
Citation: Li, C.; Jing, Y.; Ni, J.

Uncertainty Analysis and Design of

Air Suspension Systems for City

Buses Based on Neural Network

Model and True Probability Density.

Machines 2023, 11, 791. https://

doi.org/10.3390/machines11080791

Academic Editor: Pingyu Jiang

Received: 5 July 2023

Revised: 26 July 2023

Accepted: 27 July 2023

Published: 1 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Uncertainty Analysis and Design of Air Suspension Systems for
City Buses Based on Neural Network Model and True
Probability Density
Cheng Li *, Yuan Jing and Jinting Ni

College of Automobile and Rail, Anhui Technical College of Mechanical and Electrical Engineering,
Wuhu 241002, China; ahjdjing@126.com (Y.J.); nijintingwuhu@126.com (J.N.)
* Correspondence: ahjd_licheng@163.com or 0125000289@ahcme.edu.cn

Abstract: The accuracy of uncertainty analysis in suspension systems is closely tied to the precision
of the probability distribution of sprung mass. Consequently, traditional assumptions regarding the
probability distribution fail to guarantee the accuracy of uncertainty analyses results. To achieve more
precise uncertainty analysis outcomes, this paper proposes a data-driven approach for analyzing the
uncertainties in bus air suspension systems. Firstly, a bus vehicle dynamics model is established to
investigate the influence of sprung mass on suspension system performance. Subsequently, a deep
neural network model is trained using road test data, for the accurate identification of the sprung
mass. The historical mass of the bus is then computed using vehicle network data to obtain the true
probability density of the sprung mass. Lastly, the real probability distribution of the sprung mass is
utilized to perform uncertainty analysis on the bus suspension system, and the results are compared
with those obtained by assuming a probability distribution. Comparative analysis reveals substantial
disparities in uncertainty response, with a maximum relative error of 9% observed for wheel dynamic
loads, thus emphasizing the significance of precise probability distribution information concerning
the sprung mass.

Keywords: air suspension system; sprung mass; true probability density; neural network model;
uncertainty analysis

1. Introduction

Vehicle suspension systems play a pivotal role in enhancing the comfort, driving safety,
and handling stability of vehicles [1–3]. In comparison to conventional steel plate springs,
air springs offer notable advantages such as superior vibration isolation, cost-effectiveness,
broad applicability, and convenient adjustability. Consequently, an increasing number of
commercial vehicles are adopting air suspension system structures [4–6]. Furthermore, with
the advancements in vehicle networking technology, researchers now have easy access to
extensive real-world vehicle driving data. Leveraging this operational data for evaluating
or designing vehicle parameters can yield more optimal design solutions [7,8]. Hence, it is
imperative to investigate and assess air suspension systems using operational data derived
from vehicle networks.

Numerous scholars have extensively researched the optimization and design of air sus-
pension systems [9–14]. However, several concerns regarding the design of air suspension
systems for passenger vehicles remain unresolved. Firstly, most existing studies assume
fixed suspension system parameters during the design process. However, the vibration
isolation performance of the suspension system is adversely affected by the fluctuating
sprung mass of the bus, which is contingent upon the number of passengers. This incon-
sistency leads to unstable performance. Secondly, only a limited number of studies have
accounted for fluctuations in suspension system parameters [15,16]. These studies assume
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probability distributions based on empirical knowledge, but the inherent errors between
the assumed and true probability distributions are evident.

Consequently, this study aims to resolve the issue of unstable vibration isolation
performance caused by fluctuating sprung mass in the air suspension system. To achieve
this, the sprung mass is treated as a random input, and the probability distribution range of
the performance response of the system is analyzed. Moreover, to ensure the accuracy of the
sprung mass probability distribution, a deep neural network (DNN) model is trained using
experimental data for sprung mass identification. Using vehicle network data, the DNN
model accurately identifies the sprung mass of a bus during operation and determines its
true probability distribution.

Vehicle parameters are commonly assumed to be deterministic, but they can undergo
variations due to design, manufacturing, assembly, and usage conditions [17,18]. For
instance, the difference between the full and unladen mass of a bus can account for 40–50%
of the vehicle’s total mass. These significant mass fluctuations profoundly impact the
performance of suspension systems, necessitating the quantification of the influence of
uncertain mass on suspension system performance variations [19]. Various uncertainty
propagation methods have been proposed in other domains. Nagy and Braatz categorized
these methods into analytical, sampling, and response surface-based approaches [20]. The
analytical method, although highly efficient, requires knowledge of the explicit expression
of the response function [21]. The Monte Carlo method offers the highest accuracy [22],
but it demands a large number of samples and becomes computationally intensive when
dealing with complex response calculation models. The response surface method trains
the response function using input–output pairs from the computational model, but it
also incurs significant computational costs during the training process [23]. To address
the computational burden associated with uncertainty analysis of suspension system
performance, Xu et al. applied the polynomial chaos expansion method to evaluate the
uncertainty response of the quarter air suspension system performance, thereby enhancing
the analysis efficiency of the air suspension system [15].

Uncertainty parameters are typically assumed to follow standard probability distri-
butions, such as the normal distribution or exponential distribution. These distributions
provide readily available random numbers that adhere to their specific properties [24]. In
this study, actual operational data is utilized to determine the mass, resulting in probability
distribution functions that often deviate from standard types of distributions. To ensure
the accuracy of the sprung mass probability distribution during uncertainty analysis, direct
sampling of non-standard probability density functions is necessary. The accept-reject sam-
pling method is capable of sampling arbitrary probability density functions [25]. Hence,
this paper incorporates the accept–reject sampling method in the uncertainty analysis of
bus air suspension systems.

To accurately determine the probability density function of the sprung mass, it is
imperative to identify the entire vehicle mass of an operational bus. Numerous approaches
have been proposed by scholars for vehicle mass identification, depending on specific
research requirements [26,27]. Initially, researchers incorporated additional sensors to
gather suspension dynamic deflection data and then calculated the sprung mass using
a suspension dynamics model [28,29]. Vahidi et al. proposed recursive least squares
with forgetting factors to identify mass and slope under diverse road conditions [30].
Sun et al. combined recursive least squares with a Kalman filter to identify road slope
and mass for city buses [31]. Zhang et al. utilized a two-layer reinforced estimator for
mass and road-slope estimation of electric mining vehicles [32]. This paper does not
adopt these methods, as it lacks the dynamic deflection data required by the suspension
dynamic deflection approach and aims to employ existing vehicle network data for mass
identification. Recursive methods are prone to cumulative estimation errors, resulting
in inaccurate estimates. Machine learning techniques are adept at mitigating cumulative
estimation errors and can yield more precise outcomes when a large number of data are
available. Consequently, this study intends to employ deep neural networks to estimate the
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overall vehicle mass of city buses. The main contributions of this paper can be summarized
as follows:

(1) A data-driven process is proposed in this study for analyzing the uncertainties in
an air suspension system. By utilizing vehicle data from the internet, a deep neural
network model is employed to accurately identify the sprung mass of city buses and
determine its probability distribution characteristics. Subsequently, the uncertainty
analysis of the performance of the bus air suspension system is conducted using the
rejection sampling method.

