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Abstract: With the rapid development of artificial intelligence, machine vision and other information
technologies in the construction of smart power plants, the requirements of power plants for the state
monitoring of hydro-generator units (HGU) are becoming higher and higher. Based on this, this
paper applies YOLOv5 to the state monitoring scenario of HGU, and proposes a method for rotor
speed measurement (RSM) and operating state identification (OSI) of HGUs based on the YOLOv5.
The proposed method is applied to the actual RSM and OSI of HGUs. The experimental results show
that the Precision and Recall of the proposed method for rotor image are 99.5% and 100%, respectively.
Compared with the traditional methods, the online image monitoring based on machine vision not
only realizes high-precision RSM and the real-time and accurate determination of operating states,
but also realizes video image monitoring of the rotor, the operation trend prediction of the rotor and
the early warning of abnormal operating states, so that staff can find the hidden dangers in time and
ensure the safe operation of the HGU.

Keywords: artificial intelligence; hydro-generator unit; YOLOv5; rotor speed measurement; online
monitoring

1. Introduction

An HGU is a complex coupling system of hydraulic, mechanical, and electrical systems.
As the service life of the units increases, the issues of structural fatigue and deterioration
become increasingly prominent. At present, large and medium-sized hydropower plants
are developing an unmanned management mode and one with few personnel on duty, and
the equipment maintenance method is gradually transitioning from regular preventive
maintenance based on time to predictive maintenance based on state monitoring [1–3]. How
to accurately monitor the unit, judge its operation state, and detect unit operation problems
on time is an important issue in the state maintenance of HGU. The monitoring parameters
(nonelectrical quantity) of HGUs can generally be vibration, noise signals, temperature,
and rotor speed [4–6]. The rotor speed of the HGU can reflect both the state and frequency
of the HGU, which is a very important detection quantity in HGU monitoring. Therefore,
accurately calculating the rotor speed of the HGU is of great significance for monitoring
and judging the state of HGU [7,8].

At home and abroad, the methods of RSM for HGUs include direct method and
indirect method. The indirect method mainly converts mechanical rotation into other
physical quantities, and converts physical quantities into velocity quantities according to the
corresponding calculation formula. The mainstream indirect method is PT residual pressure
velocimetry. As the name implies, the direct method measures the mechanical rotation of
the object directly through the corresponding sensor. The mainstream method installs a
toothed disc on the main shaft of the HGU, so that the toothed disc is connected with the
main shaft of the HGU. The rotation of the main shaft of the HGU will drive the toothed
disc to rotate synchronously. The toothed disc sensor will collect the corresponding pulse
signal, and the current speed value of the HGU will be calculated through the processing
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of the signal by the single-chip microcomputer in the later stage [9]. The above methods all
have certain drawbacks. On the one hand, they cannot achieve visual monitoring of speed
and cannot reproduce the accident development process afterwards. On the other hand,
different speed measurement methods have varying degrees of coupling with the rotor,
reducing the robustness of the measurement. The advantages and disadvantages of the
commonly used classical rotor speed measurement methods are shown in Table 1.

Table 1. Comparison of advantages and disadvantages of rotor speed measurement methods.

RSM Method Advantages Disadvantages

Toothed disc [10]
High measurement accuracy,
Strong real-time performance,
Strong anti-interference ability

The need to fix the processed
toothed disc will change the

spindle structure

PT residual pressure [11]

Able to obtain the voltage of
the generator outlet PT,

commonly used for
electromagnetic measurement

Electrical faults and abnormal
residual voltage of the

primary equipment can
cause inaccurate

speed measurement

Photoelectric encoder [12] High measurement accuracy,
fast response

Susceptible to signal noise,
contact type speed

measurement requires
coaxial installation

Laser Doppler [13]
Noncontact speed

measurement without
changing the spindle structure

High price, poor immunity

Machine Vision [14]

