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Abstract: In recent years, the number of people with disabilities has increased hugely, especially
in low- and middle-income countries. At the same time, robotics has made significant advances in
the medical field, and many research groups have begun to develop low-cost wearable solutions.
The Mechatronics and Dynamic Modelling Lab of the Department of Industrial Engineering at the
University of Florence has recently developed a new version of a wearable hand exoskeleton for
assistive purposes. In this paper, we will present a new regression method to predict the finger angle
position of the first joint from the value of the sEMG of the forearm and the previous position of the
finger itself. To acquire the dataset necessary to train the regressor a specific graphical user interface
was developed which was able to acquire sEMG data from a Myo armband and the finger position
from a Leap Motion Controller . Two long short-term memory (LSTM) models were compared, one
in its standard configuration and the other with a convolutional layer, yielding significantly better
performance for the second one, with an increase in R2 coefficient from an average value of 0.746
to 0.825, leading to the conclusion that a convolutional layer could increase performance when few
sensors are available.

Keywords: finger motion; hand exoskeletons; electromyography; CNN-LSTM; regression analysis

1. Introduction

With the start of the “fourth industrial revolution”, also known as “industry 4.0”,
robots have become essential support for healthcare systems both in clinical environments
and on rehabilitation paths [1–4]. According to the most recent World Health Organization
(WHO) report, around 1.3 billion people—about 16% of the global population—experience
a significant disability [5]. Disabilities can result from several factors, some of them related
to the lifestyle of the subject, others derived from genetic neurodegenerative deformities
or neurodegenerative diseases, and still others after transient phenomena such as strokes.
Nonetheless, people living in low- and middle-income countries (LMIC) have poor access
to rehabilitation services, and in many of these countries, the density of rehabilitation-
trained practitioners is often below 10 per 1 million population [6]. Indeed, medical devices
and treatments are generally very expensive and, therefore, not accessible to the poorest.
Rehabilitation treatments also have non-negligible costs and are often dropped prematurely
by those unable to afford them. As a result of such considerations, creating a low-cost
rehabilitation device that is also easy to use for non-trained personnel is necessary to
provide more people with a quality of life equal to unimpaired persons.

In particular, one of the most important tools for human beings is the hand; for this
reason, various hand-assistance devices have been developed over the last few decades [7].
Despite being oriented toward the same application field, these devices differ in several
aspects, such as dimension, materials, weight, and control system. Concerning the last
reported feature, one of the most popular control system strategies is using surface elec-
tromyography (sEMG). The sEMG signals are an electrical indication of the neuromuscular
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actuation connected with a contracting muscle. Nevertheless, such kinds of signals are ex-
tremely complicated, influenced by the anatomical and physiological properties of muscles,
the control plan of the peripheral nervous system, and the attributes of the instrumentation
utilized to identify and watch them [8]. In recent years, different types of control were
tested, such as a brain–computer interface (BCI) [9] or bilateral control [10], but these meth-
ods, although performing very well, are not suitable for a wearable and portable version of
assistive devices that can help people during their daily activities. Devices to perform a
BCI take up entire rooms and are, therefore, not portable, while bilateral control does not
allow independent limb movement and, more importantly, presupposes the functioning of
the other limb. Conversely, one approach that allows for wearable and portable devices
while at the same time being able to identify user intent is based on sEMG signals. These
signals are generally sampled at forearm height and classified to recognize a set of gestures
that can be performed with the hand. Many studies regarding the classification of sEMG
signals have been published in various areas, including robotics [11], prosthetic arms [12],
sign language classification [13], and remote-controlled devices [14].

The main objective of the research activity into which this work fits is to develop
a portable exoskeleton for hand-impaired subjects, which may help them in their daily
activities. The design constraints that the device must meet are focused on making it easy to
use during daily activities but, above all, on safety. To be fully safe, a device must not allow
movement over the natural range of motion of each digit. The best way to ensure this is to
place mechanical stops preventing the structure from crossing such limits. Robustness and
ease of use are two necessary characteristics for such a device to be completely wearable.
For the mechanical part, it is necessary for the system to be compact, as it has to be worn on
the back of the subject’s hand, light in weight, so as not to fatigue the patient unnecessarily,
and easily scalable for different limb sizes among subjects, in order to reduce the costs of
single device production. Furthermore, to reduce costs and allow more people to access
this technology, the entire structure was designed to be 3D printed using plastic materials.
Promising mechanical results have already been reached [15–17] and with the most recent
version of the device (Figure 1) we have reached the possibility of controlling each finger
independently. This crucial change opens new challenges in the control strategy. Indeed,
the previous solution [18,19] allowed only full opening and closing of the hand through an
sEMG classifier.

Figure 1. Most recent exoskeleton prototype designed by the Mechatronics and Dynamic Modelling
Lab (MDM Lab).
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The exoskeleton is of the “rigid” type because it acts on the finger through a “rigid
kinematic chain” that can be customized according to the user’s anthropometric dimensions,
composed of three links which couple with the kinematic chain formed by the finger’s bones.
The kinematic chain actively implements the flexion/extension of the metacarpophalangeal
(MCP) joint while passively following its ab/adduction. Therefore, the exoskeleton has
10 degrees of freedom (DOFs), 5 actuated and 5 passive. Each finger of the exoskeleton
presents an electric motor (orange in Figure 1) connected to a gear transmission (green in
Figure 1) which acts directly on the rigid kinematic chain (purple and cyan in Figure 1).
The only point of contact between the kinematic chain is the end effector (cyan in Figure 1)
that pushes or pulls the finger to assist the user in the movements. The control loop is
closed thanks to an encoder (red in Figure 1) that measures the flexion/extension of the
MCP joint. Due to its mechanical architecture, the exoskeleton can also be categorized
as a “single-phalanx” because it has only one point of contact with the finger on the
medial phalanx.

In this paper, the authors present a new protocol for developing a finger angular posi-
tion regressor relying on sEMG signals taken on the forearm and finger angular positions
measured in the previous instants. To accomplish this, a graphical user interface (GUI) was
developed to facilitate the acquisition of the dataset needed to study and develop a deep
learning (DL) algorithm capable of predicting the user’s intention. In particular, we use the
sEMG data from a Myo armband and the finger position from the encoders placed on the
device. The next step will be to directly implement the regressor found with the GUI on the
exoskeleton control unit, making the system fully wearable.

The paper is organized as follows. First, in Section 2, a review of the state of the art
related to wearable assistive and rehabilitation devices is presented. In Section 3, the control
strategy idea description is reported, and then, in Section 3.3, we describe the acquisition
protocol carried out through the GUI. Finally, in Sections 4 and 5, some results on different
DL models are discussed and compared with each other.