(2) The impact of the sprung mass and its varying probability distributions on the un-
certain response of suspension system performance is analyzed. Both sinusoidal and
broadband excitations are considered.

The remainder of this paper is structured as follows: Section 2 establishes the dynamic
model of the bus air suspension system. Section 3 employs a deep neural network for the
identification of the sprung mass. In Section 4, we conduct an uncertainty analysis of the
air suspension system using the rejection sampling algorithm. Finally, Section 5 provides
the conclusion.

2. Vehicle Dynamics Model

The dynamic model of the air suspension system comprises the quarter air spring
model and the vehicle model. It accounts for two primary forces exerted on the vehicle body
by the air suspension system: the support force provided by the air spring and the damping
force from the vibration absorber. The damping force is determined by multiplying the
damping coefficient by the relative velocity at both ends of the damper. On the other hand,
the support force of the air spring is nonlinear, and dependent on the sprung mass. Thus, it
is crucial to prioritize the analysis of the mechanical calculation model of the air spring.

2.1. Quarter Air Suspension Model

The quarter air suspension system model is shown in Figure 1. The nonlinear model
of air spring is established based on the theory of air thermodynamics. The state of ideal
gas [14] in the working process follows a variable process

pVλ = p0Vλ
0 = const (1)

where p0 is the air pressure in the free state of the air spring; V0 is the volume in the free
state of the air spring; p is the air pressure inside the air spring at any given moment, with
all pressures in this paper referring to absolute pressure; V is the volume of the air spring
at any given moment; and e is the multivariable index. The force of the air spring on the
sprung mass at any given moment is

Fas = (p− patm)A (2)

where patm is atmospheric pressure and A is the effective area of the air spring. The
relationship between the volume and height of the air spring is

V = hA, V0 = h0 A, Vm,0 = hm,0 A (3)

where h is the height of the air spring at any moment and h0 is the height of the air spring
at static equilibrium; Vm,0 and hm,0 are the volume and height of the air spring at static
equilibrium for different sprung masses. The ‘m’ after the comma in the subscript indicates
a state with additional mass. The ‘0’ after the comma in the subscript indicates the state at
static equilibrium. At static equilibrium, the air spring support force is equal in magnitude
to the gravitational force of sprung mass

Fas,0 = msg (4)
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Figure 1. Quarter air suspension system model.

The relationship between the height of the air spring and the support force at static
equilibrium is obtained from Equations (1)–(3)

hm,0 = (
p0 A

Fmas,0 + patm A
)

1
λ

h0 (5)

2.2. Vehicle Dynamics Model for Air Suspension Systems

Based on the needs of the study, the vehicle model is simplified to seven degrees
of freedom: vertical motion zs, pitch θy and lateral θx motion of the sprung mass and
vertical motion of the four on-sprung mass. The complete vehicle dynamics model is
shown in Figure 2.

Figure 2. Vehicle dynamics model.

In Figure 2, the four independent suspensions are represented by four air springs,
Asi, and dampers, ci; ms is the sprung mass; B f and Br are the front wheelbase and rear
wheelbase; l f and lr is the distance from the front and rear axles to the ccenter of mass; mti
is the four unsprung masses; kti is the equivalent stiffness of the four wheels; qi is the road
excitation at the four wheels; and zti is the displacement of the four wheels.

In order to compute the forces exerted by the four independent air suspensions on
the vehicle body, it is imperative to utilize the air spring model Asi. It is discerned from
Equations (1)–(3) that this force is calculated based on the relative displacement between
the wheels and the vehicle body.

When the mass of the vehicle changes, the static equilibrium position of the suspension
system changes. As can be seen from Equation (5), the air spring force is related to the
initial height hm,0. In order to build the vehicle dynamics model we must first solve for
hm,0 in static equilibrium; according to the static equilibrium equation, we can obtain the
support force of the air springs at the four suspension points as

Fmas1,0 = Fmas2,0 = 1
2 msg lr

l f +lr

Fmas3,0 = Fmas4,0 = 1
2 msg

l f
l f +lr

(6)
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Substituting Fmasi,0 into Equation (5) gives the height of the four air springs at static
equilibrium hmi,0

hm1,0 = hm2,0 = (
p0 A

1
2 msg

lr
l f + lr

+ patm A
)

1
λ

h0

hm3,0 = hm4,0 = (
p0 A

1
2 msg

l f

l f + lr
+ patm A

)

1
λ

h0

(7)

According to multi-body dynamics, a 7-degree-of-freedom vehicle dynamics model is
developed using the static equilibrium position of each mass as the origin of the coordi-
nate system

ms
..
zs =

4
∑

i=1
∆Fmi

Ix
..
θx = 1

2 ∆Fm1B f − 1
2 ∆Fm2B f +

1
2 ∆Fm3Br − 1

2 ∆Fm4Br

Iy
..
θy = ∆Fm1l f + ∆Fm2l f − ∆Fm3lr − ∆Fm4lr

mt1
..
zt1 = −∆Fm1 + kt1(zt1 − q1)

mt2
..
zt2 = −∆Fm2 + kt2(zt2 − q2)

mt3
..
zt3 = −∆Fm3 + kt3(zt3 − q3)

mt4
..
zt4 = −∆Fm4 + kt4(zt4 − q4)

(8)

where
∆Fmi = ∆Fmasi + ci

( .
zsi −

.
zti
)

zs1 = zs +
1
2 B f θx + l f θy

zs2 = zs − 1
2 B f θx + l f θy

zs3 = zs +
1
2 Brθx − lrθy

zs4 = zs − 1
2 Brθx − lrθy

∆Fmasi = Fmasi − Fmasi,0 =

[
pmi,0

(
hmi,0

hmi,0 + zsi − zti

)λ

− pmi,0

]
A

pmi,0 =
Fmasi,0

A
+ patm

∆Fmi is the variation of the force of suspension i (i = 1, 2, 3, 4) on the body; Ix is the rotational
inertia of the sprung mass about the x-axis; Iy is the rotational inertia of the sprung mass
about the y-axis; ∆Fasi is the force of air spring i on the body; and h0i is the height of the
four air springs in static equilibrium.