Noncontact speed
measurement without
changing the spindle

structure, visualization of
accident process

Limited usage scenarios

In recent years, machine vision, as a hot technology, has provided effective techni-
cal support for promoting the construction of smart grids. Research based on machine
vision is constantly emerging and has been validated in practical power engineering
applications [15–17]. Ref. [18] adopts an intelligent detection method for transmission line
defects based on reparameterized YOLOv5, which solves the problem of slow edge reason-
ing caused by low computing power and low memory of power patrol edge equipment.
Ref. [19] applies YOLOv5, which combines the weighted bidirectional feature pyramid
(BiFPN) structure to the identification of power switch cabinet state lights, assigns different
weights to the feature layer to transmit more effective feature information, and solves
the problem of small target recognition caused by the high-density layout of state lights.
Ref. [20] proposes a method of fan blade detection and spatial positioning based on the
lightweight YOLOv5. ShuffleNetv2 is used as the feature extraction backbone network
to achieve accurate positioning of fan blade tip. Ref. [21] uses a method of making fused
image data set to solve the problem of the small number of defective insulator samples
in the insulator image data set taken by UAV aerial photography. To sum up, machine
vision has been widely used in power systems, but there is relatively little research on it in
hydropower plants [22,23].

The RSM method for HGUs based on image processing is a type of indirect RSM
method. This method mainly tracks the target in the measured structure video captured
by the camera to obtain the motion trajectory of the measurement point in the image, and
then determines the motion information of the structure through the geometric relationship
between the image and the real world. Unlike the contact displacement monitoring method,
which requires the installation of fixed support points on the structure, the camera is
installed at a fixed point far from the measured object and does not have a coupling
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relationship with other electrical equipment, contributing to the non-interference of the
RSM process and unit operation, greatly improving the anti-interference ability of RSM.

This paper applies the YOLOv5 algorithm to the state monitoring scenario of HGU,
and proposes a method for rotor speed measurement and operation state recognition of
HGU based on YOLOv5 combined with the period measurement method. A monitoring
system for the rotor speed of HGU is also developed. This system not only achieves
precise measurement of rotor speed, makes accurate judgments on the operating state of
HGU, predicts rotor operating trends and alerts abnormal operating states, but also records
real-time operating images of HGU, providing data sources for post analysis. The system
developed in this paper can effectively ensure the safe and stable operation of HGUs, laying
a theoretical foundation for the future development of more functional monitoring systems.

2. YOLOv5 Model Analysis

Object detection is a machine vision technology that can recognize semantic objects in
images and provide their positions and categories. Traditional object detection methods
typically include three steps: region selection, feature extraction, and feature classification.
After the emergence of deep learning, object detection methods have enhanced the accuracy
of feature classification and improved the efficiency of region selection, becoming a common
method at present. There are two types of object detection methods: single-stage etection
and two-stage detection. Single-stage detection integrates target classification, boundary
localization, and feature extraction into a network, constructs end-to-end training methods,
and uses regression to obtain the position of the target, reducing the repetitive calculation
of image feature extraction steps. The main algorithms include SSD, YOLO, etc. Two-stage
detection is based on constructing a deep convolutional neural network to extract target
features, and then achieving target detection through image segmentation and positioning.
The main algorithms include Faster RCNN, Fast R-CNN, SIFT, etc. [24].

The YOLO series algorithm is a target detection method based on regression thinking,
which can directly predict the category and position of the target from the image without
the need for candidate boxes or other intermediate steps. The advantage of this series of
algorithms is its fast speed, which is suitable for real-time scenes. The YOLOv5 model has
the advantages of fast reasoning speed, high precision and small model size, which makes
it highly popular in the field of target detection. Figure 1 shows the overall block diagram
of the YOLOv5 target detection algorithm. For a target detection algorithm, we can usually
divide it into four general modules, specifically including Input, Backbone, Neck and Head,
corresponding to the four red modules in Figure 1.
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The Input represents the input image, which typically includes an image preprocess-
ing stage, which scales the input image to the input size of the network and performs
operations such as normalization. In the network training phase, YOLOv5 uses Mosaic
data enhancement operations to improve the training speed of the model and the accuracy
of the network. An adaptive anchor frame calculation and adaptive image zooming method
are proposed. The Backbone is usually a network of classifiers with excellent performance,
and this module is used to extract some common feature representations. YOLOv5 not
only uses the CSPMarket53 structure, but also uses the Focus structure as the Backbone.
The Neck network is usually located in the middle of the reference network and the header
network, and it can be used to further enhance the diversity and robustness of features.
Although YOLOv5 also uses the SPP module and FPN + PAN module, the implementation
details are somewhat different. The Head is used to complete the output of target detection
results. For different detection algorithms, the number of branches at the output end varies,
usually including a classification branch and a regression branch. YOLOv5 leverages
GIOU_Loss replaces the Smooth L1 Loss function to further improve the detection accuracy
of the algorithm.

