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Abstract: This article proposes a model predictive control (MPC) strategy for a quadrotor drone
trajectory tracking based on a compact state-space model based on a quasi-linear parameter varying
(qLPV) representation of the nonlinear quadrotor. The use of a qLPV representation allows for faster
execution times, which can be suitable for real-time applications and for solving the optimization
problem using quadratic programming (QP). The estimation of future values of the scheduling
parameters along the prediction horizon is made by using the planned trajectory based on the
previous optimal control actions. The performance of the proposed approach is tested by following
different trajectories in simulation to show the effectiveness of the proposed control scheme.

Keywords: nonlinear control; model predictive control; linear parameter varying; unmanned aerial
vehicles; optimal control

1. Introduction

Research on unmanned aerial vehicles (UAV) has been increasing in the last two
decades. UAVs have many applications such as communications, surveillance, assistance
in natural disasters, mapping, delivery of goods, etc. The main reason for the popularity of
UAVs in these applications is the size and speed of these vehicles, their range of mobility in
harsh conditions, and the advantage of being an unmanned vehicle.

The autonomy of UAVs is crucial for a wide variety of applications without hu-
man involvement such as trajectory tracking, disturbance rejection, and collaboration
with other UAVs. Therefore, the design of a controller is crucial for the use of UAVs in
most applications.

One of the most popular types of UAVs is the quadrotor, a vehicle driven by four
propellers. The quadrotor is a 12-state highly nonlinear system controlled only by four
control inputs and the speed of each propeller. The translation of the quadrotors is possible
by controlling the lift and the pitch and roll angles of the UAV to manipulate the tilt of
the drone to manage the direction of translation. They are also characterized for their
fast dynamics, being able to change directions quickly and to follow complex paths in the
presence of external disturbances caused by the environment.

Trajectory planning and tracking is one of the most important tasks for the autonomy
of quadrotors. Several studies have focused on this problem and the design of a controller
that can track a desired trajectory efficiently. Some controllers that have been explored for
this type of control problem are PID [1–4], LQG [5–7], H2 and H∞ [8–10], and fuzzy logic
controllers [11–14]. All of these controllers achieve acceptable performance on trajectory
tracking. However, most of these controllers rely on advanced tuning techniques rather
than an optimal controller design considering the quadrotor’s nonlinear dynamics.

Another control strategy widely used and researched for trajectory tracking of quadro-
tors is model predictive control (MPC). In this strategy, the trajectory of the quadrotor is
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predicted along a prediction horizon based on a model as a function of the control actions.
Afterward, an optimization problem is conducted online at every sampling time to obtain
the optimal set of control actions based on a desired performance expressed as a cost
function. One of the main advantages of MPC over other control strategies is the possibility
to include constraints in the optimization problem.

In [15], a linear MPC controller for trajectory tracking control of a quadrotor is pre-
sented. In this approach, a linear model is used to represent a nonlinear quadrotor by
assuming small-angle movements. This is ensured by constraints in the states of the sys-
tems and the control inputs. The results showed proper tracking of the altitude of the
drone, while the trajectory control in the X and Y coordinates is not explored due to the
limitations of the linear representation. Other linear MPC strategies for trajectory tracking
are presented in [16–19].

To overcome the limitations of using a linear representation to design a controller
for a highly nonlinear system such as a quadrotor, the nonlinear MPC (NMPC) control
strategy has been used widely. In this approach, nonlinear dynamics are considered to
predict the behavior of the drone along the prediction horizon. In [20], a nonlinear MPC is
presented for trajectory tracking of a quadrotor. In this framework, the computational load
is a limitation due to the complexity of the cost function involving nonlinear dynamics. To
overcome this limitation, a numerical method solution such as the generalized minimal
residual method is used. The use of numerical methods to achieve fast execution times
results also in the need to add constraints for the stability of the system, which are included
as contraction constraints. The results showed appropriate performance, but the stability
conditions affect the convergence time. Other studies regarding NMPC strategies in UAVs
are presented in [21–25].