The wheel jitter displacement caused by road unevenness is used as the input excita-
tion of the vehicle dynamics model. The white noise generation method is used to construct
the pavement profile model, and its time domain mathematical model is

.
qi(t) = −2π f0vqi(t) + 2πn0

√
Gq(n0)vw(t) (9)

where f0 is the spatial cut-off frequency of the pavement, taken as 0.01; v is the speed of
vehicle equal to 16.67 m/s; Gq(n0) is the unevenness coefficient of the pavement, and the
value of A-class pavement is 16× 10−6 m3; n0 is the standard spatial frequency, taken as
0.1; and w(t) is the band-limited white noise.

2.3. Effect of Sprung Mass on Suspension System Performance
2.3.1. Performance Evaluation Indicators for Suspension Systems

Generally speaking, the performance evaluation indicators of suspension systems
are the vertical body acceleration, the dynamic wheel load and the dynamic suspension
deflection [15]. Tests have shown that the evaluation index with the greatest influence on
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human comfort during vehicle driving is the vertical body acceleration. Therefore, this
paper takes the vertical body vibration acceleration as the primary indicator

asi =
..
zsi (10)

The dynamic wheel load is related to the vehicle’s driving safety. An excessive dynamic
wheel load increases the probability of the wheels jumping off the ground, and affects the
vehicle’s driving safety.

Fdi = kti(zti − qi) (11)

Suspension dynamic deflection is the amount of change in the suspension relative to
the equilibrium position. A large dynamic deflection improves smoothness but has the
potential to hit the cushion and cause discomfort, and is expressed as

fd = zsi − zti (12)

2.3.2. Sensitivity Analysis of Sprung Mass to Suspension Performance

The mass of a city bus varies randomly with the number of passengers carried, and
by analogy with the characteristics of a single-degree-of-freedom vibration system, the
resonance frequency of the suspension system is ωs =

√
ks/ms; when the mass of the spring

load changes, the resonance frequency of the suspension system will change, which will
lead to a change in the performance of the suspension system. Reference [33] confirmed that
the frequency response function of suspension performance will vary with the sprung mass,
through Monte Carlo analysis. Therefore, it is necessary to analyze the performance change
of the bus suspension system under different overall vehicle masses. A Simulink-based
dynamics model for air suspension systems is shown in Figure 3.

Figure 3. A Simulink-based dynamics model for air suspension systems.

Sensitivity analysis is widely prevalent in the field of engineering, with scholars hav-
ing proposed numerous methods such as Monte Carlo [33], PAWN [34], etc. However,
in this section, we focus solely on investigating the potential influence of spring mass on
suspension performance, rather than conducting a rigorous sensitivity analysis. Conse-
quently, we solely compute the variation trends in suspension performance for different
sprung masses.

According to the passenger capacity, the mass of the vehicle is set to vary from
12,200 kg to 20,000 kg. A static equilibrium calculation model and a vehicle dynamics
model are built in Simulink, and the design parameters of the air suspension system and
the vehicle are shown in Table 1. Each performance index of the suspension system is
calculated at 1950 kg intervals, and the results are shown in Figure 4.
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Table 1. Air suspension systems and partial vehicle design parameters.

Parameters Value Parameters Value

ms 12,200 Kg p0 7.75 ×105 pa
mti 435 Kg h0 0.3 m
ci 11,085 N/(m/s) λ 1.3
kti 650,000 N/m lr,l f 4.425 m
Ae 0.042 M2 B f 1.744 m

patm 101,000 Pa Br 1.529 m

Figure 4. Performance index curves for suspension systems at different masses. (a) Acceleration of
the sprung mass. (b) Suspension dynamic deflection. (c) Dynamic wheel loads.

The root mean square (RMS) values for these metrics were computed for different
masses. In ascending order of mass, the RMS values for acceleration were found to be
(9.1, 9.6, 10.5, 11.6, and 12.9)

Machines 2023, 11, x FOR PEER REVIEW  8  of  22 
 

 

 
(c) 

Figure 4. Performance index curves for suspension systems at different masses. (a) Acceleration of 

the sprung mass. (b) Suspension dynamic deflection. (c) Dynamic wheel loads. 

The root mean square (RMS) values for these metrics were computed for different 

masses. In ascending order of mass, the RMS values for acceleration were found to be (9.1, 

9.6, 10.5, 11.6, and 12.9)* × 10−3. Similarly, the RMS values for deflection were (1.71, 1.74, 

1.77, 1.79, and 1.81) × 10−3, while the RMS values for wheel dynamic load were observed 

as (37.8, 42.1, 48.7, 37.9, and 68.8). Notably, as the mass increases, a gradual increment in 

the  RMS  values  of  all  three  performance  indicators  is  observed,  highlighting  their 

interdependent relationship. 

The  acceleration  of  sprung  mass  is  directly  linked  to  the  comfort  of  vehicle 

passengers, while the dynamic deflection and wheel dynamic load are closely tied to the 

stability of vehicle handling. Consequently, the uncertainty surrounding the sprung mass 

can induce changes in both ride comfort and handling stability. 

3. Data‐Driven Statistical Analysis of Sprung Mass 

The aim of this section is to develop a quantitative model for uncertainty in the mass 

of a bus. In the uncertainty analysis and optimal design of air suspension systems, the 

probability distributions of the uncertainty parameters are usually used in a hypothetical 

way [15,16]. Obviously, there is bound to be some deviation between the assumed proba-

bility distribution and  the actual probability distribution, which will  lead  to  the uncer-

tainty analysis results deviating from the real situation. 

In order to solve the above problem, this section identifies the real mass data through 

operational data and performs statistical analysis to obtain an accurate probability distri-

bution of sprung mass. The main steps are: establishing the longitudinal dynamics equa-

tions of the bus, which are used to determine the type of data to be collected; identifying 

sprung mass using DNN; and establishing statistically the probability distribution pattern 

of the sprung mass. 

3.1. DNN‐Based Bus Mass Identification 

3.1.1. Feature Parameter Selection and Data Pre-Processing 

We determined the chosen characteristic parameters based on the equations for the 

longitudinal dynamics of the bus. Figure 5 shows the forces on the body of a purely elec-

tric bus while driving. The longitudinal dynamics equation can be expressed as 

i a r g p eF F F F F F       (13)

where Fi is the inertial force, Fa is the aerodynamic force, Fr is the rolling resistance, Fg is 

the  gravitational  force,  Fp  is  the  propulsion,  and  Fe  is  the  system  error.  Based  on 

× 10−3. Similarly, the RMS values for deflection were (1.71,
1.74, 1.77, 1.79, and 1.81) × 10−3, while the RMS values for wheel dynamic load were
observed as (37.8, 42.1, 48.7, 37.9, and 68.8). Notably, as the mass increases, a gradual
increment in the RMS values of all three performance indicators is observed, highlighting
their interdependent relationship.