In order to evaluate the effectiveness and feasibility of the YOLOv5 model test results,
in practical applications, Precision, Recall, Average Precision (AP) and mean Average
Precision (mAP) are usually used as evaluation indicators [25]. The formula of the above
indicators is as follows. The Precision represents the true correct proportion in the correct
classification, and the Recall represents the proportion of the correct samples in the given
correct samples.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

AP[Class] = ∑
i∈confidence

Precisioni[Recall, Class, IOU] (3)

mAP =
1
N∑ APi (4)

In the formula, TP represents the number of tags that are positive samples and
classified as positive samples. FP indicates the number of negative samples but clas-
sified as positive samples. FN indicates the number of positive samples but classified as
negative samples.

Under a fixed Intersection Over Union (IOU), a given target will obtain different
Precision and Recall values according to different confidence levels. Through interpolation
of Precision and Recall, the continuous curve generated is the Precision–Recall (PR) curve.
The AP represents the comprehensive performance of the model under different confidence
levels by the area enclosed by the PR curve of a given target category and the horizontal
and vertical coordinates [26]. The higher the AP value, the better the detection performance
of the model. Each IOU corresponds to a different AP. The AP@.5 represents the AP when
the IOU is taken as 0.5, and the AP@.5:.95 represents the average AP when the IOU is taken
as 0.5 to 0.95, in steps of 0.05.

3. Analysis of RSM Principle
3.1. RSM by Period Method

The RSM principle based on image recognition technology is similar to that of digital
circuit speed measurement. The digital circuit speed measurement is to count the known
frequency high-frequency clock pulse with a counter within the interval of two adjacent
output pulses, and then calculate the speed, which is called T-method speed measure-
ment [27]. The schematic diagram of the period measurement method based on image
recognition technology is shown in Figure 2. The time of one revolution of the HGU can
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be obtained by multiplying the frame rate of the camera by the number of frames taken
during one revolution of the HGU. The key is to calculate the time difference of one revo-
lution. In the continuous frames with markers (that is, within the irradiable range of the
camera), the appearance and disappearance of markers are the two time points we focus
on (the judgment of key frames in the program is shown in Figure 3). The time difference
corresponding to the adjacent frames that appear or disappear is the time required for the
rotor to rotate for one cycle, that is, the speed of the unit. Therefore, when the unit rotates
for one and a half periods, we can obtain the real-time rotor speed of the two units.

n =
60

f0 ×M
=

60
fp

=
60
fq

(5)
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In the formula, n is the rotor speed, rpm. f 0 is the camera frame rate, fps. M is the
number of pictures collected by the camera in one rotation, frame. fp is the frequency of the
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first frame of the marker in the field of vision, fps. fq is the frequency of the last frame of
the marker in the field of vision, fps.

The judgment process for key frames is shown in Figure 3. Firstly, by determining
whether the current frame has captured the marker, it is determined whether the current
frame is within the visible range of the camera. Secondly, if the current frame captures
the marker and the previous frame also captures the marker, then the current frame is a
continuous frame within the field of view. If the marker was not captured in the previous
frame, the current frame is the first frame where the marker was captured. Finally, if the
marker is not captured in the current frame and was captured in the previous frame, then
the current frame is the first frame where the marker disappears. If the marker is not
captured in the previous frame, then the current frame is a continuous frame outside the
field of view.

The period measurement method calculates the time of adjacent pulses, but this part
of the time calculated by video speed measurement is easily affected by the frame rate.
Only when the time of HGU rotor rotation is a multiple of the camera sampling period
(the reciprocal of frame rate), can it be ensured that the time corresponding to the frame of
adjacent markers appearing (or disappearing) is exactly the time required for rotor rotation.
In order to reduce such errors, an improvement link is set up: when calculating the time
corresponding to the adjacent frame of the marker, plus the time difference corresponding
to the adjacent frame of the marker disappearing, the two calculation results are put into
the speed list, which is helpful to reduce the calculation error caused by accidental factors.