Linear parameter varying (LPV) models have been used to deal with nonlinear models
as linear systems or quasi-linear systems. In this type of model, the nonlinearities of the
system are embedded in scheduling parameters, which are updated at each sampling time
depending on the conditions of the system or external factors such as time and disturbances.
LPV representations are often used to design controllers without including the complex
nonlinear dynamics of most systems.

In quadrotors, LPV models have been used to design linear MPC controllers, which are
dependent on the scheduling parameters. In [26], an MPC controller based on a quasi-LPV
(qLPV) representation of a quadrotor is presented. In this work, a cascade control strategy
is chosen and the quadrotor model is divided into a translational model and an attitude
model. The translational model is defined as a linear model, while the attitude model is an
LPV model. Afterward, the translational model was controlled using an LQR controller,
while the LPV attitude was governed using an LPV-MPC controller. The results showed
proper trajectory tracking for a spiral trajectory.

Several studies with MPC strategies for the control of UAVs are presented in [27–30].
In all of previous studies, the model of the quadrotor was divided into two models, due to
the highly nonlinear dynamics of the quadrotor system. The main limitation of this kind of
approach is that the scheduling parameters are unknown along the prediction horizon and
an estimation of the parameters needs to be performed. If the parameters are not bounded,
the estimation may result in improper estimation and non-optimal performance.

In this study, a novel qLPV-MPC control strategy for trajectory tracking of quadrotors
is presented. The highly nonlinear model dynamics of the quadrotor are presented by a
12-state LPV system with six scheduling parameters depending on the states of the system
and the angular velocity of the propellers. Afterward, an LPV-MPC controller is defined as
a regular linear MPC depending on the scheduling parameters. The parameter estimation
along the prediction horizon is considered via estimation of the states and control actions
derived from the previous optimal set of control actions.

This work is structured as follows: Section 2 presents the quadrotor dynamics, includ-
ing translation and attitude dynamics defined from the Earth frame and the body frame.
Section 3 describes the state-space LPV model for the design of the MPC controller. In



Machines 2023, 11, 755 3 of 18

Section 4, the Model Predictive Control for trajectory tracking of the controller is presented.
Section 5 shows the results of the proposed control strategy for two different trajectories.
Finally, Section 6 goes over future work and conclusions.

2. Quadrotor Dynamics

The quadrotor is composed of two main features: the body frame and the propellers.
The function of the propellers is to give thrust to the UAV and to steer the quadrotor. The
dynamics of the quadrotor are defined by the translation of the body in the XYZ space and
the attitude of the body, which is composed of the rotational angles: roll, pitch, and yaw.
Figure 1 presents a schematic of the quadrotor.

Figure 1. Quadrotor Schematic.

As seen in Figure 1, the propellers rotate in cross directions; if all the propellers
rotate at the same speed and there is no external disturbance, the quadrotor will stay in
a hovering state. The roll φ, pitch θ, and yaw ψ represent the rotational angles along the
xB, yB and, zB-axes of the quadrotor respectively. [Ω1, Ω2, Ω3, Ω4] represent the velocity of
each propeller. Note that the xB, yB and, zB-axes of the quadrotor are different from the
XYZ axes defined by the Earth frame shown in black in Figure 1. To define the dynamics
of the quadrotor, the equations will be divided into the Earth frame (E-frame) equations
and the body frame (B-frame) equations, as shown in [30]. Afterward, both frames will be
combined in a compound frame (C-frame).

2.1. E-Frame Dynamics

The E-frame dynamics are related to the movement of the center of gravity (COG)
of the quadrotor with respect to an arbitrary origin set on a point of the Earth. These
movements are the translation of the drone and are defined by the position, velocity, and
acceleration of the quadrotor and the roll, pitch, and yaw movements. The set of equations
used to describe the translation of the quadrotor is shown in Equation (1):

ẋ = cos θ cos ψu + (sin φ sin θ cos ψ− cos φ sin ψ)v + (cos φ cos θ cos ψ + sin φ sin ψ)w
ẏ = cos θ sin ψu + (sin φ sin θ sin ψ + cos φ cos ψ)v + (cos φ sin θ sin ψ− sin φ cos ψ)w
ż = − sin θu + sin φ sin θv + cos φ cos θw
φ̇ = p + sin φ tan θq + cos φ tan θr
θ̇ = cos φq− sin φr
ψ̇ = sin φ

cosθ q + cos φ
cosθ r

(1)
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in which [u, v, w] is the velocity vector, while [p, q, r] is the angular velocity vector with
respect to the B-frame. As seen in Equation (1), this representation is not enough to model
the whole quadrotor because the previous equation is dependent on parameters defined in
the body frame.