The acceleration of sprung mass is directly linked to the comfort of vehicle passengers,
while the dynamic deflection and wheel dynamic load are closely tied to the stability of
vehicle handling. Consequently, the uncertainty surrounding the sprung mass can induce
changes in both ride comfort and handling stability.
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3. Data-Driven Statistical Analysis of Sprung Mass

The aim of this section is to develop a quantitative model for uncertainty in the mass
of a bus. In the uncertainty analysis and optimal design of air suspension systems, the
probability distributions of the uncertainty parameters are usually used in a hypothetical
way [15,16]. Obviously, there is bound to be some deviation between the assumed proba-
bility distribution and the actual probability distribution, which will lead to the uncertainty
analysis results deviating from the real situation.

In order to solve the above problem, this section identifies the real mass data through
operational data and performs statistical analysis to obtain an accurate probability distribu-
tion of sprung mass. The main steps are: establishing the longitudinal dynamics equations
of the bus, which are used to determine the type of data to be collected; identifying sprung
mass using DNN; and establishing statistically the probability distribution pattern of the
sprung mass.

3.1. DNN-Based Bus Mass Identification
3.1.1. Feature Parameter Selection and Data Pre-Processing

We determined the chosen characteristic parameters based on the equations for the
longitudinal dynamics of the bus. Figure 5 shows the forces on the body of a purely electric
bus while driving. The longitudinal dynamics equation can be expressed as

Fi = −Fa − Fr − Fg + Fp + Fe (13)

where Fi is the inertial force, Fa is the aerodynamic force, Fr is the rolling resistance, Fg is the
gravitational force, Fp is the propulsion, and Fe is the system error. Based on automotive
theory and the air suspension system configuration of the pure electric bus in Figure 6, the
expression for each force in Equation (13) can be derived as(

mv +
∑6

i=1 It,i

r2
w

)
.
v = −1

2
CD Aρv2 −mvg f cos(α)−mvg sin(α) +

Temi0η

rw
+ Fe (14)

mv is the overall vehicle mass, It is the equivalent rotational inertia of the wheels, rt is
the tyre rolling radius, v is the vehicle speed, CD is the air resistance coefficient, A is the
windward area, ρ is the air density, g is the acceleration of gravity, f is the rolling resistance
coefficient, α is the road gradient, Tem is the motor torque, i0 is the main gearbox speed
ratio, and η is the mechanical efficiency, and is taken as 0.9.

Figure 5. Analysis of the forces on the bus.

Figure 6. Pure electric bus powertrain configuration.
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According to Equation (14), the vehicle mass and the road gradient are coupled. To
achieve vehicle mass recognition, the road gradient needs to be estimated at the same time.
The road gradient is related to the acceleration measured by the accelerometer, as follows,
and the vehicle travel acceleration, the road gradient and the acceleration measured by the
accelerometer are related as follows:

asensor =
..
v + g sin(α) (15)

where asensor is the acceleration signal measured by the accelerometer. Considering Equa-
tions (13) and (15) together, some vehicle design parameters are fixed and can be gradually
adapted during the training of the neural network, whereas v,

..
v, Tem and asensor are variable

in real time, in line with the driving process, and need to be handled separately.
Referring to [35], v,

..
v, Tem and asensor are critical to the recognition accuracy of the mass.

When the vehicle parameters are fixed, the value of the air resistance term depends on the
vehicle speed; the magnitude of acceleration resistance depends on the acceleration; the
motor torque, as the sole power source, determines the driving state of the vehicle; and the
longitudinal acceleration sensor collected by the accelerometer can decouple the road slope
and mass. So, v,

..
v, Tem and asensor are chosen as feature parameters.

The longitudinal acceleration can be obtained by differentiation of the velocity, so
only the velocity signal and the time signal need to be acquired. In addition, when
the driver brakes, there is a possibility of mechanical braking force, which is difficult
to obtain accurately. In order to avoid the influence of the data during braking on the
estimation results, it is necessary to exclude the periods when the braking force is not 0.
The braking force can be judged according to whether the brake pedal signal Tbrake is 0 or
not. In summary, the signals to be acquired are the moment, vehicle speed, motor torque,
accelerometer signal and brake pedal signal.

The data collected are of different types and scales, and differ by several orders of
magnitude. To avoid the calculation results being influenced by large values, the data
collected are normalized using the z-score normalization method.

3.1.2. DNN Structure

In order to estimate the mass of the whole vehicle, we considered a neural network
with 10 hidden layers, the number of neurons in each layer being 100, 90, . . ., 10, 1, the
output of each neuron being the input of the neuron in the next layer. Figure 7 shows the
structure of the DNN. When training the DNN, we chose the Leaky rectified linear unit
function as the activation function

f (x) =
{

x, x > 0
ax, x ≤ 0

(16)

Figure 7. The structure of DNN.
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In addition, to prevent overfitting, regularization methods are usually used, and we
choose the computationally efficient L2 regularization method. In this way, after setting
the hidden layers, the number of neurons, the activation function and the regularization
method, the feature parameters and quality labels are input into the DNN, and the weights
and biases in the network are continuously optimized, resulting in a DNN that can be used
for quality estimation.

3.1.3. Model Training and Validation

In order to validate the effectiveness of the proposed mass identification method, we
carried out relevant experiments on a bus test track. Figure 8 shows the experimental
equipment and the process of validating the mass estimation model: (1) loading mass
with sand bags; (2) obtaining mass labels through a weighbridge; (3) simulating the actual
driving process of the bus; (4) using the on-board intelligent terminal to obtain the controller
area network (CAN) Bus in v, Tem, Tbrake and asensor; and (5) training the DNN model
in MATLAB.

Figure 8. Quality estimation network training and model validation process.

A total of 15 experiments of different quality were carried out, and 80% of each data
set was selected as the training set, with the remaining 20% as the validation set.

We used DNN and RLS (recursive least squares) [30] to identify vehicle mass. The
respective recognition results are shown in Table 2. The DNN has a maximum average rela-
tive error of 5.3%, while RLS has a maximum average relative error of 6.2%. Additionally,
RLS also exhibits larger errors in other aspects. These results indicate that the proposed
trained DNN network method has a better recognition accuracy than RLS.

Table 2. Results of mass identification at 15 loadings.