2. Related Work and Paper’s Contribution

Various approaches have been investigated in the field of hand exoskeletons designed
for rehabilitative or assistive purposes. Guo et al. [20] presented a soft robotic glove for post-
stroke hand function rehabilitation. This glove is a combination of an extendable joint and
a rigid part; each interphalangeal MCP joint is actuated by inflating and deflating through a
set of micro air pumps and two valves, so each hand can be controlled independently. The
control unit proposed in the article was driven by electroencephalography (EEG) signals
captured by 14 electrodes on the subject’s head in a predefined and fixed position. Due to
its inherent nature, such a system does not lend itself to being a portable system because
it requires at least a compressed air tank and a system of pipes and valves, nor is it easy
to use by a non-expert subject due to the constraints on sensor placement for EEG signals.
Tan et al. [21] instead present a hand-assisted rehabilitation robot based on a master–slave
control system. In this configuration, the user wears a glove equipped with flex sensors that
collect data. These data are used to estimate the fingers’ angle and position and passed to a
specifically designed rehabilitation robot that can be mounted on the patient’s impaired
hand. This solution has proven to be an improvement concerning traditional rehabilitation
therapy but is unsuitable for daily use because it uses the signal from one hand to control
the other, making it impossible to perform different movements with the hands. A portable
and wearable version of a hand exoskeleton, called ReHand, was designed by Wang et
al. [22]. The ReHand exoskeleton is realized by two modules: one to control the four
long fingers and one only to control the thumb. The robot actuation is realized by two
DC motors, one for the long fingers and one for the thumb, and a gears combination that
generate a continuous force of 5 Nm on the long fingers and a force of 70.56 mNm that
can help the user both in extension and flexion of all digits. The user can control the
exoskeleton through sEMG signals or voice commands. Although this solution performs
well, it does not apply to our case because it uses only two sEMG sensors which is not
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enough to discriminate all possible movements of the fingers. A new trend in wearable
robotics, particularly hand assistive and rehabilitation devices, is the use of tendon-driven
continuum structures. The high structural compliance of continuum robotic structures can
improve the working safety of the exoskeletons. Typically, these types of devices are made
of a sequence of rigid links connected by wires, the task of which is to emulate human
tendons. The actuation of the devices is, therefore, realized by pulling the wires. A good
example of this type of assistive device was designed by Delph et al. [23] in 2013. This glove
is actuated by five different Bowden cables, each connected to a servo stored in a backpack
on the back of the user. A more portable version of a soft robotic glove is presented in
[24], where the authors show an actuated glove designed to help people in the grasping
movement. The system is actuated by a single brushless motor actuating all the eight DOFs
of the glove to ensure portability.

sEMG signals are widely used for controlling hand exoskeletons as they allow mea-
surement of muscle activity in a non-invasive way, and different approaches have been
investigated over the past few decades. In a previous work, [18] proposed a new classifi-
cation method based on sEMG signals from only two sensors, respectively positioned at
the extensor and flexor muscle bands. This method allows three hand configurations to
be distinguished: rest, open, and closed. These are the fundamental gestures to replicate
without losing too much efficacy in activities of daily living (ADLs) assistance [25]. The
use of sEMG allows the control system to be not invasive and easy to use for everyone;
however, because of the high complexity of sEMG signals, it is almost impossible to create
a mathematical model that links these to their effect; indeed, approximately 20 types of
muscles are related to fingers’ activities, half of which are located in the hand itself (i.e.,
intrinsic hand muscles), while the other half are located in the forearm (i.e., extrinsic hand
muscles) [26].

For these reasons, the most popular approach is related to the use of machine learning
(ML) and artificial neural networks (ANNs). There are two major types of supervised
ML problems, called classification and regression. In classification problems, the goal is
to predict a class label, which is a choice from a predefined list of possibilities, instead
in regression tasks, the goal is to predict a real number (or a floating-point number in
programming terms) [27]. Whether it is a classification or a regression problem, the basic
steps for implementing neural networks are the same. We start with a data acquisition
process, which may involve one or more sensors, after that usually a pre-processing of
the data is performed, which generally relies on a filtering operation designed to reduce
the noise or undesired frequency contributions, next, we can perform a feature extraction
consisting of obtaining some characteristics in the time or frequency domain, then, we
conclude with the training step where a loss function is minimized in an iterative process.
ML algorithms are particular structures able to improve their performance based on the
training data. Once we have collected our data, we divide them into three groups: one used
for training, one for validation, and the last one for testing. Concerning how to split the data
into training, validation, and test subsets, more procedures are possible; many previous
studies split the data into 80% training and 20% test [28], without an explicit validation
dataset, others prefer to split the data into 70% training, 15% validation, and 15% test [8],
and some others follow an equal split in 50% training and 50% test [29]. The decision on
the amount of data to be used for training, validation, and test processes should be guided
by the desire to reach a valid trade-off between training time, prediction performance, and
generalization with respect to new input data.

Mostly, investigated problems solved by sEMG signals and ML algorithms mainly concern
hand gesture recognition, so they are classification problems and not regression problems. For
example, Bisi et al. [14] use sEMG signals from a Myo armband from Thalmic Lab (some
examples are available on GitHub https://github.com/balandinodidonato/MyoToolkit/tree/
master, accessed on 17 April 2023) and a k-nearest neighbor (KNN) classifier to recognize six
different gestures and use them to control a simple differential drive robot. In particular, they
collect raw data from a Myo armband and use five sample windows to extract six different

https://github.com/balandinodidonato/MyoToolkit/tree/master
https://github.com/balandinodidonato/MyoToolkit/tree/master
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features: mean average value (MAV), simple square integral (SSI), root mean square (RMS),
log detector (LOG), and variance (VAR). After feature extraction, they obtain a vector of 48
values for each time window, so they apply a principal component analysis (PCA) to reduce
the complexity of the problem. The final algorithm uses only RMS and MAV to identify the
six gestures with high accuracy (around 95.29%). Another widely used ML classification
algorithm is the support vector machine (SVM) algorithm which may be used to solve several
classification problems. SVM maps training examples to points in space so as to maximize
the width of the gap between the categories. New examples are then mapped into that same
space and predicted to belong to a category based on which side of the gap they fall [30]. For
example, in [31], the authors use a 150 ms sample window from which they extract only one
feature, MAV, to identify one gesture between fist, finger spread, wave-in, wave-out, pronation,
supination, rest, and average.

The latest trends in the development of hand exoskeleton systems (HESs) are moving
towards solutions that allow the movements of every single finger independently. This
demand arises from the need to make precision movements with the fingers that cannot
be performed except by independently actuating the fingers of the hand. For example,
grasping an item of cutlery or taking a book from a shelf. To achieve the ability to discrimi-
nate each muscle from another, and, thus, activate only part of the fingers, we need highly
dense information coming from the forearm muscles. A preliminary solution may be to
increase the number of electrodes by placing them in strategic spots in the area of interest.
For example, in [28], the authors use six different wireless sEMG sensors to record muscle
activity from the shoulder to forearm. Nevertheless, this solution does not apply well to our
problem since there remains the complication of knowing where to apply the electrodes to
obtain the correct signal. Indeed, our goal is to create a device that is completely usable by
everyone, even those without specific knowledge of human anatomy. To solve the electrode
placement problem, we can use dense arrays of sEMG sensors like in [32–35]. The high
number of electrodes and the proximity of one to another reduce the positioning error
when placing the array in the measuring zone but, at the same time, increase the cost and
complexity of the system while also making it more difficult to fit. From the state-of-the-art
analysis presented, it appears that a good compromise between these two approaches is to
use an armband-shaped device equipped with electromyographic sensors, such as a Myo
armband. The main advantages are that it is easy to wear and has sufficient sensor density.