2.2. B-Frame Dynamics

In the B-frame, the origin is located at the COG of the quadrotor and moves with it.
This type of representation is useful to see the effects that the rotation of each propeller
generates at the quadrotor. Equation (2) shows the set of equations needed to represent
these dynamics, including the gravitational term, the gyroscopic effect, and the input effect
on these dynamics. 

u̇ = vr− wq + sin θg
v̇ = wp− ur− sin φ cos θg
ẇ = uq− vp− cos φ cos θg + U1

m
ṗ = 1

Jxx
[−(Jzz − Jyy)qr− JpqΩp + U2]

q̇ = 1
Jyy

[(Jzz − Jxx)pr− Jp pΩp + U3]

ṙ = 1
Jzz
[−(Jyy − Jxx)pq + U4]

(2)

in which g is the gravitational constant; m is the mass of the quadrotor; [Jxx, Jyy, Jzz] are the
inertia tensor; and [U1, U2, U3, U4] are the auxiliary control inputs being functions of the
speed of each rotor and defined by Equation (3)

U1 = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

U2 = bl(Ω2
4 −Ω2

2)

U3 = bl(Ω2
3 −Ω2

1)

U4 = d(−Ω2
1 + Ω2

2 −Ω2
3 + Ω2

4)

(3)

where b represents the thrust factor, l is the distance from the center of the quadrotor to
the propeller, and d is the drag factor. The overall velocity of the propellers is defined as
Ωp = −Ω1 + Ω2 −Ω3 + Ω4.

Similar to the E-frame, the B-frame is not enough to understand all the dynamics of
the quadrotor due to the dependence on parameters represented in the E-frame such as the
roll, pitch, and yaw values. In order to build a model that includes all the dynamics of both
the E-frame and the B-frame, a compound frame (C-frame) needs to be developed.

2.3. C-Frame Dynamics

In order to define a compound frame, a relation between the B-frame and the E-frame
needs to be obtained. The relation of these two frames is represented by Equation (4).

ζ̇ = JΘv (4)

in which ζ = [x, y, z, φ, θ, ψ]T is the E-frame vector; v = [u, v, w, p, q, r]T is the B-frame
vector; and JΘ is a transformation matrix defined as:

JΘ =



cos θ cos ψ sin φ sin θ cos ψ− cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ 0 0 0
cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ− sin φ cos ψ 0 0 0
− sin θ sin φ sin θ cos φ cos θ 0 0 0

0 0 0 1 sin φ tan θ cos φ tan θ
0 0 0 0 cos φ − sin φ

0 0 0 0 sin φ
cos θ

cos φ
cos θ


With this transformation matrix and Equations (1)–(4), the equations defining the

dynamics of the quadrotor can be derived. These equations are shown in Equation (5).
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ẍ = 1
m [cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)]U1

ÿ = 1
m [cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)]U1

z̈ = 1
m [cos(φ) cos(θ)]U1 − g

ṗ = 1
Jxx

[−(Jzz − Jyy)qr− JpqΩp + U2]

q̇ = 1
Jyy

[(Jzz − Jxx)pr− Jp pΩp + U3]

ṙ = 1
Jzz
[−(Jyy − Jxx)pq + U4]

(5)

3. LPV State Space Model of the Quadrotor

In order to build the MPC cost function, an LPV-state-space model with scheduling
variable-dependent matrices A and B is defined. Using Equations (1)–(5), a nonlinear state-
space model to track all the variables for the movement of the quadrotor can be derived.
The nonlinear state-space model for the quadrotor is shown in Equation (6).