Actual Mass (kg)
Mean Value of Estimated Mass (kg) Average Relative Error

DNN RLS DNN RLS

12,000 11,748 11,576 2.1% −3.5%
12,571 12,780 12,108 −1.8% −3.7%
13,142 12,709 12,323 5.3% −6.2%

...
...

...
18,852 19,098 19,504 −1.3% 3.5%
19,423 19,016 18,631 2.1% −4.1%
19,994 19,695 19,442 1.5% −2.8%

The disparity stems from the dependence of RLS on vehicle parameters, including f,
CD, η, and others. Regrettably, these parameters frequently lack the precision required for
accurate mass identification, as factors like vehicle speed and load introduce variability,



Machines 2023, 11, 791 11 of 21

notably affecting f. This limitation hampers RLS’s effectiveness in achieving precise mass
identification outcomes. Conversely, DNN transcends the necessity for exact vehicle
parameters. With sufficient data, DNN can iteratively converge towards accurate values,
enabling progressively refined recognition results.

3.2. Bus Mass Identification and Statistical Analysis

A bus factory’s vehicle networking platform stores most of its own vehicle driving
data on a server via the internet, which provides a large amount of basic data for statistical
analysis of bus mass. Therefore, we can directly download the historical operating data of
the buses from the telematics system, pre-process the data, and then identify the quality of
the buses.

Due to the network environment, there was a problem of missing data in the telem-
atics data, and it was difficult to fill in the missing data for a long period of time, so we
could only choose to eliminate the motion segments with missing data. The quality of
the telematics data was affected by the performance of the terminal equipment, and the
resolution of the data was low, only 1 Hz, while the quality recognition algorithm required
a resolution of 10 Hz for the input data, so linear interpolation needed to be chosen to
improve its resolution.

The vehicle networking data was downloaded through the bus telematics platform
for 50 days of operation. To ensure that the trained DNN network could be used for the
bus, the design parameters of the bus needed to be consistent with the test bus. The data
types were time, vehicle speed, motor torque and brake pedal signals. Invalid driving
segments were removed, linear interpolation was used to improve the data resolution, and
the trained DNN was used to identify the vehicle mass to obtain 50 days of mass data for
this vehicle. After statistical analysis, the mean value was 15,742 and the standard deviation
was 1773.

The frequency distribution histogram is shown in Figure 9. It can be seen from the
graph that the mass distribution does not conform to the standard normal distribution, and
the data distribution is skewed to the left of the mean. The probability density functions of
the masses are fitted with the normal and skewed normal distributions respectively, and
their respective fitted curves are also plotted in Figure 9. It can be found that the skewed
probability density curves in the rising and falling phases of the probability density function
(PDF) curve fit the true masses more closely, so we chose the skew normal distribution
fitting method. The distribution parameters are location value of 14,696, scale value of 1737,
and skewness value of −0.3667.

Figure 9. Probability distribution of passenger car mass and its fitted curve.



Machines 2023, 11, 791 12 of 21

Reference [15] expresses the uncertainty of air suspension system parameters as a
normal distribution containing different coefficients of variation, i.e., a standard deviation
of 0.1 or 0.2 times the mean value. We compared the probability density based on the
coefficients of variation with the probability density of the true statistics in this paper, as
shown in Figure 10. In Figure 10, Ass1 and Ass2 denote probability density curves with
coefficients of variation of 0.1 and 0.2, and Real denotes the PDF curve of the real statistics.
It can be found that Ass1 is larger than Real near the peak, while Ass2 is smaller than
Real; both Ass1 and Ass2 are larger than Real in the rising phase; and both Ass1 and Ass2
are smaller than Real in the falling phase. In general, the PDF based on the coefficient
of variation is very different to the PDF of the real statistics. Table 3 compares the mean
and standard deviation of masses under different statistical approaches. The mean value
of Real is larger than that of Ass because of overloading during the actual operation and
a higher probability density over a large mass range. The standard deviation of Real is
between the two Asses, indicating that the mass distribution of Ass1 is too concentrated,
while the estimated mass distribution of Ass2 is too loose.

Figure 10. Probability density curves for mass using different statistical methods.

Table 3. Means and standard deviations of quality for different statistical methods.

Statistical Method Mean Standard Deviation

Real 15,742 kg 1773 kg
Ass1 15,100 kg 1510 kg
Ass2 15,100 kg 3020 kg

4. Data-Driven Uncertainty Analysis of Bus Air Suspension Systems

The whole vehicle dynamics model in Section 2 and the statistical results of the whole
vehicle mass probability distribution in Section 3 can be used as the basis for the uncertainty
analysis of the air suspension system. Accordingly, a data-driven bus air suspension system
uncertainty analysis can be carried out, the process of which is shown in Figure 11 and
consists of two main steps: 1 is the identification of the whole vehicle mass based on
the vehicle network data; and 2 is the air suspension system uncertainty analysis based
on rejection sampling. The identified bus masses are used for the statistical true mass
probability density function. In addition, as a comparison, two standard mass probability
densities are assumed. The three mass probability densities are used as input for the
uncertainty analysis of the air suspension system, and the uncertainty of the response is
evaluated separately.
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Figure 11. Data-driven uncertainty analysis process for bus air suspension systems.

4.1. Uncertainty Analysis Based on the Rejection Sampling Principle

In order to make full use of the statistical mass probability distribution information, the
empirical probability density of the mass is sampled directly. Acceptance–rejection sampling is
able to sample arbitrary probability density functions and it is more efficient when compared
to the Monte Carlo sampling method. Therefore, the acceptance–rejection sampling method is
used to sample the PDFs of the masses under the three statistical approaches.

Acceptance–rejection sampling principle: π(x) is the known target PDF, building
a proposed PDF p(x), which makes π(x) ≤ Mp(x) when x ∈ R, M is constant, where
Mp(x) is called the envelope function. Samples x0 and u are generated from p(x) and
uniform distribution X ∼ U(0, 1), respectively. Subsequently, we determine whether
Mup(x) ≤ π(x) holds, we accept the sample point x0 if it is established, and we reject the
sample point if not. According to the sampling principle, it can be found that, in addition
to being able to sample any PDF, rejection sampling and the same sample point may also be
accepted by more than one PDF, and therefore can partially circumvent the disadvantages
of repeated sampling by the Monte Carlo method.

Two types of pavement profile excitation are used in this paper: sinusoidal excitation
and full band excitation. For the sinusoidal excitation, a signal with an amplitude of 0.05 m
and a frequency of 1 Hz is used for the simulation. Statistical indicators of the output
response for each excitation are also derived.