In order to avoid the impact of random noise or camera frame leakage on the real-time
rotor speed, the data will be further digitally filtered after the speed measurement by the
period measurement method. In this paper, the median average filtering method is adopted,
that is, the maximum and minimum values are removed from a set of numerical lists and
the average value is taken, which is equivalent to “median filtering method” + “arithmetic
average filtering method”.

The speed measurement method based on image recognition technology is similar
to the digital circuit speed measurement method, which is applicable to low speed mea-
surement. Since the rotor speed for HGU under normal or abnormal states is not more
than 150 r/min, it belongs to low-speed rotation, so the speed measurement method of the
period measurement is more suitable for the RSM of HGU software.

3.2. Algorithm Steps and Processes

The process of rotor speed calculation in this paper can be divided into five parts:
obtaining the HGU rotor video, dynamic capture of markers, rotor speed calculation, HGU
operation state analysis, and returning the data to the background. The four parts are the
main algorithms, and the principle is shown in Figure 4.

(1) HGU rotor video: the real-time video of the HGU operation site is collected by the ip
camera set around the water turbine. After the collection, the video is uploaded to the
server for the next RSM preparation.

(2) Dynamic capture of markers: the RSM of HGU depends on the setting of the markers.
The real-time rotor speed of HGU can be calculated by dynamically capturing the
markers in each frame of the video captured in step (1).

(3) The rotor speed calculation of HGU: through the markers captured in step (2), find
the key nodes, and the nodes where the markers appear and disappear, and measure
the rotor speed by the period method.

(4) Judge the operation state of the HGU: through step (3), the two final speed values
of the two cameras are obtained, and the mean value of the two values is calculated,
which is the real-time rotor speed of the HGU calculated by the program, so that the
operation state of the HGU can be judged.

(5) Return the data to the background: the server obtains the rotor speed of HGU, and
finally sends the rotor speed information to the database according to the TCP com-
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munication protocol and the video information according to the DUP communication
protocol for storage.
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4. YOLOv5 Test Result Analysis
4.1. Experimental Environment and Training Process

The parameters in the deep neural network mainly include the parameters that are
automatically adjusted through learning and the hyperparameter that needs to be manually
set. The adjustment of the hyperparameter is an important link between the theoretical
knowledge of deep learning and the actual situation at present. The hyperparameter config-
uration of this training is as follows: the initial learning rate is 1 × 10−4, the momentum is
0.0005, the batch size is 16, and the epoch is 200. The specific configuration of the computer
is shown in Table 2.

Table 2. Computer configuration table.

Device GPU NVIDIA GeForce GTX 2080

Operating system
Operating system Windows10

Computer language Python3.6.12
Deep learning framework Pytorch1.7.1

4.2. Data Set

YOLOv5, as a supervised learning algorithm, cannot be separated from the support
of a large amount of data. The quality and distribution of data sets are important factors
affecting the performance of the algorithm. The dataset used in this article originated
from an actual hydropower plant and ultimately collected 2500 image data with a size of
640 × 480 in jpg format. The image data are divided into training set, validation set, and
testing set in a ratio of 8:1:1.

In order to create a PASCAL VOC format dataset, LabelImg software was used to
visually annotate each image. When annotating, the mouse was used to accurately and
meticulously draw the border of the target as much as possible, which helps with the
training and segmentation effect of the model. At the same time, the category name of the
target is written on the border. As shown in Figure 5, it is the detection category “Mark”
where the marker appears.