ẋ = vx

ẏ = vy

ż = vz

v̇x = 1
m [cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)]U1

v̇y = 1
m [cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)]U1

v̇z =
1
m [cos(φ) cos(θ)]U1 − g

φ̇ = p + sin(φ) tan(θ)q + cos(φ) tan(θ)r
θ̇ = cos(φ)q− sin(φ)r

ψ̇ = sin(φ)
cos(θ) q + cos(φ)

cos(θ) r

ṗ = 1
Jxx

[−(Jzz − Jyy)qr− JpqΩp + U2]

q̇ = 1
Jyy

[(Jzz − Jxx)pr− Jp pΩp + U3]

ṙ = 1
Jzz
[−(Jyy − Jxx)pq + U4]

(6)

As seen in the previous state-space system, the quadrotor is highly nonlinear; therefore,
in order to treat the system as a linear state-space system, an LPV representation with six
different scheduling variables depending directly on the states of the system is derived.
The scheduling variables are presented in Equation (7).

ρ1 = φ

ρ2 = θ

ρ3 = ψ

ρ4 = p
ρ5 = q
ρ6 = Ωp

(7)

The scheduling variables were chosen to represent the nonlinear state-space system of
the quadrotor in an LPV state-space model using the least amount of scheduling variables
needed to model the nonlinear dynamics of the quadrotor. With Equations (6) and (7), a
quasi-LPV state-space system can be used to compute the MPC cost function in a linear
form. The qLPV-SS with matrices A and B being scheduling parameter-dependent is shown
in Equation (8).

ẋ(t) = A(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6)x(t) + B(ρ1, ρ2, ρ3)

[
u(t)

g

]
(8)

where x(t) = [x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r]T , u(t) = [U1, U2, U3, U4]T , and matrices A
and B are defined as follows:
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A =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 ερ2 ερ3 0 0 0
0 0 0 0 0 0 ερ1 0 ερ3 0 0 0
0 0 0 0 0 0 ερ1 ερ2 0 0 0 0
0 0 0 0 0 0 0 0 0 1 sin(ρ1) tan(ρ2) cos(ρ1) tan(ρ2)
0 0 0 0 0 0 0 0 0 0 cos(ρ1) − sin(ρ1)

0 0 0 0 0 0 0 0 0 0 sin(ρ1)
cos(ρ2)

cos(ρ1)
cos(ρ2)

0 0 0 0 0 0 0 0 0 0 − Jpρ6
Jxx

−(Jzz−Jyy)ρ5
Jxx

0 0 0 0 0 0 0 0 0 Jpρ6
Jyy

0 (Jzz−Jxx)ρ4
Jyy

0 0 0 0 0 0 0 0 0 0 −(Jyy−Jxx)ρ4
Jzz

0



B =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
m [cos(ρ1) sin(ρ2) cos(ρ3) + sin(ρ1) sin(ρ3)] 0 0 0 0
1
m [cos(ρ1) sin(ρ2) sin(ρ3)− sin(ρ1) cos(ρ3)] 0 0 0 0

1
m [cos(ρ1) cos(ρ2)] 0 0 0 −1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1

Jxx
0 0 0

0 0 1
Jyy

0 0

0 0 0 1
Jzz

0


The value of ε is defined as a very low constant (e.g., ε = 1× 10−3) and is included

for the system to be controllable and to avoid having three zero rows in the A matrix.
The parameter ε is therefore added for the MPC to identify that, by changing the attitude
angles, the acceleration on the XYZ plane will be affected, but the predicted trajectory will
not be significantly affected due to the small value of ε. The inclusion of the six different
scheduling variables on the qLPV state-space allows for expressing the highly nonlinear
quadrotor system into a compact quasi-linear state-space system, which is updated at
each sampling time depending on the values of the states and the speed of the propellers.
This compact qLPV-SS representation simplifies the computation of the future states of
the system along the prediction horizon and improves the construction of the MPC cost
function without splitting the system into several sub-systems. The gravitational constant
is treated as an uncontrollable input or disturbance, which is constant at every sampling
instant. In the next section, the proposed qLPV-SS presented in (8) will be used to compute
the MPC cost function and to solve the optimization problem to obtain the optimal set of
control actions.