4.2. Uncertainty Analysis under Sinusoidal Inputs

For sinusoidal inputs, Real, Ass1 and Ass2 are used as uncertainty inputs and the
output responses of the corresponding performance variables are shown in Figures 12–14.
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Figure 12. Uncertainty response of three performance indicators. (a) Acceleration of the sprung mass.
(b) Suspension dynamic deflection. (c) Dynamic wheel loads.

Figure 13. Cont.
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Figure 13. Probability density of suspension transient performance response. (a) PDF of acceleration
of masses on the spring at different moments. (b) PDF of suspension dynamic deflection at different
moments. (c) PDF of dynamic wheel loads at different moments.

Figure 12 shows the uncertainty response of the three performance metrics of the sus-
pension system based on the true probability density of masses under sinusoidal excitation.
Each curve represents the performance response of one type of sprung mass. The sprung
mass acceleration, suspension dynamic deflection and wheel dynamic load have similar
characteristics, with large differences in y-values for different masses at the peak and trough
locations of the response. This indicates that the sprung mass has a large influence on the
suspension performance.

In order to further analyse the influence of the assumed mass distribution and the real
mass distribution on the uncertainty response of the suspension performance, the assumed
mass PDF and the real mass PDF are used as inputs for the uncertainty analysis of the
suspension system; the PDFs of the three responses at the moments 1.4 s, 2.8 s and 4.1 s are
calculated, and the results are shown in Figure 13. It can be found that there are moments
where the PDF distributions of the two are similar in shape but different in density value,
such as the 1.4 s instant of the acceleration response of sprung mass, the 4.1 s instant of the
dynamic deflection of the suspension and the 2.8 s instant of the dynamic wheel load. At
other moments, the shape of the PDF distribution and the density values are different.



Machines 2023, 11, 791 16 of 21

Figure 14. Uncertainty response curves for suspension system performance with different mass
distributions. (a) Acceleration of the sprung mass. (b) Suspension dynamic deflection. (c) Dynamic
wheel load.

The mean, standard deviation and variance are important indicators for uncertainty
analysis. We calculated the mean and variance of the three performances under the real PDF
and the hypothetical PDF, based on mass. Where MVR is the maximum value of the mean of
the response and MMR is the maximum value of the variance of the response, the MVR and
MMR values for each performance are shown in Table 4, where the relative error between
the hypothetical and true values is shown in brackets and denoted by RE. As can be seen
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from the table, there is a gap between the MVR and MMR values for the two hypothetical
mass distributions and the true mass distribution, and the gap is greater for hypothesis 1,
with a maximum relative error of 9% for the dynamic load. Figure 14 shows a comparison
of the performance response for the three mass probability densities. Similar conclusions
to those in Table 4 can be drawn from the local zoomed-in plots, with the performance
curve for assumption 1 being highest at the crest and lowest at the trough, indicating that
there is a large gap between the performance response based on assumption 1 and the true
performance response.

Table 4. MVR and MMR values for suspension system performance response for 3 inputs.

Indexes
Real Assumption 1 Assumption 2

MVR MMR MVR
(RE)

MMR
(RE)

MVR
(RE)

MMR
(RE)

Acceleration 17.09 7.45 18.00
(5%)

7.75
(4%)

17.24
(1%)

7.50
(1%)

Dynamic deflection 0.31 0.86 0.32
(3%)

0.89
(3%)

0.31
(0)

0.87
(1%)

Dynamic force 322,171,837 22,825 350,493,663
(9%)

23,868
(5%)

326,983,850
(1%)

22,996
(1%)

4.3. Uncertainty Analysis under Full Frequency Band Excitation

The frequency response function is an important tool for studying the vibration
isolation performance of vibration isolation systems, and the frequency response needs
to be obtained from response data under different frequency excitations. The full band
excitation is generally modelled using the random white noise of Equation (9). Because
the frequencies of interest for suspension systems are low, it is generally sufficient to study
the frequency response performance below 30 Hz. To facilitate analytical calculations, we
used a range of sinusoidal inputs to study the frequency response characteristics of the
suspension system properties, so a series of sine waves with a frequency range of 0–30 Hz
and a frequency interval of 0.1 Hz was used as the road excitation. The uncertainty response
of the suspension system performance was then calculated using the calculated-true-mass
PDF as the uncertainty input.

Figure 15 shows the frequency response function curves for the suspension perfor-
mance for 0–30 Hz excitation. Figure 15a reveals that the frequency response function of
the mass acceleration on the spring fluctuates throughout the frequency band, and has the
largest fluctuation range at the resonance peak. The first-order resonance peak frequency
and the second-order resonance peak frequency shift with the change in mass. Similarly to
Figure 15b,c, the suspension dynamic deflection and wheel dynamic load fluctuate more in
the lower frequency band, but less in the higher frequency band. In summary, the mass
acceleration on the spring is more sensitive to mass uncertainty in the full frequency band,
while the suspension dynamic deflection and wheel dynamic load are sensitive to mass
uncertainty in the low frequency band and insensitive to mass uncertainty in the high
frequency band.

To further quantify the effect of mass uncertainty on suspension performance, the
PDFs of the three performance indicators near the two resonance peaks were calculated, as
shown in Figure 16. It can be found that the peak of the curves near the resonance peaks
follow the influence of the change in resonance frequency. The approximate distribution
range of the peak response near each resonance peak can be confirmed by Figure 16.
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Figure 15. Uncertainty response curve of the suspension performance under broadband excitation.
(a) Frequency response curve of the acceleration of the sprung mass. (b) Frequency response curve of
wheel dynamic load. (c) Frequency response curve of suspension dynamic deflection.

Figure 16. Cont.
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5. Conclusions

This research utilizes the actual probability density of the sprung mass as an input
for conducting uncertainty analysis on the air suspension system. Experimental data is
employed to train a deep neural network model for accurate mass identification, while
vehicle network data are utilized to facilitate the identification and statistical analysis of
the sprung mass for a city bus. Subsequently, the rejection sampling principle is applied to
sample the true probability density function of the sprung mass, enabling the uncertainty
analysis of the air suspension system. The key findings are summarized as follows:

(1) The sprung mass exerts a notable impact on both the natural frequency and ampli-
tude of the suspension system uncertainty response, particularly in the lower frequency
ranges. Thus, it is essential to consider the influence of the sprung mass when designing
suspension parameters. The trained deep neural network model for mass identification
exhibits high accuracy, achieving a maximum error of 5.3%. This level of precision fulfills
the requirements for conducting uncertainty analyses of suspension systems.