The result of image annotation is a Json format file, which is converted into a structured
XML language based document, namely an xml format label file, which can better describe
the target category, position, size and other attributes in the image.
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4.3. Evaluating Indicator

This paper uses labeled turbine rotor images as training and validation sets and
conducts 200 epochs of training in the YOLOv5s model to obtain the optimal model weight
file. Figure 6 shows the training results of the turbine rotor markers in this model.
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From the figure, it can be seen that the detection Precision and Recall of YOLOv5
for rotor images have reached 99.5% and 100%, respectively, indicating that the model
has strong generalization ability and robustness, can adapt to various complex scenes
and environments, and can accurately locate and recognize markers for rotor images. At
the same time, observing the changes in Classified loss and Confidence loss with the
training process, it was found that after approximately 100 epochs, both tended to stabilize,
indicating that the model had converged to a better state. From the fact that the Classified
loss in the training set and the test set is zero, it can be concluded that the model can identify
all target categories in the training set without classification errors, and the Classified loss
of the model in the test set is also zero, indicating that the model has no overfitting or under
fitting problems.

In addition, through the mAP indicators under different IOU thresholds, it was found
that when IOU is 0.5, mAP approaches one, and when mAP@.5:.95, it is also close to
80%, indicating that the model maintains high detection performance even for smaller or
more difficult to recognize targets. These indicators all demonstrate that the model has
good detection performance for markers and meets the precision requirements for target
recognition in RSM.

4.4. Training Result Analysis

In order to verify the effectiveness of the YOLOv5 algorithm for marker capture,
YOLOv5 algorithm was compared with the traditional object capture algorithm based on
histogram reverse projection. The detection results are shown in Figure 7. As can be seen
from the left column of Figure 7, when using histogram reverse projection, due to the
single projection sample that can be selected, it is difficult to regularly frame and select
markers during the operation of the HGU. Moreover, when the color of the surrounding
environment is similar to the color of the marker, noise is prone to occur, as shown in
the red box selected area in the last group of comparison images, and cannot be used for
subsequent RSM of HGU.

The comparison of object capture results based on YOLOv5 is shown in the right
column of Figure 7. During the operation of the HGU, the rotor markers have undergone a
certain degree of deformation, but since the markers with different degrees of deformation
have been labeled during the labeling phase, the model can still accurately identify various
forms of markers during the detection phase, that is, the Recall of the model for the markers
is 100%. As the marker area decreases, the confidence level of target detection decreases
slightly, laying a good foundation for subsequent velocity measurement.
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5. Field Measurement and Analysis
5.1. HGU State Definition

The test site is a hydropower plant in China, which is equipped with four units with a
unit capacity of 200 MW and a total installed capacity of 850 MW. Based on the installed
capacity and actual operation of the water turbine, different states of the HGU can be
identified based on the RSM, as shown in Figure 8.

Firstly, the speed can be divided into a normal operating state and abnormal operating
state. Secondly, during the startup state in normal operation, if the speed is greater than
95% of the rated speed, it is in the excitation state. During the shutdown state in normal
operation, if the speed is less than 2% of the rated speed, it is considered a creeping state,
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and if the speed is less than 25% of the rated speed, it is considered an air brake state.
Finally, abnormal operating states include electrical overspeed when the speed exceeds
1.15% of the rated speed, and mechanical overspeed when the speed exceeds 1.35% of the
rated speed.
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5.2. HGU State Judgment

The judgment of HGU state is an important content of HGU state monitoring. The
HGU state not only depends on the numerical value obtained from the speed calculation,
but also on the trend of the speed over time. For example, during the shutdown state,
the unit may experience creep, and at this time, an air brake needs to be added to control
the speed. During the startup state, the unit needs to input excitation to increase output
power. In order to accurately determine the trend of rotational speed, a time window based
method was adopted in the program. Specifically, a thread has been added to the program
to record the speed Vq one second ago. When calculating the real-time speed Vp at the
current moment, first compare it with Vq. If Vp is smaller than Vq and less than a preset
fixed value (set to avoid data fluctuations causing misjudgment), then it can be considered
that the unit is in a shutdown process, that is, the speed is gradually decreasing. On the
contrary, if Vp is greater or equal than Vq, then it can be considered that the unit is in the
start-up process, that is, the speed is gradually increasing or maintaining stability.

The method proposed in this paper determines whether the HGU has stopped opera-
tion by measuring the area changes of the markers in consecutive frames of the video. As
shown in Figure 9, firstly, a certain marker on the HGU is captured and tracked in real-time,
and each video image is processed to extract the contour of the marker and calculate its
pixel area S. Then, compare the area difference of the markers in two adjacent video images
(∆S = |S1 − S2|). If ∆S is less than a given threshold, it is considered that the HGU is in a
stationary state. Finally, when using binocular cameras, it is necessary to synchronize the
video images collected by the two cameras and use an “OR” statement to perform logical
operations on the static state collected by the two cameras. As long as one camera detects
that the water turbine has stopped running, it is considered that the speed is zero.

