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Abstract: Robotic contact-rich insertion tasks present a significant challenge for motion planning due
to the complex force interaction between robots and objects. Although many learning-based methods
have shown success in contact tasks, most methods need sampling or exploring to gather sufficient
experimental data. However, it is both time-consuming and expensive to conduct real-world experiments
repeatedly. On the other hand, while the virtual world enables low cost and fast computations by
simulators, there still exists a huge sim-to-real gap due to the inaccurate point contact model. Although
finite element analysis might generate accurate results for contact tasks, it is computationally expensive.
As such, this study proposes a motion planning framework with bilevel optimization to leverage
relatively accurate force information with fast computation time. This framework consists of Dynamic
Movement Primitives (DMPs) used to parameterize motion trajectories, Black-Box Optimization (BBO),
a derivative-free approach, integrated to improve contact-rich insertion policy with hydroelastic contact
model, and simulated variability to account for visual uncertainty in the real world. The accuracy of the
simulated model is then validated by comparing our contact results with a benchmark Peg-in-Hole task.
Using these integrated DMPs and BBO with hydroelastic contact model, the motion trajectory generated
in planning is capable of guiding the robot towards successful insertion with iterative refinement.

Keywords: peg-in-hole assembly; motion planning; contact tasks; Dynamic Movement Primitives;
Black-Box Optimization; hydroelastic contact model; bilevel optimization

1. Introduction

In recent decades, robot manipulators have been increasingly utilized for various
manipulation tasks. In particular, part insertion, e.g., USB port and socket, figures in both
daily life and industrial settings [1]. These scenarios highlight the potential of robots in
handling contact-rich manipulation tasks. However, the interaction between robots and
objects involving contact force is complex, which can lead to manipulation failure, and
even damage the device [2]. Hence, it becomes challenging for robot manipulator planning
and control [3]. One specific challenge arises from the limitations of visual uncertainty [4],
which is widely used in robotic systems. For instance, the vision information cannot
always perform well in contact-rich tasks, since some inaccurate pose estimation may cause
planning in a mismatch trajectory and finally, failure in an experiment [2]. Therefore, there
are difficulties for robots to find a solution for contact-rich tasks, particularly when robotic
systems rely solely on vision-based guidance. In order to address this challenge, researchers
are exploring the integration of vision sensors with force feedback information [5].

Researchers have proposed many learning-based methods to complete such contact-
rich tasks. However, there still exist notable challenges because of the requirement for a
substantial amount of sampling and exploration to gather sufficient data [1]. For instance,
Levine et al. [6] deployed numerous robot manipulators in the real world, which is time-
consuming and expensive. Alternatively, some other researchers prefer training in the
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simulator to prepare learning-based algorithms; this methodology works depending on the
situation [7]. For example, Blender can only easily simulate kinematics motion of a robot.
On the other hand, when dynamics are required, Bullet is widely used for its collision
detection, which is a point-contact model. Open Dynamics Engine (ODE) is the default
engine of Gazebo, which is famous for its fast calculating speed, but the accuracy is low.
Chrono [8] mainly focuses on mobility simulation. MuJoCo [9] is similar to Bullet but
has better speed and accuracy. PhysX also focuses on speed instead of accuracy, and is
mainly used in video games. Isaac [10] utilizes this engine and is also famous for generating
simulated images in a virtual world. Indeed, it is cost-efficient to use the simulators above in
non-contact tasks or relatively simple contact tasks. However, as the complexity of contact
increases, these simulators may fail or introduce distortions due to inaccurate contact
feedback, which means there still exists a significant sim-to-real gap [1]. For instance,
an algorithm can be trained with even 100 percent success rate in simulators but still
meet failures when deployed into real applications [11]. Alternatively, some researchers
are addressing the issue by pursuing highly accurate contact models, such as ANSYS
with finite element analysis (FEA) techniques [12]. However, it is impractical to execute
training and learning through ANSYS due to the long calculation time associated with FEA.
Furthermore, a data-driven method can also be utilized to model contact mechanics. For
instance, Peng et al. [13] and Ma et al. [14] utilize neural networks, inputting a substantial
amount of real-world data, to accurately regress contact mechanics. However, these
approaches may lack the capability to generalize the contact mechanics to any user-defined
scenario with varying parameters and geometry shapes. Gathering a comprehensive
dataset covering all possible cases can be challenging. Consequently, achieving a balance
between accuracy and efficiency remains a challenge when gathering data for contact-rich
tasks. It is crucial to find alternative approaches that can accelerate the data collection
process without sacrificing accuracy.

Motion planning plays a pivotal role in robotics contact-rich insertion to ensure a safe
path to the desired position. Classical motion planning can be divided into these three cat-
egories: classical approaches, heuristic approaches, and graph search approaches [15].
Classical approaches, such as potential field, have been traditionally used in motion plan-
ning. However, these methods often suffer from limitations in terms of global optimization
and robustness. Heuristic exploration can overcome this disadvantage to some extent.
Graph Search, such as Astar, is inefficient in complex environments. Moreover, these mo-
tion planning algorithms always focus on collision-free motions [16] which are not suitable
for complex contact-rich tasks.