(2) The probability distribution characteristics of the sprung mass significantly impact
the uncertainty response of suspension system performance. It is important to note that
assuming a probability distribution might lead to inaccurate calculations of suspension
performance uncertainties. In fact, the calculated results for dynamic wheel loads can
deviate by up to 9% from the true probability distribution. To acquire precise distributions
of uncertainty responses, it is crucial to acquire an accurate sprung mass probability density.

This paper contributes to the field of modeling and analysis of uncertainty parameters
in the air suspension system of buses, with a specific focus on the modeling of uncertain
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mass parameters in buses. The probability distribution characteristics of the sprung mass
play a crucial role in determining the distribution characteristics of the suspension perfor-
mance uncertainties. It is vital to utilize the true probability density function of the sprung
mass during the analysis and design of city bus suspension systems. Moving forward, our
future work aims to enhance the uncertainty optimization of the air suspension system by
leveraging the true probability density function of the sprung mass.

Author Contributions: Conceptualization, C.L.; methodology, C.L.; software, C.L.; validation, C.L.;
formal analysis, C.L.; investigation, C.L.; resources, C.L.; data curation, C.L.; writing—original draft
preparation, C.L.; writing—review and editing, C.L.; visualization, C.L. and Y.J.; supervision, C.L.
and J.N.; project administration, C.L.; funding acquisition, C.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Excellent Talents Support Program of Anhui Universities
(No. gxyqZD2021147); Anhui University Scientific Research Projects (No. 2022AH052362); Domes-
tic Visit and Study Project of Outstanding Young Backbone Teachers in Colleges and Universities
(No. gxgnfx2022200); The second batch of national level vocational education teachers’ teaching inno-
vation teams, National Teaching Innovation Team for Automobile Manufacturing and Experimental
Technology Teachers (2020TZPY42).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data in this study are available on request from the correspond-
ing author.

Acknowledgments: The authors thank the editor and the reviewers for their useful feedback, which
improved this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Palomares, E.; Nieto, A.J.; Morales, A.L.; Chicharro, J.M.; Pintado, P. Numerical and experimental analysis of a vibration isolator

equipped with a negative stiffness system. J. Sound Vib. 2018, 414, 31–42. [CrossRef]
2. Taghirad, H.D.; Esmailzadeh, E. Automobile Passenger Comfort Assured through LQG/LQR Active Suspension. J. Vib. Control.

1998, 4, 603–618. [CrossRef]
3. Zhu, H.; Yang, J.; Zhang, Y.; Feng, X.; Ma, Z. Nonlinear dynamic model of air spring with a damper for vehicle ride comfort.

Nonlinear Dyn. 2017, 89, 1545–1568.
4. Yuan, S.; Sun, Y.; Zhao, J.; Meng, K.; Wang, M.; Pu, H.; Peng, Y.; Luo, J.; Xie, S. A tunable quasi-zero stiffness isolator based on a

linear electromagnetic spring. J. Sound Vib. 2020, 482, 115449. [CrossRef]
5. Sun, W.C.; Zhao, Y.; Li, J.; Zhang, L.; Gao, H. Active Suspension Control with Frequency Band Constraints and Actuator Input

Delay. IEEE Trans. Ind. Electron. 2012, 59, 530–537.
6. Peltier, G.L.; Poppe, S.R.; Twomey, J.A. Controlled air suspension: An advantage in burn care. J. Burn. Care Rehabil. 1987,

8, 558–560.
7. Lu, N.; Cheng, N.; Zhang, N.; Shen, X.; Mark, J.W. Connected Vehicles: Solutions and Challenges. IEEE Internet Things J. 2014,

1, 289–299.
8. Wang, W.; Xia, F.; Nie, H.; Chen, Z.; Gong, Z.; Kong, X.; Wei, W. Vehicle Trajectory Clustering Based on Dynamic Representation

Learning of Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3567–3576.
9. Nagarkar, M.P.; Patil, G.J.V.; Patil, R.N.Z. Optimization of nonlinear quarter car suspension-seat-driver model. J. Adv. Res. 2016,

7, 991–1007. [CrossRef]
10. Papaioannou, G.; Koulocheris, D. Multi-objective optimization of semi-active suspensions using KEMOGA algorithm. Eng. Sci.

Technol. Int. J. Jestech 2019, 22, 1035–1046. [CrossRef]
11. Zhou, R.; Zhang, B.; Li, Z. Dynamic modeling and computer simulation analysis of the air spring suspension. J. Mech. Sci. Technol.

2022, 36, 1719–1727. [CrossRef]
12. Tiwari, V.; Sharma, S.C.; Harsha, S.P. Performance analysis of laminated rubber base isolator-based secondary suspensions under

deflated air-spring. Int. J. Struct. Stab. Dyn. 2023, 23, 2350140. [CrossRef]
13. Zheng, Y.; Shangguan, W.B. A combined analytical model for orifice-type and pipe-type air springs with auxiliary chambers in

dynamic characteristic prediction. Mech. Syst. Signal Process. 2023, 185, 109830. [CrossRef]
14. Chen, L.; Xu, X.; Liang, C.; Jiang, X.-W.; Wang, F. Semi-active control of a new quasi-zero stiffness air suspension for commercial

vehicles based on H2H infinity state feedback. J. Vib. Control. 2022, 29, 1910–1926. [CrossRef]

https://doi.org/10.1016/j.jsv.2017.11.006
https://doi.org/10.1177/107754639800400504
https://doi.org/10.1016/j.jsv.2020.115449
https://doi.org/10.1016/j.jare.2016.04.003
https://doi.org/10.1016/j.jestch.2019.02.013
https://doi.org/10.1007/s12206-022-0308-2
https://doi.org/10.1142/S0219455423501407
https://doi.org/10.1016/j.ymssp.2022.109830
https://doi.org/10.1177/10775463211073193


Machines 2023, 11, 791 21 of 21

15. Xu, X.; Liu, H.; Jiang, X.; Atindana, A.V. Uncertainty Analysis and Optimization of Quasi-Zero Stiffness Air Suspension Based on
Polynomial Chaos Method. Chin. J. Mech. Eng. 2022, 35, 93. [CrossRef]

16. Jiang, X.; Xu, X.; Liang, C.; Liu, H.; Atindana, A.V. Robust controller design of a semi-active quasi-zero stiffness air suspension
based on polynomial chaos expansion. J. Vib. Control. 2023. [CrossRef]

17. Lu, H.; Yang, K.; Huang, X.; Shangguan, W.-B.; Zhao, K. Uncertainty and correlation propagation analysis of powertrain mounting
systems based on multi-ellipsoid convex model. Mech. Syst. Signal Process. 2022, 173, 109058. [CrossRef]