4. Model Predictive Control Based on the LPV Representation of the Quadrotor

To build an MPC based on an LPV model, the prediction of the future states along
the prediction horizon Np is formulated considering not only the state matrices A and B
but also the variations in the scheduling variables along the prediction horizon. Therefore,
matrices A and B are not considered constant along the prediction horizon, and the values
of these matrices need to be considered for each step of the horizon in order to consider
the nonlinear behavior of the quadrotor. Thus, Equation (9) presents the i-steps ahead
calculation of the states of the quadrotor.
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x(k + i|k) =
i−1

∏
j=0

Ad
(
ρi(k + j)

)
x(k) +

( i−1

∑
s=1

( i−1

∏
l=s

Ad
(
ρi(k + l)

))
Bd
(
ρi(k + s− 1)

)[u(k + s− 1)

g

])
+ Bd

(
ρi(k + i− 1)

)[u(k + i− 1)

g

]
(9)

where Ad(ρi) and Bd(ρi) are the discrete matrices obtained from the continuous matrices
A and B presented in Section 3 using sampling time Ts and zero-order-hold (ZOH) dis-
cretization. These matrices are updated at every sampling instant k as the set of scheduling
parameters (ρi) are also updated at each iteration. The prediction of the future states
is performed along the prediction horizon, from k to k + Np; thus, Equation (9) can be
expressed as a compact matrix form to calculate the values of the states in the prediction
horizon, as shown in Equation (10).

X = Φ · x(k) + Ψ ·U (10)

where

X =


x(k + 1|k)
x(k + 2|k)

:
.

x(k + Np|k)

 (11)

Φ(k) =


Ad(ρi(k))

∏1
j=0

(
Ad
(
ρi(k + j)

))
...

∏
Np−1
j=0

(
Ad
(
ρi(k + j)

))

 (12)

Ψ(k) =



Bd(ρi(k)) 0nx·nu . . . 0nx·nu

Ad(ρi(k + 1))Bd(ρi(k)) Bd(ρi(k + 1)) . . . 0nx·nu

Ad(ρi(k + 2))Ad(ρi(k + 1))Bd(ρi(k)) Ad(ρi(k + 2))Bd(ρi(k + 1)) . . . 0nx·nu

...
...

. . .
...

...
(∏

Np−1
i=1 Ad(ρi(k + 1)))Bd(ρi(k)) (∏

Np−1
i=1 Ad(ρi(k + 2)))Bd(ρi(k + 1)) . . . Bd(ρi(k + Np − 1))


(13)

U =



u(k)
g

u(k + 1)
g
:
.

u(k + Np − 1)
g


(14)

where X ∈ RNp ·nx , Φ ∈ RNp×nx ·nx , Ψ ∈ RNp ·nx×Np ·nu and U ∈ RNp ·(nu+1), where nx
represents the number of states and nu represents the number of controllable inputs of the
quadrotor. With Equation (10), the computation of the future values of the states of the
quadrotor is performed, and a cost function for trajectory tracking can be designed to make
the quadrotor follow a specified trajectory and to minimize the effort of the propellers. The
proposed cost function is the following:

J = (X(k)− Xr(k))TQ(X(k)− Xr(k)) + (U(k)−U(k− 1))T R(U(k)−U(k− 1)) (15)

where Q ∈ Rnx ·Np×nx ·Np and R ∈ Rnu ·Np×nu ·Np are weighting matrices, Xr is the trajectory
reference vector along the prediction horizon, and U(k− 1) is the previous set of optimal
control actions. For this application, the trajectory reference vector only includes the
desired trajectory in the XYZ coordinates and the yaw angle reference. The other states
are considered free states and are only bonded by the constraint limits. The values of the
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scheduling variables along the prediction horizon are calculated by using Equation (10)
from the previous iteration. Having the future values of the states along the prediction
horizon allows us to represent the nonlinear behavior of the quadrotor correctly in the MPC
algorithm. The objective of the MPC strategy is to minimize the cost function (15) at every
sampling instant k subject to the constraints shown in (16) and (17).

