasing the inner radius R1 makes both the force fz and the displacement uz to
decrease linearly, as illustrated in Figure 13. For small radii, the displacement uz is approxi-
mately 0.035 m, which corresponds to a 40 N value of fz.

The displacement uz increases with both l and R2 increasing, as depicted in the graphs of
Figure 14a,b. It can be seen that for large values of R2, the displacement uz exceeds 0.08 m.

5. Conclusions

A new three-dimensional (3D) flexible hinge is proposed here to assist in precision ma-
nipulation and positioning applications that require coverage of relatively large workspaces.
The hinge compact configuration results from serially connecting multiple straight- and
circular-axis deformable segments in two layers and a folded manner. An analytical com-
pliance model, which can be used in direct and inverse kinematics, is derived based on
the simplified hinge geometry. The model predictions are confirmed via finite element
simulation with maximum relative errors of around 3%. A 3D-printed hinge prototype,
which was experimentally tested, resulted in a piston-type stiffness of 42 N/m, very close to
the analytical-model stiffness. A separate, compliance-based analytical model is developed
to evaluate the hinge maximum load and the related displacements when considering the
allowable stress levels. The two models are subsequently utilized to analyze the depen-
dency of the hinge performance on geometric parameters. Maximum displacements of 0.08
m and forces of up to 70 N can be achieved with steel hinges defined by an outer radius of
0.05 m and 0.0035 m wire diameter.
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Appendix A

Straight-axis segment compliances

C(i)
ux− fx

= li
EA ; C(i)

uy− fy
=

l3
i

3EI ; C(i)
uy−mz

= − l2
i

2EI ; C(i)
θz− fz

= li
EI ; C(i)

θx−mx
= li

GIp

G = E
2(1+µ) ; G− shear modulus, µ− Poisson′s ratio.

(A1)

Circular-axis, half-circle segment compliances C(i)
ux− fx

=
3πR3

i
2EI + πRi

2EA ; C(i)
ux− fy

= − 2R3
i

EI ; C(i)
ux−mz

=
πR2

i
EI ; C(i)

uy− fy
=

πR3
i

2EI + πRi
2EA ; C(i)

uy−mz
= − 2R2

i
EI ; C(i)

θz−mz
= πRi

EI ;

C(i)
θx−mx

= C(i)
θy−my

= πRi
2EI +

πRi
2GIp

; C(i)
θx−my

= 0; C(i)
θx− fz

= −πR2
i

2EI −
πR2

i
2GIp

; C(i)
θy− fz

=
2R2

i
GIp

; C(i)
uz− fz

=
πR3

i
2EI +

3πR3
i

2GIp

. (A2)

Appendix B

Table A1. Segment offsets, rotation angles and rotation matrices.

Segment ∆x ∆z ϕ θ ψ

1 0 −l 0 0 0

2 R1 −l π/2 0 0

3 −R1 −l π 0 0

4 −R2 −l −π/2 0 0

5 R2 −l π/2 −π/2 −π/2

6 R2 0 π/2 0 0

7 −R2 0 0 0 0

8 −R1 0 −π/2 0 0

9 R1 0 π 0 0

Rotation matrices of out-of-plane hinge segment 5

[
R(5)
ψ

]
=

 [
R(5∗)
ψ

]
[0]3×3

[0]3×3

[
R(5∗)
ψ

] ;
[

R(5∗)
ψ

]
=

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

;

[
R(5)
θ

]
=

 [
R(5∗)
θ

] [
R(5∗∗)
θ

][
R(5∗∗)
θ

] [
R(5∗)
θ

] ;
[

R(5∗)
θ

]
=

 1 0 0
0 cos θ 0
0 0 cos θ

;
[

R(5∗∗)
θ

]
=

 0 0 0
0 0 sin θ
0 − sin θ 0

 (A3)
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