The on-site test is carried out during the startup and shutdown test after the unit
maintenance, which is helpful for the judgment of multiple states in a short time. Since
there are no two states of overspeed in the field test, this test only records the following
state judgments (both of them have been judged in the laboratory), as shown in Figure 10
below. It can be seen from the figure that when the HGU transits from the shutdown state
to the speed-up phase, the rotor speed increases from 0 rpm to 104.778 rpm, and the unit
is in the excitation stage. The rotor speed continues to rise until the rotor speed reaches
the rated rotor speed of 107.067 rpm. After maintaining operation for a period of time, the
HGU starts to decelerate, and the rotor speed drops to 68.873 rpm. The unit entered the
stage of air brake to speed-up the shutdown process, and finally the rotor speed continued
to drop to zero. However, due to the large number of guide vanes, it is impossible for the
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guide vanes to be completely sealed under the closed state, and the water leakage of guide
vanes is objective. When the water leakage increases to a certain extent, the water will
impact the HGU runner, causing the rotating parts of the unit to produce slow rotating
motion, and the rotor speed will reach 1.58 rpm from zero, which means the unit will
appear in peristalsis.
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5.3. Analysis of the Change of HGU Start and Stop Rotor Speed

The rotor speed increased from 0 rpm to 107.1 rpm in the process of starting, and the
starting time of this field test was about 180 s. In order to test the precision and tracking of
the algorithm proposed in this paper, the real value of the rotor speed is recorded every
five seconds and compared with the calculated rotor speed at the same time.

The overall change trend of rotor speed is shown in Figure 11a, with an average relative
error of 2.45%. It can be seen from the figure that the overall following and precision of
the calculated rotor speed are relatively high, but because the relative error is small, it is
not convenient to analyze the error at different stages, so the low-speed stage, speed-up
stage and stable stage of the rotor speed in Figure 11a are enlarged. It can be seen from the
figure that, as shown in Figure 11c, due to the stable acceleration, the rotor speed in the
speed-up stage is approximately linear, and the corresponding curve of the real value and
the calculated value almost coincide, with high speed precision. In the low-speed stage
(Figure 11b) and stable stage (Figure 11d), the calculated values are relatively small due to
the slow speed change and the rotor speed is easily affected by historical data. It can be
seen from the figure that the calculated value curve is below the true value curve. Finally,
when the rotor speed is stabilized to the rated rotor speed, the calculated rotor speed will
also tend to be stable.
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Figure 11. Rotor speed change diagram of HGU startup process. (a) Rotor speed change trend during
startup process. (b) Rotor speed at low-speed stage. (c) Rotor speed at speed-up stage. (d) Rotor
speed at stable stage.

During the shutdown process of the HGU, the rotor speed decreased from 107.1 rpm
to 0 rpm. The shutdown test time was about 410 s, and the recording method was the same
as that of the appeal startup process, which was recorded every 10 s. The overall trend
diagram of the shutdown process is shown in Figure 12a. It can be seen from the figure
that the precision of the calculated rotor speed is high and the tracking is good, with an
average relative error of 2.44%. After the HGU is shut down, the guide vane is fully closed
and the rotor speed decreases. However, because the HGU will damage the oil film of the
bearing at low speed, resulting in excessive bearing friction, temperature rise and burning
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loss, the air brake must be put into operation to shorten the time of the unit at low speed,
quickly stop rotating, and protect the HGU. From the Figure 12b–d, it can be seen that the
calculated rotor speed are mostly above the true value, that is, slightly higher than the true
value. This is mainly because the historical rotor speed during the shutdown process is
relatively large, which affects the true value in the digital filtering stage. This law is just
opposite to the startup process.
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Figure 12. Rotor speed change diagram of HGU shutdown process. (a) Rotor speed change trend
during shutdown process. (b) Rotor speed at low-speed stage. (c) Rotor speed at speed-up stage.
(d) Rotor speed at stable stage.