Umin ≤ U ≤ Umax (16)

Xmin ≤ X ≤ Xmax (17)

where Umin, Umax ∈ R(nu+1)·Np and Xmin, Xmax ∈ Rnx ·Np are the defined limits for the
controlled inputs and the states, respectively. The gravitational term g included in the
control vector U is constrained to be equal to 9.81 at every iteration. Thus, the optimization
problem to solve at each sampling instant k is presented in Equation (18).

min
U

J s.t. (16) and (17) (18)

Solving the optimization problem (18) results in the optimal set of control actions
U along the prediction horizons; therefore, a conversion from the control actions to the
actual speeds of the propellers that are input to the system needs to be performed. Us-
ing Equation (3), the values of the speed of each propeller can be calculated as shown
in Equation (19). 

Ω2
1

Ω2
2

Ω2
3

Ω2
4

 =


b b b b
0 −bl 0 bl
−bl 0 bl 0
−d d −d d


−1

U1
U2
U3
U4

 (19)

To obtain the optimal velocities of each propellers [Ω1, Ω2, Ω3, Ω4]
T , the absolute value

of the square root of each square velocity is computed. Figure 2 presents the qLPV-MPC
control strategy for the quadrotor using a compact 12-state qLPV system.

Figure 2. Block diagram of the proposed qLPV-MPC control strategy for a nonlinear quadrotor.

5. Results and Discussion

In order to test the performance of the proposed qLPV-MPC control strategy, a sim-
ulation of a quadrotor following two different trajectories will be performed. In the first
test, a linear trajectory will be tested, while in the second test, the quadrotor will follow a
spiral trajectory. In both tests, the quadrotor will start at a different starting point and will
need to track and follow the trajectory. Table 1 shows the specifications of the quadrotor as
presented in [26].
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Table 1. Constant Values of the quadrotor.

Variable Value Units

g 9.8 m/s2

m 0.698 kg
Jxx 0.0034 kg ·m2

Jyy 0.0034 kg ·m2

Jzz 0.006 kg ·m2

Jp 1.302 × 10−6 kg ·m2

b 7.6184 × 10−9 N · s2

d 2.6839 × 10−9 N · s2

l 0.171 m

The linear trajectory and the spiral trajectory are shown in Figures 3 and 4, respectively.
The simulations were performed in the Matlab-Simulink (Matlab R2019b) software envi-
ronment running on a Macbook Air with a dual-core Intel Core i5 1.8 GHz processor and 8
GB of RAM with 1600 MHz DDR3. The sampling time was set to Ts = 10 ms to be able to
measure and detect the fast dynamics of the quadrotor in any flying situation. The weight-
ing matrix Q was designed in order to penalize the states more regarding the XYZ position
and velocity at the first prediction steps. Weighting matrix R is designed as an identity
matrix in order to penalize all the control actions equally. The optimization was performed
using the Matlab function fmincon with the solver of sequential quadratic programming
(SQP) to manage the cost function as a Quadratic Programming (QP) problem.

Figure 3. Linear trajectory set as the reference for the first test.

A prediction horizon of Np = 5 was defined after several simulations testing the
performance for different prediction horizons. Increasing the prediction horizon will not
improve the performance of the proposed control strategy significantly but will increase
the optimization times, making real-time implementation impossible. Figure 5 presents
the results of the trajectory tracking for the proposed qLPV-MPC for the linear reference
trajectory. Figures 6–8 show the values of the XYZ reference coordinates individually and
the tracking carried out by the quadrotor with the qLPV-MPC strategy.
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Figure 4. Spiral trajectory set as the reference for the second test.

Figure 5. Tracking of the linear trajectory using the qLPV-MPC.



Machines 2023, 11, 755 11 of 18

Figure 6. Tracking of the x-coordinate using the qLPV-MPC for linear reference.

Figure 7. Tracking of the y-coordinate using the qLPV-MPC for linear reference.