Table 1 summarizes some of the main features of the state-of-the-art devices used in
assistance and rehabilitation (for the sake of brevity, just those that seemed of most interest
to our work are hereafter reported).

Table 1. Main features of some of the state-of-the-art devices for assistance or rehabilitation.

Reference Actuated
Fingers

Independent
Fingers Control System Type of

Therapy

Guo et al. [20] All No BCI Rehabilitation

Tan et al. [21] All Thumb, others Master–Slave Rehabilitation

Wang et al. [22] All Thumb, others 2-Channel sEMG
or Voice Assistive

Secciani et al. [36] Long fingers No 2-Channel sEMG Assistive

Esposito et al. [37] Long fingers No FMG 1 Assistive

Yurkewich et al. [38] All No 8-Channel sEMG Assistive

Zhao et al. [39] All Thumb, others 1-Channel sEMG Assistive

Sandison et al. [40] All All Tablet
Application Assistive

Bouteraa et al. [41] All All 2-Channel sEMG Rehabilitation
1 Force myography.



Machines 2023, 11, 747 6 of 19

Another issue related to the training of ML algorithms is the generation of appropriate
labels to bind to the input data. A classic approach in classification problems is to establish
an acquisition protocol where a predefined sequence of movements is performed at specific
time instants, so it is easy to bind input and output. For regression problems, this method
cannot be used since the outputs are real numbers, so they can assume infinite values.
Therefore, in the case of a regression problem, the output of the ML algorithms are collected
simultaneously from one or more sensors. For example, in [42], the authors use an angle
sensor to capture the knee angle and tie it to the sEMG signals of the quadriceps. Fazil et
al. [43] instead use motion capture to measure the wrist joint angles and link them with
sEMG data from below the elbow. Regarding the hand, a widely used device is the Leap
Motion Controller, a simple device realized by two near-infrared (NIR) cameras capable
of detecting the major joints of the hand. In [13], for example, Leap data were used to
recognize the gesture and translate it to the equivalent Indonesian sign language meaning.
In this paper, we present a specially designed GUI that facilitates the data acquisition
process, including sEMG signals, from the Myo armband, and hand kinematic information
from the Leap. By using this interface, we collect a dataset and conduct a performance test
to determine if adding a convolutional layer to a DL algorithm improves its functionality
in a situation with a limited number of sensors.

3. Methods
3.1. Hardware

The Myo armband (Figure 2) is a commercial device developed and distributed by
Thalmic Labs in 2014. The Myo armband is partially adjustable in diameter thanks to its
rubber structure that, once positioned at the height of the largest section of the forearm
(more specifically at the height of the brachioradialis muscle), can monitor muscle activity
with eight pairs of sEMG sensors. The Myo armband is also equipped with a 9-axis inertial
measurement unit (IMU) which allows information on the device pose to be gathered. The
Myo armband results in a low-cost and high-performance device capable of acquiring
sEMG signals at 200 Hz and inertial data at 50 Hz sampling frequency. For the sake of
completeness, the sEMG signal bandwidth is 500 Hz, thus requiring a Nyquist sampling
rate of 1000 Hz; however, several previous studies have shown that the signals obtained
from the Myo armband are still valid [13,14,29,31,44].

Figure 2. The Myo armband and the gestures recognized by the standard classifier already imple-
mented in the device.

The data acquired by the Myo sensors are sent, via the Bluetooth low-energy (BLE)
module embedded into the bracelet, to other electronic devices. Finally, the Myo armband
is equipped with batteries, rechargeable via a USB connection, making it fully wearable.

The Leap Motion Controller (Figure 3) from Ultraleap (www.ultraleap.com, accessed
on 17 April 2023) is an optical hand-tracking module that captures the movement of users’
hands and fingers so they can interact naturally with digital content [45]. It is able to
determine the position of the hand and its various elements, such as fingers and joints.
Ultraleap provides different language libraries to communicate with the device, including

www.ultraleap.com
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a Python 2.7 software development kit that has been adapted to work in a Python 3-based
environment through the WebSocket interface already implemented by Ultraleap.

Figure 3. Leap Motion Controller with its range of visibility.

The Leap Motion Controller can provide a large variety of information related to
hand dynamics and kinematics. In particular, we are interested in the tips’ positions and
velocities, MCP, and proximal interphalangeal (PIP) joints’ angular positions and velocities
of the hand palm. Additionally, with the angular position of the hand joints and the elapsed
time between two successive acquisitions, we can also calculate the angular velocity of the
joints. The angular position and velocity of each joint have to be expressed with respect
to the neighboring proximal joint (i.e., for MCP we use palm and for PIP we use MCP).
Once the WebSocket is started, simply connecting to the localhost domain at port 6437, we
can receive the information obtained from the device in the form of JSON messages, an
extremely powerful tool since they allow access to information by keywords rather than by
indexes. In addition to the hardware device, we also use the Ultraleap Visualizer software
(Figure 4) to have visual feedback on what the Leap actually sees during the acquisition
sequence. The Visualizer is a proprietary software able to replicate the real hand in a virtual
environment using the position of each hand’s joints; it displays a variety of tracking data
such as the device data rate and can enable/disable the visualization of the camera images.

Figure 4. Ultraleap Visualizer interface.

Using the Leap Motion Controller, we are no longer constrained to perform predefined
gestures by following on-screen instructions as is generally the case with data acquisition.
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Users can theoretically perform any movements they want as long as the hand remains in
the field of view of the instruments. However, a specified acquisition protocol is defined
to ensure that all the gestures of interest are performed. The user’s hand must stay in the
field of view of the Leap because the data received from the device represent the output
of the regression algorithm during the training process. If this information is missing,
the GUI stops the acquisition and warns the user. The Leap Motion Controller firmware
identifies each finger joint and in its correspondence, it poses a reference frame. With
simple goniometric calculations and compositions of the rotation matrix we can determine
the orientation of the joint’s frame with respect to the palm’s frame. The flexion/extension
angle of the first joint of the finger, i.e., the MCP joint, is generally represented as the angle
between a frame fixed on the hand’s palm and a frame fixed on the MCP joint. In particular,
with the frame placed by the Leap Motion Controller on the palm and the MCP, this angle
corresponds to the rotation angle along the x-axis.