5.4. Display of Monitoring System

This paper unifies the deployment of hardware devices and detection algorithms, and
develops a monitoring system for the rotor speed of HGU based on mobile applications. The
application of the HGU rotor speed monitoring system for continuous operation monitoring
of a HGU rotor in operation, and the experimental results are shown in Figure 13.

The main functions of the HGU rotor speed monitoring system include calling a camera
for real-time state monitoring, outputting algorithm recognition results for each stage of the
rotor, judging the current state of the rotor, and summarizing and recording dimensional
information such as time, state, and unit number, for users to view the historical state of the
unit at any time. Based on the algorithm proposed in this paper, the system can effectively
determine the rotor speed and current state of HGU, and the specific detection results are
shown in Figure 14.

Figure 14 shows the judgment results of the system, where Figure 14a–f show the six
operating states of the HGU, namely normal state, excitation state, acceleration state, air
brake state, deceleration state, and shutdown state. After testing, the monitoring system
can accurately identify the different operating states of the HGU.

The judgment results of the HGU rotor speed monitoring system are shown in Table 3.
From the table, it can be seen that the speed accuracy measured by the system is relatively
high, and the judgment of the unit’s operating status is accurate.
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Table 3. Judgment results of the rotor speed monitoring system for HGU.

Rotor Speed Judged State Actual State Is It Accurate?

107.230 Normal state Normal state Yes
102.300 Excitation state Excitation state Yes
16.509 Acceleration state Acceleration state Yes
67.825 Air brake state Air brake state Yes

104.498 Deceleration state Deceleration state Yes
0.000 Shutdown state Shutdown state Yes

The monitoring system can export the rotor speed change curve of the HGU starting
and stopping, as shown in Figure 15. The horizontal axis represents time, and the vertical
axis represents the rotor speed measured by the system. 
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Figure 15. Startup and shutdown process curve of HGU. (a) startup process curve of HGU. (b) shutdown 
process curve of HGU. 
 

Figure 15. Startup and shutdown process curve of HGU. (a) startup process curve of HGU.
(b) shutdown process curve of HGU.
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The monitoring system can store daily data in detail and accurately and display the
weekly or monthly data change trend in the data analysis module through the line chart.

The early warning module in the monitoring system can obtain abnormal data and
establish a dataset to be transmitted to the database. The fault diagnosis module can
identify abnormal data and diagnose faults with an accuracy rate of over 98%, and can
provide accurate diagnostic reports. The effectiveness of the system has been verified
through the application of the HGU rotor speed monitoring system for hydropower plants.

The performance comparison between the proposed method and the classical method
in this article is shown in Table 4. From the table, it can be seen that the method proposed in
this paper can achieve low-cost, noncontact, and high anti-interference RSM while ensuring
accuracy, which has greatly improved performance compared to classical RSM methods.

Table 4. Performance comparison of different rotor speed measurement methods.

RSM Method Precision Additional Equipment
Configuration Contact Measurement Anti-

Interference

Toothed disc 0.001 Yes Yes High
PT residual pressure 0.01 Yes Yes Low
Photoelectric encoder 0.001 Yes Yes Low

Laser Doppler 0.01 Yes No Low
The method proposed

in this paper 0.001 No No High

6. Conclusions

This paper proposes a method for RSM and OSI of HGU based on the YOLOv5. First,
the YOLOv5 model is used to accurately capture the HGU rotor, then the period method
is used to calculate the speed, and finally the operation state of the HGU is judged by the
calculated speed. The method in this paper used to measure the speed of the HGU, which
realizes the long-distance, noncontact and high-precision RSM of HGU, helps the staff
better grasp the real-time operation of the HGU and makes the hydropower plant more
intelligent and efficient. The specific performance is as follows:

(1) Using binocular camera to photograph the rotor can ensure real-time monitoring of
the rotor.

(2) Accurately judging several different states of the HGU can help the staff find potential
safety hazards quickly and on time according to the alarm prompt information,
improve work efficiency and reduce labor costs.

(3) When the unit speed changes, the software can quickly follow its changing trend
while maintaining the precision.
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