18. Cai, B.H.; Shangguan, W.B.; Lü, H.; Bo, T. Hybrid uncertainties-based analysis and optimization design of powertrain mounting
systems. Sci. China Technol. Sci. 2020, 63, 838–850. [CrossRef]

19. Yoon, D.S.; Kim, G.W.; Choi, S.B. Response time of magnetorheological dampers to current inputs in a semi-active suspension
system: Modeling, control and sensitivity analysis. Mech. Syst. Signal Process. 2021, 146, 106999. [CrossRef]

20. Nagy, Z.K.; Braatz, R.D. Distributional uncertainty analysis using power series and polynomial chaos expansions. J. Process
Control. 2007, 17, 229–240. [CrossRef]

21. Tian, W.; Heo, Y.; de Wilde, P.; Li, Z.; Yan, D.; Park, C.S.; Feng, X.; Augenbroe, G. A review of uncertainty analysis in building
energy assessment. Renew. Sustain. Energy Rev. 2018, 93, 285–301. [CrossRef]

22. Jamroz, B.F.; Williams, D.F. Consistency in Monte Carlo uncertainty analyses. Metrologia 2020, 57, 065008. [CrossRef] [PubMed]
23. Wu, X.J.; Zhang, W.W.; Song, S.F. Robust aerodynamic shape design based on an adaptive stochastic optimization framework.

Struct. Multidiscip. Optim. 2018, 57, 639–651. [CrossRef]
24. Vilca, F.; Balakrishnan, N.; Zeller, C.B. Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties.

J. Multivar. Anal. 2014, 128, 73–85. [CrossRef]
25. Gilks, W.R.; Wild, P. Adaptive rejection sampling for gibbs sampling. J. R. Stat. Soc. Ser. C Appl. Stat. 1992, 41, 337–348. [CrossRef]
26. Jo, K.; Kim, J.; Sunwoo, M. Real-time road-slope estimation based on integration of onboard sensors with GPS using an IMMPDA

filter. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1718–1732. [CrossRef]
27. Kim, S.; Shin, K.; Yoo, C.; Huh, K. Development of algorithms for commercial vehicle mass and road grade estimation. Int. J.

Automot. Technol. 2017, 18, 1077–1083. [CrossRef]
28. Rajamani, R.; Hedrick, J.K. Adaptive observers for active automotive suspensions—Theory and experiment. IEEE Trans. Control.

Syst. Technol. 1995, 3, 86–93. [CrossRef]
29. Doumiati, M.; Victorino, A.C.; Charara, A.; Lechner, D. Onboard real-time estimation of vehicle lateral tire-road forces and

sideslip angle. IEEE-Asme Trans. Mechatron. 2011, 16, 601–614. [CrossRef]
30. Vahidi, A.; Stefanopoulou, A.; Peng, H. Recursive least squares with forgetting for online estimation of vehicle mass and road

grade: Theory and experiments. Veh. Syst. Dyn. 2005, 43, 31–55. [CrossRef]
31. Sun, Y.; Li, L.; Yan, B.; Yang, C.; Tang, G. A hybrid algorithm combining EKF and RLS in synchronous estimation of road grade

and vehicle’ mass for a hybrid electric bus. Mech. Syst. Signal Process. 2016, 68–69, 416–430. [CrossRef]
32. Zhang, Y.; Zhang, Y.J.; Ai, Z.; Feng, Y.; Zhang, J.; Murphey, Y.L. Estimation of electric mining haul trucks’ mass and road slope

using dual level reinforcement estimator. IEEE Trans. Veh. Technol. 2019, 68, 10627–10638. [CrossRef]
33. Abdelkareem, M.A.; Eldaly, A.B.; Ali, M.K.A.; Youssef, I.M.; Xu, L. Monte Carlo sensitivity analysis of vehicle suspension energy

harvesting in frequency domain. J. Adv. Res. 2020, 24, 53–67. [CrossRef] [PubMed]
34. Coppola, A.; D’Aniello, C.; Pariota, L.; Bifulco, G.N. Assessing safety functionalities in the design and validation of driving

automation. Transp. Res. Part C Emerg. Technol. 2023, 154, 104243. [CrossRef]
35. Feng, Y.; Xiong, L.; Yu, Z.; Qu, T. Recursive least square vehicle mass estimation based on acceleration partition. Chin. J. Mech.

Eng. 2014, 27, 448–459. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s10033-022-00758-5
https://doi.org/10.1177/10775463231153706
https://doi.org/10.1016/j.ymssp.2022.109058
https://doi.org/10.1007/s11431-019-1477-8
https://doi.org/10.1016/j.ymssp.2020.106999
https://doi.org/10.1016/j.jprocont.2006.10.008
https://doi.org/10.1016/j.rser.2018.05.029
https://doi.org/10.1088/1681-7575/aba5aa
https://www.ncbi.nlm.nih.gov/pubmed/34131351
https://doi.org/10.1007/s00158-017-1766-5
https://doi.org/10.1016/j.jmva.2014.03.002
https://doi.org/10.2307/2347565
https://doi.org/10.1109/TITS.2013.2266438
https://doi.org/10.1007/s12239-017-0105-6
https://doi.org/10.1109/87.370713
https://doi.org/10.1109/TMECH.2010.2048118
https://doi.org/10.1080/00423110412331290446
https://doi.org/10.1016/j.ymssp.2015.08.015
https://doi.org/10.1109/TVT.2019.2943574
https://doi.org/10.1016/j.jare.2020.02.012
https://www.ncbi.nlm.nih.gov/pubmed/32181016
https://doi.org/10.1016/j.trc.2023.104243
https://doi.org/10.3901/CJME.2014.03.448

	Introduction 
	Vehicle Dynamics Model 
	Quarter Air Suspension Model 
	Vehicle Dynamics Model for Air Suspension Systems 
	Effect of Sprung Mass on Suspension System Performance 
	Performance Evaluation Indicators for Suspension Systems 
	Sensitivity Analysis of Sprung Mass to Suspension Performance 


	Data-Driven Statistical Analysis of Sprung Mass 
	DNN-Based Bus Mass Identification 
	Feature Parameter Selection and Data Pre-Processing 
	DNN Structure 
	Model Training and Validation 

	Bus Mass Identification and Statistical Analysis 

	Data-Driven Uncertainty Analysis of Bus Air Suspension Systems 
	Uncertainty Analysis Based on the Rejection Sampling Principle 
	Uncertainty Analysis under Sinusoidal Inputs 
	Uncertainty Analysis under Full Frequency Band Excitation 

	Conclusions 
	References