3.2. Regressor Structure

ML algorithms are particular structures able to improve their performance based on
the training data. Once we have collected our data, we divide them into three groups: one
used for training, one for validation, and the last one for testing. Both for regression and
classification problems, the standard workflow before the training process is divided into
three steps: data acquisition, pre-processing, and feature extraction. The data acquisition
process will be described in detail in Section 3.3 of this paper when we describe the GUI
designed and used for this work. The pre-processing process usually acts as a filter to isolate
only the frequency band of interest. In particular, sEMG signals are bio-electrical signals
with a low signal-to-noise ratio so the process of amplification and transmission is a critical
stage that could increase that ratio. So, the pre-processing filter action is necessary to reduce
the initial noise component. In the present application, all of these steps are performed
by the Myo armband firmware before sending the data through the BLE. Identification of
the region of muscle activation in the sEMG signal is typically based on features extracted
from the data both in the time domain and the frequency domain. The most used ones are
MAV [8,13,14,31], WL [8,13,31], zero crossing (ZC) [8,13,31], slope sign change (SSC) [31,35],
and RMS [8,13,14,31,33]. Since the chosen features will have to be computed online to
realize exoskeleton control, and considering that the maximum delay on control can be
300 ms so as not to annoy the user [46], it is necessary to choose features that are not
too computationally expensive. For the same reason, another important parameter is the
time window used to compute the features. Although the classic approach is overlapping
windows, different lengths from 100 ms [47] to 260 ms [48] have been investigated in other
works and considered for this one. It is necessary to optimize the length of the windows
from which to extrapolate the various features and use only those features that are useful
for the ANN algorithm. Given the low sampling rate of the Myo armband, a longer analysis
window provides more sEMG data to the control system and is expected to have greater
accuracy in deducing the user’s intent [49].

However, a longer window increases the delay of the control system, leading to possi-
ble annoyances (e.g., functional disturbances, interruptions, hesitations in fluent movement
generation, etc.) in the use of the system. While the maximum window length is 300 ms,
the minimum length not to obtain a too high variance and bias in the frequency domain
features is 125 ms [50]. According to these constraints, and considering an overlapping
windowing scenario (Figure 5), we decided to segment the data into 80-sample windows
(400 ms), at 200 Hz of the sampling rate of the Myo armband, with 30 samples (150 ms) of
overlapping. This way, the delay that was introduced between one control signal and the
next is equivalent to the time it takes to acquire 50 new samples (250 ms), leaving 50 ms to
the regressor algorithm to generate the command action and to the actual execution.

Different features were considered for this work and are summarized in Table 2.
However, to minimize the computational time of the controller, it is not possible, let alone
necessary, to compute all features. In fact, by several trials with different combinations of
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these features, we have found that the combination of RMS (F1) and IEMG (F7) proved to
be the best combination in our case study.

Figure 5. Display of delays in a case of overlapping windows.

Table 2. Tested features.

Feature Equation

Root Mean Square (F1)
√

1
N ∑N

i=1 x2
i

Mean Absolute Value (F2) 1
N ∑N

i=1 |xi|
Mean Absolute Deviation (F3) 1

N ∑N
i=1 |xi − x|

Waveform Length (F4) ∑N−1
i=1 |xi − xi+1|

Zero Crossing (F5) ∑N−1
i=1 fzc(xi, xi+1)

*

Difference Absolute Standard Deviation (F6)
√

1
N ∑N−1

i=1 (xi+1 − xi)2

Integral EMG (F7) ∑N
i=1 |xi|

Envelope (F8) max{x}
Fast Fourier Transform (F9) ∑N

k=1 xk e−j 2π
N kq, q = 1, . . . , N

Mean Value (F10) 1
N ∑N

i=1 xi

* fzc(xi , xi+1) =

{
1 if xi · xi+1 < 0
0 if xi · xi+1 > 0

.

Our HES is also equipped with five encoders, one for each finger, that measure the
fingers’ flexion angle. We, therefore, decided to use not only sEMG signals as inputs to
the neural network but also the average of the previous MCP angular positions on the
same time window as the sEMG. Providing both sEMG signals and previous finger poses
is equivalent to providing the neural network with information about the actual state
(position) of the system in addition to the sEMG input. Figure 6 presents a simplified
diagram showing the input and output of the regressor.
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Figure 6. Model structure overviews and specific structures of the two models below.

Many recent works have shown that combining convolutional neural networks (CNNs)
and long short-term memory (LSTM) can increase the accuracy of the ANN algorithm [51–55].
LSTM is a particular type of recurrent neural network (RNN) specifically designed to per-
form well both with short and long term data without running into the problem of the
gradient vanishing. In particular, LSTM is very strong in extrapolating the temporal charac-
teristics of the signal while CNNs are particularly capable of discerning spatial properties,
so, combining these two algorithms makes it possible to extrapolate both spatial and tem-
poral features. Spatial features allow us to determine which muscle was activated while
temporal characteristics provide information on how much and when that muscle was
activated, leading to a more complete understanding of the forearm’s muscle activity.

Considering that the model is to be implemented within an STM32 integrated, we
have made a very lightweight model consisting of relatively few layers and with a small
number of units within each. In particular, we propose a three-layer model:

1. ConvLSTM1D layer: this particular layer, present in TensorFlow V2, already imple-
ments a combination of a CNN and LSTM. It is similar to an LSTM layer, but the input
transformations and recurrent transformations are both convolutional.

2. LSTM layer: this implements a standard LSTM layer as presented by Hochreiter in
1997 with tanh as the activation function [56].

3. Dense layer: this is used to reduce the dimensionality of the previous layer’s output.

The proposed model was compared with a model that does not use a convolutional
layer in order to determine how much the former improves on the latter improves its
performance.

3.3. Graphical User Interface

The most sensitive part of using DL algorithms is the dataset acquisition for the
training process. The training dataset should be as large and heterogeneous as possible
so as to provide the neural network model with a sufficient generalizing capability and
behave well when new and never-seen-before data are presented to it. Given the crucial
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relevance of such an operation, the creation of an interface that can simplify this process
has arisen as necessary to make this innovative technology more accessible. The main task
of the developed GUI is to collect and label the dataset needed for the regressor training
without performing any feature extraction and training process. In the future, an update
is planned so that the controller training takes place directly within the interface itself so
that the user is provided with the final controller at the end of the acquisition protocol.
Nonetheless, in this first version, the interface was just used to facilitate the acquisition of
data needed to study which regression method was the most suitable for our problem. The
GUI can be seen as being composed of six independent sections, as we can see in Figure 7.

Figure 7. GUI overview. (a) User’s name and surname. (b) 3D cube replicating the forearm’s pose.
(c) GUI commands and connection info. (d) Setting for the polar chart and the second function on the
temporal plot. (e) Real-time sEMG evolution in temporal view. (f) Gyroscope and accelerometer data.

In the top left of the GUI (division a) is placed a panel where the user is supposed
to insert their name and surname; this information is, thus, used to create a dedicated
folder where the data collected during the actual acquisition cycle are saved. The 3D
box in division (b) is meant to replicate the pose of a reference frame centered on the
correspondence of the Myo armband, providing visual feedback of the forearm pose.