Figure 8. Tracking of the z-coordinate using the qLPV-MPC for linear reference.
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Figure 9 shows the behavior of the linear velocity in each coordinate and the angular
position of the quadrotor during the tracking of the linear trajectory, while Figures 10 and 11
show the control actions chosen and the required speed for each propeller.

Figure 9. Behavior of the linear velocity and angular position of the quadrotor for tracking the
linear trajectory.

Figure 10. Control inputs U for linear trajectory tracking.

Figure 12 presents the results of the trajectory tracking for the proposed qLPV-
MPC for the linear reference trajectory. Figures 13–15 show the values of the XYZ ref-
erence coordinates individually and the tracking performed by the quadrotor with the
qLPV-MPC strategy.



Machines 2023, 11, 755 13 of 18

Figure 11. Speed of the propellers Ω for linear trajectory tracking.

Figure 12. Tracking of the spiral trajectory using the qLPV-MPC.
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Figure 13. Tracking of the x-coordinate using the qLPV-MPC for spiral reference.

Figure 14. Tracking of the y-coordinate using the qLPV-MPC for spiral reference.

Figure 15. Tracking of the z-coordinate using the qLPV-MPC for spiral reference.
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Figure 16 shows the behavior of the linear velocity in each coordinate and the angular
position of the quadrotor during the tracking of the linear trajectory, while Figures 17 and 18
show the control actions chosen and the required speed for each propeller.

Figure 16. Behavior of the linear velocity and angular position of the quadrotor for tracking the
spiral trajectory.

Figure 17. Control inputs U for spiral trajectory tracking.
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Figure 18. Speed of the propellers Ω for spiral trajectory tracking.

The control actions U present a small jitter, as shown in Figures 10 and 17, as the
nonlinearities of the system rapidly change the dynamics in the qLPV system; however, the
speed of the rotors Ω, which are the physical control actions, do not present this behavior
and make small variations to guide the drone to the desired trajectory. The performance
of the proposed qLPV-MPC control for trajectory tracking of the quadrotor proved to be
appropriate for tracking both the linear and the spiral trajectory even when starting at a
different initial point. The qLPV-MPC plans an optimal trajectory for the quadrotor to be
incorporated into the setpoint trajectory in the XYZ coordinates without trying to reach
a point in the trajectory that will be unfeasible due to the constraints in both the states
and the inputs, resulting in a smooth transition to the desired trajectory. As a result of this
smooth transition, the quadrotor attack angles remain at small values, in order to avoid
the instability of the UAV. It is also important to note that when the starting point of the
quadrotor is also the starting point of the desired trajectory, the path tracking is performed
perfectly, and the reference curves and the actual trajectory overlap each other even with
nonlinear changes in the reference. This is an advantage of the MPC control strategy over
other classical controllers that react over the tracking error.

The proposed controller also exhibits fast execution times, with an average time of
6.14 ms per optimization each iteration, and a worst-case time of 8.76 ms using the Matlab
function ’fmincon’. Therefore, the proposed qLPV-MPC allows real-time implementation
for the quadrotor with a sampling time of Ts = 10 ms.

6. Conclusions

In this research work, a novel qLPV-MPC control strategy for a quadrotor based on a
compact 12-state-space system is presented. The MPC controller is based on a qLPV system
with six different scheduling parameters being states of the nonlinear quadrotor system in
order to allow real-time implementation by solving the optimization problem in a short
time. The prediction of the states along the prediction horizon is used in the next iterations
to update the prediction matrices Φ and Ψ to model the nonlinear behavior of the quadrotor
system by means of the scheduling variables. The proposed qLPV-MPC control strategy
was tested by following two different trajectories, a linear trajectory, and a spiral trajectory.
The results showed proper tracking of both trajectories while maintaining small roll, pitch,
and yaw angles to maintain the quadrotor in a stable state. The execution times averaged
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6.14 ms per optimization of each iteration which allows real-time implementation of the
control strategy for the chosen sampling time of 10 ms. Future research work will focus on
the robustness conditions of the proposed algorithm in the presence of wind disturbance
and obstacle avoidance when following a desired path. An experimental test using a real
quadrotor is also considered for future work.
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