Division (c) presents all the control commands required to enable connection with the
Myo armband, start and stop the data acquisition, and, at the end of the process, turn off
the Myo armband. Moreover, some status indicators are present to inform the user on the
connection status of the devices and whether the Leap Motion Controller is detecting at
least one hand. Through division (d), it is possible to choose which feature to display on the
polar graph and, as a second feature on the temporal graphs (in red), also to select the size
of the window from which to extrapolate the chosen feature. Division (e) is dedicated to
showing the real-time sEMG signals collected by the Myo armband. Two different display
modes are designed to make it straightforward for the user to understand the signals, and,
thus, be able to recognize whether there are any acquisition errors occurring: temporal
progression, more comprehensible for non-expert users, and polar representation, most
useful in the research field, providing spatial information of the sEMG signals. Lastly,
division (f) shows the accelerometer data related to the frame posed on the forearm and
cited before.

Is it important to mention that our GUI does not show any of the data captured by
the Leap, in fact, it is deliberately chosen to omit the display of data received by the Leap
and to use, as visual feedback for the user, the device’s own proprietary software called
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Visualizer. The acquisition cycle needs to follow a predetermined sequence in the operations
to be performed by the user. The first essential step is to enter an identifier (this could be
simply first and last name), then, search in the Bluetooth signal range for a Myo armband
device and connect to it. Automatically, it is also verified that a Leap device is connected to
the workstation. Once both Myo armband and Leap are identified and connected, the user
can start the acquisition cycle by pressing the dedicated button on the (c) section of the GUI.
As long as sEMG data from the Myo armband and hand data from Leap are collected, the
sEMG and IMU graphs are updated at 50 Hz (refresh rate of the most common monitors).
During the acquisition cycle, we continuously control whether the connection with the
devices is still held and whether the Leap Motion Controller can still individuate a hand
in its operational range. If one of those conditions is no longer met, the data acquired are
ignored until it is met again; in addition, the final file contains one row indicating that some
data were missing at that time. The data acquisition from the Myo armband and the Leap
occurs simultaneously at a frequency of 200 Hz, the maximum possible for the Myo. The
combined use of the Myo armband and Leap in this way for dataset construction does not
force the user to reproduce a predefined sequence of gestures. As long as the hand remains
within the range of the Leap, all kinematic information will be captured and linked to the
corresponding time windows of the sEMG data.

3.4. Test Methodology

The presented framework, composed of the Myo armband, the Leap, and a dedicated
GUI, was tested by following a data acquisition protocol involving performing a series of
hand openings, closings, and independent finger movements. In particular, we decided
to perform three complete opening and closing movements of all fingers, spaced out by a
rest phase, and three complete flexions and extensions of each finger in sequence from the
thumb to the small finger. The data were collected by the dedicated GUI and saved in a
CSV file, and then used a second time to train and test the neural network.

Two metrics were considered to evaluate the performance and be able to compare the
models: mean absolute percentage error (MAPE) (Equation (1)) and R2 score (Equation (2)):

MAPE =
1
N

N−1

∑
i=0

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (1)

R2 = 1− ∑N−1
i=0 (ŷi − yi)

2

∑N−1
i=0 (ȳ− yi)2

(2)

where ȳ is the mean of the observed value y and ŷ is the vector of the predicted value.
The MAPE is an adimensional metric expressing how close predictions are to ground
truth values. The lower the value, the better the prediction. It easily permits comparing
among different models and makes it easy to understand if a prediction is good or not at a
glance [57–59]. The R2 score, instead, is a fundamental metric that is used to evaluate the
performance of a regression-based ML model. It measures the amount of variance in the
predictions that can be predicted by the dataset [60]. The closer the score is to 1, the better
the predictions.

Because hand exoskeletons are extremely personal devices, they must be custom-
designed from both a mechanical and control point of view. For that reason, we use a
dataset generated by considering a single subject performing the acquisition protocol. As
can be guessed from the protocol itself, the dataset obtained does not appear to have a high
dimensionality. In fact, it is designed to be able to be performed quickly without creating
too much annoyance to the user and to allow for rapid re-training of the network over time.
We have estimated that the whole acquisition protocol can be performed in two minutes,
so the dataset will have around 24, 000 samples.

We decided to use 75% of the dataset for training the model and the remaining 25% of
the dataset for testing the trained model. During the training process, at each iteration, we
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used 20% of the training data to validate the model by controlling the loss-function value
to establish whether the model started to overfit the training data.

4. Results

In Figure 8, the predictions performed with double LSTM layers are presented. In
blue, the predictions performed by the network are highlighted, i.e., the estimated angular
positions of the MCP joints, while in orange, the same quantities measured by the Leap and
considered as ground truth are plotted. It is essential to notice that the thumb finger has a
larger range of motion (ROM) in abduction compared to the long fingers. The prediction
of the thumb’s flexion angle is, therefore, more challenging and, at the same time, more
critical. The model with only LSTM layers is composed of a first LSTM layer with 128 units
followed by a second layer with 64 units; the output layer, instead, is composed of a dense
layer with a five-dimension vector as the output of the layer, and, thus, of the ANN.

(a)

(b) (c)

(d) (e)
Figure 8. LSTM regressor. Comparison of predicted (in blue) and measured (in orange) finger angle
values. (a) Thumb, (b) middle finger, (c) index finger, (d) ring finger, (e) small finger.

Figure 9 shows the prediction outcome from the model with a ConvLSTM1D layer
with 128 units and a kernel size of two, followed by a classic LSTM layer with 64 units. The
output layer is always realized by a dense layer that outputs a vector of five elements, one
for each finger. For these images, the same color notation as in the previous images is used,
wherein blue is the prediction and orange is the ground truth.
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(a)

(b) (c)

(d) (e)
Figure 9. CNN-LSTM regressor. Comparison of predicted (in blue) and measured (in orange) finger
angle values. (a) Thumb, (b) middle finger, (c) index finger, (d) ring finger, (e) small finger.

Finally, Table 3 summarizes the results for the LSTM and CNN-LSTM models.

Table 3. Metrics’ values for the presented models.

Model Type Metric
Value

Thumb Index Middle Ring Small

LSTM MAPE 7.6596 0.5882 2.7816 0.5975 1.1663

R2 0.4360 0.8848 0.7692 0.9002 0.7419

CNN-LSTM MAPE 4.1307 0.4760 1.2120 0.3654 0.9568

R2 0.6237 0.8660 0.8323 0.9436 0.8596

5. Discussion and Conclusions

As can be seen from the presented results in Section 4, the model with the CNN-LSTM
layer leads to a significant improvement, especially for the thumb. From a quantitative
perspective, by considering the MAPE values we can see an improvement for each finger,
with an average increase of 36.27%; on the other hand, for the R2 score, we have an average
increase of 13.96%, with a just minimal decrease for the index finger (2.12%). By comparing
Figures 8a and 9a we can see how the model with the CNN-LSTM performs better in
predicting the angle of thumb flexion from the sEMG value and position data. Furthermore,
for the other fingers, we can easily see that the predictions are more accurate in the CNN-
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LSTM model with respect to the LSTM-only architecture. Table 4 summarizes the increase
in performance of the CNN-LSTM model for each finger.

Table 4. Performance increase for each finger from LSTM model to CNN-LSTM model.

Finger MAPE R2R2R2

Thumb 46.07% 43.05%

Index 19.07% −2.12%

Middle 56.42% 8.20%

Ring 38.85% 4.82%

Small 17.96% 15.86%

In conclusion, in this research activity we have proposed a new type of regressor for the
prediction of the finger flexion angles relying on sEMG data captured on the forearm. The
proposed algorithm uses just eight sample points for the sEMG signals. A convolutional
layer was introduced in the regressor structure to deal with the low number of independent
sEMG signals. Consequently, the final structure of the algorithm presents a ConvLSTM1D
layer, an LSTM layer, and a final dense layer. To simplify the acquisition of the dataset a
specific GUI was designed. Such an interface can be simultaneously connected to a Myo
armband and a Leap Motion Controller, devices that are widely used in the research field
due to their low costs and ease of use, facilitating the data gathering procedure and making
it uniform. In fact, the realized GUI allows for a more straightforward process of acquiring,
among many things, sEMGs and angular positions of the fingers. That dataset was then
used to train the designed regressor capable of predicting the angular position of the MCP
joint to be implemented on a hand exoskeleton with five degrees of freedom, one per finger.
The model with the convolutional layer was then compared with a similar model that
implements only the LSTM and the dense layer. The ANN model was tested offline and
turned out to perform better with respect to the model with just the LSTM model. We can,
thus, infer that adding a convolutional layer, which also considers the spatial pattern of
sEMG signals, does improve the prediction performance of the neural network in the case
of low-resolution sensors. In the case of a large number of sensors, in fact, it is possible
to discriminate which muscle is contracting even by sEMG signals alone, due to having a
denser quantization of space.

Although the obtained results are very encouraging, there is still some research work
to be done. Indeed, this paper presents a preliminary work aimed at becoming aware of
what strategies may be effective in the context of hand exoskeleton control, but, for the sake
of completeness, it is important to mention that some key steps still need to be achieved
before the work can be applied to a commercial device. Firstly, the algorithm was not
tested online with the exoskeleton. Secondly, the sEMG signals generated by impaired
subjects, which are extremely different in terms of strength, structure, and intensity, shall be
analyzed and tested with the proposed regression procedure. Additionally, a further major
point to investigate is the behavior of the overall system consisting of the Myo armband
and the exoskeleton. In fact, the encoder measurements might differ in precision and
accuracy from the angular position measurements provided by the Leap device. Finally, the
human–machine interface (HMI) pattern will be studied: in effect, the behavior of subjects
wearing the exoskeleton might evolve over time as they becomes more and more aware of
the whole system and are, thus, able to generate signals more easily recognizable by the
regression model itself.



Machines 2023, 11, 747 16 of 19

Author Contributions: Conceptualization, N.S., A.T., and C.B.; methodology, M.V.; software, M.V.
and A.T.; validation, M.V. and A.T.; formal analysis, N.S. and A.T.; investigation, M.V.; resources, C.B.
and A.R.; data curation, M.V. and A.T.; writing—original draft preparation, M.V.; writing—review
and editing, N.S., A.T., and A.R.; visualization, C.B., N.S., and A.T.; supervision, N.S. and A.R.; project
administration, A.R.; funding acquisition, A.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available upon request.

Acknowledgments: We acknowledge the support of the European Union by the Next Generation EU
project ECS00000017 ’Ecosistema dell’Innovazione’ Tuscany Health Ecosystem (THE, PNRR, Spoke 4:
Spoke 9: Robotics and Automation for Health) and of the Fondazione CR Firenze by the R3COVER
project.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

WHO World Health Organization
LMIC Low- and middle-income countries)
sEMG Surface electromyography
BCI Brain–computer interface
MCP Metacarpophalangeal
DOF Degree of freedom
GUI Graphical user interface
DL Deep learning
EEG Electroencephalography
ADL Activities of daily living
ML Machine learning
ANN Artificial neural network
KNN k-nearest neighbor
MAV Mean absolute value
SSI Simple square integral
RMS Root mean square
LOG Log detector
VAR Variance
PCA Principal component analysis
SVM Support vector machine
HES Hand exoskeleton system
NIR Near-infrared
IMU Inertial measurement unit
BLE Bluetooth low energy
WL Waveform length
PIP Proximal interphalangeal
ZC Zero crossing
SSC Slope sign change
CNN Convolutional neural network
LSTM Long short-term memory
RNN Recurrent neural network
MAPE Mean absolute percentage error
ROM Range of motion
HMI Human–machine interface



Machines 2023, 11, 747 17 of 19

References
1. Ren, Y.; Wu, Y.N.; Yang, C.Y.; Xu, T.; Harvey, R.L.; Zhang, L.Q. Developing a Wearable Ankle Rehabilitation Robotic Device for

in-Bed Acute Stroke Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 589–596. https://doi.org/10.1109/TNSRE.20
16.2584003.

2. ReWalk Robotics, I. ReWalk-More than Walking. Available online: https://rewalk.com/ (accessed on 23 February 2023).
3. Bionics, E. Ekso Bionics. Available online: https://eksobionics.com/ (accessed on 23 February 2023).
4. Bui, K.D.; Wamsley, C.A.; Shofer, F.S.; Kolson, D.L.; Johnson, M.J. Robot-Based Assessment of HIV-Related Motor and Cognitive

Impairment for Neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 576–586. https://doi.org/10.1109/TNSRE.20
21.3056908.

5. Barrett, D.; Kamenov, K.; Pearce, E.; Cieza, A. Global Report on Health Equity for Persons with Disabilities; World Health Organization:
Geneva, Switzerland, 2022.

6. Gimigliano, F.; Negrini, S. The world health organization “rehabilitation 2030: A call for action”. Eur. J. Phys. Rehabil. Med. 2017,
53, 155–168.

7. Kabir, R.; Sunny, M.S.H.; Ahmed, H.U.; Rahman, M.H. Hand Rehabilitation Devices: A Comprehensive Systematic Review.
Micromachines 2022, 13, 1033.

8. Mokhlesabadifarahani, B.; Gunjan, V.K. EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature
Extraction; Springer: Berlin/Heidelberg, Germany, 2015.

9. Buch, E.; Weber, C.; Cohen, L.G.; Braun, C.; Dimyan, M.A.; Ard, T.; Mellinger, J.; Caria, A.; Soekadar, S.; Fourkas, A.; et al. Think
to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 2008, 39, 910–917.

10. Kawasaki, H.; Ito, S.; Ishigure, Y.; Nishimoto, Y.; Aoki, T.; Mouri, T.; Sakaeda, H.; Abe, M. Development of a hand motion assist
robot for rehabilitation therapy by patient self-motion control. In Proceedings of the 2007 IEEE 10th International Conference on
Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 234–240.

11. Fleischer, C.; Hommel, G. A human–exoskeleton interface utilizing electromyography. IEEE Trans. Robot. 2008, 24, 872–882.
12. Sakib, N.; Islam, M.K. Design and Implementation of an EMG Controlled 3D Printed Prosthetic Arm. In Proceedings of the 2019

IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON),
Dhaka, Bangladesh, 28–30 November 2019; pp. 85–88. https://doi.org/10.1109/BECITHCON48839.2019.9063190.

13. Wibawa, A.D.; Sumpeno, S.; et al. Gesture recognition for Indonesian Sign Language Systems (ISLS) using multimodal sensor
leap motion and myo armband controllers based-on naïve bayes classifier. In Proceedings of the 2017 International Conference on
Soft Computing, Intelligent System and Information Technology (ICSIIT), Denpasar, Indonesia, 26–29 September 2017; pp. 1–6.

14. Bisi, S.; De Luca, L.; Shrestha, B.; Yang, Z.; Gandhi, V. Development of an EMG-controlled mobile robot. Robotics 2018, 7, 36.
15. Allotta, B.; Conti, R.; Governi, L.; Meli, E.; Ridolfi, A.; Volpe, Y. Development and experimental testing of a portable hand

exoskeleton. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, 28 September–2 October 2015; pp. 5339–5344. https://doi.org/10.1109/IROS.2015.7354131.

16. Conti, R.; Meli, E.; Ridolfi, A.; Bianchi, M.; Governi, L.; Volpe, Y.; Allotta, B. Kinematic synthesis and testing of a new portable
hand exoskeleton. Meccanica 2017, 52, 2873–2897.

17. Secciani, N.; Bianchi, M.; Ridolfi, A.; Vannetti, F.; Volpe, Y.; Governi, L.; Bianchini, M.; Allotta, B. Tailor-made hand exoskeletons
at the university of florence: from kinematics to mechatronic design. Machines 2019, 7, 22.

18. Secciani, N.; Topini, A.; Ridolfi, A.; Meli, E.; Allotta, B. A novel point-in-polygon-based sEMG classifier for hand exoskeleton
systems. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3158–3166.

19. Secciani, N.; Bianchi, M.; Ridolfi, A.; Vannetti, F.; Allotta, B. Assessment of a hand exoskeleton control strategy based on user’s
intentions classification starting from surface EMG signals. In Proceedings of the Wearable Robotics: Challenges and Trends:
Proceedings of the 4th International Symposium on Wearable Robotics, WeRob2018, Pisa, Italy, 16–20 October 2018; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 440–444.

20. Guo, N.; Wang, X.; Duanmu, D.; Huang, X.; Li, X.; Fan, Y.; Li, H.; Liu, Y.; Yeung, E.H.K.; To, M.K.T.; et al. SSVEP-Based Brain
Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation. IEEE Trans. Neural Syst. Rehabil.
Eng. 2022, 30, 1737–1744. https://doi.org/10.1109/TNSRE.2022.3185262.

21. Tan, X.; Luo, Q.; Yang, S.; Jiang, Y. Hand-assisted rehabilitation robot based on human-machine master-slave motion mode. In
Proceedings of the 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),
Chongqing, China, 29–30 October 2020; pp. 362–365. https://doi.org/10.1109/CyberC49757.2020.00068.

22. Wang, D.; Meng, Q.; Meng, Q.; Li, X.; Yu, H. Design and Development of a Portable Exoskeleton for Hand Rehabilitation. IEEE
Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2376–2386. https://doi.org/10.1109/TNSRE.2018.2878778.

23. Delph, M.; Fischer, S.; Gauthier, P.; Martinez-Luna, C.; Clancy, E.; Fischer, G. A soft robotic exomusculature glove with integrated
sEMG sensing for hand rehabilitation. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics
(ICORR), Seattle, WA, USA, 24–26 June 2013 https://doi.org/10.1109/ICORR.2013.6650426.

24. Xiloyannis, M.; Cappello, L.; Khanh, D.B.; Yen, S.C.; Masia, L. Modelling and design of a synergy-based actuator for a
tendon-driven soft robotic glove. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and
Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 1213–1219. https://doi.org/10.1109/BIOROB.2016.7523796.

25. Montagnani, F.; Controzzi, M.; Cipriani, C. Independent long fingers are not essential for a grasping hand. Sci. Rep. 2016,
6, 35545.

https://doi.org/10.1109/TNSRE.2016.2584003
https://doi.org/10.1109/TNSRE.2016.2584003
https://rewalk.com/
https://eksobionics.com/
https://doi.org/10.1109/TNSRE.2021.3056908
https://doi.org/10.1109/TNSRE.2021.3056908
https://doi.org/10.1109/BECITHCON48839.2019.9063190
https://doi.org/10.1109/IROS.2015.7354131
https://doi.org/10.1109/TNSRE.2022.3185262
https://doi.org/10.1109/CyberC49757.2020.00068
https://doi.org/10.1109/TNSRE.2018.2878778
https://doi.org/10.1109/ICORR.2013.6650426
https://doi.org/10.1109/BIOROB.2016.7523796


Machines 2023, 11, 747 18 of 19

26. Perotto, A.O. Anatomical Guide for the Electromyographer: The Limbs and Trunk; Charles C Thomas Publisher: Springfield, IL, USA,
2011.

27. Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media, Inc.: Newton, MA,
USA, 2016.

28. Liu, J.; Ren, Y.; Xu, D.; Kang, S.H.; Zhang, L.Q. EMG-based real-time linear-nonlinear cascade regression decoding of shoulder,
elbow, and wrist movements in able-bodied persons and stroke survivors. IEEE Trans. Biomed. Eng. 2019, 67, 1272–1281.

29. Tepe, C.; Erdim, M. Classification of EMG Finger Data Acquired with Myo Armband. In Proceedings of the 2020 International
Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–28 June 2020;
pp. 1–4.

30. Wikipedia Contributors. Support Vector Machine—Wikipedia, The Free Encyclopedia. 2023. https://en.wikipedia.org/w/index.
php?title=Support_vector_machine&oldid=1144271534 (accessed on 29 March 2023).

31. Tepe, C.; Erdim, M. Classification of surface electromyography and gyroscopic signals of finger gestures acquired by Myo
armband using machine learning methods. Biomed. Signal Process. Control 2022, 75, 103588.

32. Stapornchaisit, S.; Kim, Y.; Takagi, A.; Yoshimura, N.; Koike, Y. Finger angle estimation from array EMG system using linear
regression model with independent component analysis. Front. Neurorobotics 2019, 13, 75.

33. Yokoyama, M.; Koyama, R.; Yanagisawa, M. An evaluation of hand-force prediction using artificial neural-network regression
models of surface EMG signals for handwear devices. J. Sens. 2017, 2017, 3980906.

34. Jaber, H.A.; Rashid, M.T.; Fortuna, L. Robust hand gesture identification using envelope of HD-sEMG signal. In Proceedings of
the International Conference on Information and Communication Technology, Baghdad, Iraq, 15–16 April 2019; pp. 203–209.

35. Zhang, Y.; Chen, Y.; Yu, H.; Yang, X.; Sun, R.; Zeng, B. A feature adaptive learning method for high-density semg-based gesture
recognition. Proc. Acm Interactive Mobile Wearable Ubiquitous Technol. 2021, 5, 1–26.

36. Secciani, N.; Brogi, C.; Pagliai, M.; Buonamici, F.; Gerli, F.; Vannetti, F.; Bianchini, M.; Volpe, Y.; Ridolfi, A. Wearable robots: an
original mechatronic design of a hand exoskeleton for assistive and rehabilitative purposes. Front. Neurorobot. 2021, 15, 750385.

37. Esposito, D.; Centracchio, J.; Andreozzi, E.; Savino, S.; Gargiulo, G.D.; Naik, G.R.; Bifulco, P. Design of a 3D-Printed Hand
Exoskeleton Based on Force-Myography Control for Assistance and Rehabilitation. Machines 2022, 10, 57.

38. Yurkewich, A.; Kozak, I.J.; Ivanovic, A.; Rossos, D.; Wang, R.H.; Hebert, D.; Mihailidis, A. Myoelectric untethered robotic
glove enhances hand function and performance on daily living tasks after stroke. J. Rehabil. Assist. Technol. Eng. 2020,
7, 2055668320964050.

39. Zhao, L.; Xie, C.; Song, R. Design and validation of a wearable hand exoskeleton system. In Proceedings of the 2020 5th
International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020; pp.
559–563.

40. Sandison, M.; Phan, K.; Casas, R.; Nguyen, L.; Lum, M.; Pergami-Peries, M.; Lum, P.S. HandMATE: wearable robotic hand
exoskeleton and integrated android app for at home stroke rehabilitation. In Proceedings of the 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp.
4867–4872.

41. Bouteraa, Y.; Abdallah, I.B.; Elmogy, A.M. Training of hand rehabilitation using low cost exoskeleton and vision-based game
interface. J. Intell. Robot. Syst. 2019, 96, 31–47.

42. Sun, Z.; Zhang, X.; Liu, K.; Shi, T.; Wang, J. A Multi-Joint Continuous Motion Estimation Method of Lower Limb Using Least
Squares Support Vector Machine and Zeroing Neural Network based on sEMG signals. Neural Process. Lett. 2022, 55, 2867–2884.

43. Fazil, M.; Meng, Z.; Kang, J. CNN-based Controller for Multi-DoF Prosthetic Wrist using sEMG Data during Activities of Daily
Living. In Proceedings of the 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics
(BioRob), Seoul, Republic of Korea, 21–24 August 2022; pp. 01–06.

44. Arozi, M.; Ariyanto, M.; Kristianto, A.; Setiawan, J.D.; et al. EMG signal processing of Myo armband sensor for prosthetic hand
input using RMS and ANFIS. In Proceedings of the 2020 7th International Conference on Information Technology, Computer, and
Electrical Engineering (ICITACEE), Semarang, Indonesia, 24–25 September 2020; pp. 36–40.

45. Inc., U. Leap Motion Controller. Available online: https://www.ultraleap.com/product/leap-motion-controller/ (accessed on
23 February 2023)

46. Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng.
2003, 50, 848–854.

47. Yang, J.; Pan, J.; Li, J. sEMG-based continuous hand gesture recognition using GMM-HMM and threshold model. In Proceedings
of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 5–8 December 2017; pp.
1509–1514.

48. Côté-Allard, U.; Fall, C.L.; Campeau-Lecours, A.; Gosselin, C.; Laviolette, F.; Gosselin, B. Transfer learning for sEMG hand
gestures recognition using convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 1663–1668.

49. Smith, L.H.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. Determining the optimal window length for pattern recognition-based
myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Trans. Neural Syst. Rehabil.
Eng. 2010, 19, 186–192.

50. Oskoei, M.A.; Hu, H. Myoelectric control systems—A survey. Biomed. Signal Process. Control 2007, 2, 275–294.

https://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=1144271534
https://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=1144271534
https://www.ultraleap.com/product/leap-motion-controller/


Machines 2023, 11, 747 19 of 19

51. Huang, D.; Chen, B. Surface EMG decoding for hand gestures based on spectrogram and CNN-LSTM. In Proceedings of the
2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), Xi’an, China, 21–22 September 2019; pp.
123–126.

52. Karnam, N.K.; Dubey, S.R.; Turlapaty, A.C.; Gokaraju, B. EMGHandNet: A hybrid CNN and Bi-LSTM architecture for hand
activity classification using surface EMG signals. Biocybern. Biomed. Eng. 2022, 42, 325–340.

53. Bao, T.; Zaidi, S.A.R.; Xie, S.; Yang, P.; Zhang, Z.Q. A CNN-LSTM hybrid model for wrist kinematics estimation using surface
electromyography. IEEE Trans. Instrum. Meas. 2020, 70, 1–9.

54. Chen, L.; Fu, J.; Wu, Y.; Li, H.; Zheng, B. Hand gesture recognition using compact CNN via surface electromyography signals.
Sensors 2020, 20, 672.

55. Nahid, N.; Rahman, A.; Ahad, M.A. Deep learning based surface EMG hand gesture classification for low-cost myoelectric
prosthetic hand. In Proceedings of the 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and
2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 26–29 August 2020; pp.
1–8.

56. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
57. Ahmad, S.; Latif, H.A. Forecasting on the crude palm oil and kernel palm production: Seasonal ARIMA approach. In Proceedings

of the 2011 IEEE Colloquium on Humanities, Science and Engineering, Penang, Malaysia, 5–6 December 2011; pp. 939–944.
https://doi.org/10.1109/CHUSER.2011.6163876.

58. Tiwari, S.; Sabzehgar, R.; Rasouli, M. Short Term Solar Irradiance Forecast Using Numerical Weather Prediction (NWP) with
Gradient Boost Regression. In Proceedings of the 2018 9th IEEE International Symposium on Power Electronics for Distributed
Generation Systems (PEDG), Charlotte, NC, USA, 25–28 June 2018; pp. 1–8. https://doi.org/10.1109/PEDG.2018.8447751.

59. Pant, J.; Sharma, R.K.; Juyal, A.; Singh, D.; Pant, H.; Pant, P. A Machine-Learning Approach to Time Series Forecasting of
Temperature. In Proceedings of the 2022 6th International Conference on Electronics, Communication and Aerospace Technology,
Coimbatore, India, 1–3 December 2022; pp. 1125–1129. https://doi.org/10.1109/ICECA55336.2022.10009165.

60. Wikipedia Contributors. Coefficient of Determinatio—Wikipedia, The Free Encyclopedia. 2023. Available online: https:
//en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1148160373 (accessed on 22 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CHUSER.2011.6163876
https://doi.org/10.1109/PEDG.2018.8447751
https://doi.org/10.1109/ICECA55336.2022.10009165
https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1148160373
https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1148160373

	Introduction
	Related Work and Paper's Contribution
	Methods
	Hardware
	Regressor Structure
	Graphical User Interface
	Test Methodology

	Results
	Discussion and Conclusions
	References