Moreover, optimization plays a crucial role in assisting robots to find the best trajectory
under specific criteria or constraints, and optimization is widely used in robot planning [2].
For instance, Wang et al. [17] utilize classical optimal control techniques for trajectory
planning on a flight deck, which focuses on a collision avoidance problem. However,
classical optimization methods may struggle with multi-modal or high-order nonlinear
problems [18], because in the real world, contact dynamics is inherently nonlinear and
complex, making it challenging to model the contact-rich tasks. The challenge stems from
the complexity involved in creating an analytical model that accurately represents the
dynamics of contact [19]. Indeed, to address these challenging problems, researchers
propose many advanced optimization algorithms. Kurtz et al. [20] take an implicit contact
force into account, which is computed at each time step. To specify, they use Iterative Linear
Quadratic Regulator (iLQR) to optimize this contact-implicit trajectory. Wei et al. [21]
optimizes robot position, speed, and torque, which are used for virtual spring to keep a
minimal impedance force and vibration by the forgetting factor function. Moreover, some
researchers combine bilevel optimization which combines multiple layers of optimization
methods for one optimization problem. For instance, Stouraitis et al. [22] employed a
bilevel optimization approach that combines graph search and trajectory optimization to
accomplish a collaborative task. Furthermore, robot learning with policy parameterization
also utilizes optimization, where policy optimization consists of derivative free/evolutive
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(e.g., BBO) and policy gradients (e.g., REINFORCE [23]), and dynamic programming,
consisting of policy iteration and value iteration. For example, Suomalainen et al. [3], sum-
marized robot learning methods in contact tasks, including Learning from Demonstration
(LfD) and Reinforcement Learning (RL). LfD, such as Gaussian mixture models (GMM)
and Gaussian mixture regression (GMR), enable the robot to learn from the demonstrated
trajectories provided by human experts. Enayati et al. [24] use GMM to encode human
demonstrations and use GMR to generate trajectory, where the policy is parameterized and
optimized. However, the original solution of GMM and GMR cannot deal with contact-rich
tasks well, which can be improved by RL. For example, an expert’s demonstration can
be used as a starting point for RL-based policy optimization and minimize the difference
between robot and expert [25]. Furthermore, DMPs are widely and popular used in policy
parameterization [26], which can be optimized. For instance, Abu-Dakka et al. [4] propose
making use of human demonstration to get a peg-in-hole task encoded by DMPs, which
helps the robot come to new tasks without new coding.

Peg-in-hole assembly covers many specifics of common contact-rich tasks in vari-
ous real-world applications. Due to their practical relevance and complexity, numerous
researchers have focused their efforts on this. For instance, Whitney et al. [27] consider
the whole insertion as quasi-static, then use Newton’s law to derive the relation between
contact force and pose of peg. Pitchandi et al. [28] also refer to Whitney’s work, but add
viscoelastic property of compliant material into consideration and derive the appropriate
device with optimal stiffness and damping parameters. When the exact pose of hole is
uncertain, Lee et al. [29] use a quasi-static model to derive where the hole is based on
feedback friction force and geometry of peg. They divide the task into many phases sep-
arately. Wu et al. [30] also use equilibrium condition; they focus on robot assembly of
circular-rectangular compound peg and hole parts, and use flow chart of hole searching,
whose essence is a super if-else machine. Salem et al. [31] insert the hole to the fix peg using
quasi-static model by deriving two-point and three-point contact static equations. They also
define the assembly sequence by approaching two-point contact, adjusting the direction
based on force feedback, until they reach a stable three-point contact phase. However,
a geometry method [3] can also work for contact-rich tasks. However, a for geometry
method, we need the shape of objects and the environment. Therefore, it is hard to build an
analytical model for contact [32].

The contributions of our work are several-fold. Firstly, we enhance the accuracy of
simulation by employing the hydroelastic model, which has the potential to reduce the
sim-to-real gap. We validate the hydroelastic model against a benchmark to demonstrate
its effectiveness. Secondly, we propose a bilevel framework that combines DMPs and BBO,
utilizing a hydroelastic model, while this framework incorporates contact force information
into the optimization process. Thirdly, we address the inherent uncertainty in visual
perception to some extent by introducing noise into the cost function. This allows our
framework to adapt to visual uncertainty.

The remaining sections of this paper are structured as follows. Section 2 offers a
comprehensive model description and introduces the well-established Whitney’s theory.
Subsequently, a comparative analysis between the hydroelastic model and Whitney’s theory
is conducted to assess their performance and identify disparities. In Section 3, our proposed
bilevel framework is presented. We explain the methodology that combines DMPs and
BBO with the hydroelastic model. This approach aims to tackle the challenges posed by
visual uncertainty, which often proves to be a significant obstacle in conventional robot
planning solutions. Section 4 concludes the paper and outlines avenues for future research.

2. Dynamics Model and Hydroelastic Model

In this section, we first introduce the peg-in-hole scenario. Next, we present a concise
mathematical description of our scenario, and introduce the benchmark proposed by
Whitney [27]. Subsequently, we extract the curves containing contact force and kinematics
information to compare with Whitney’s benchmark. By conducting this comparison, we
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evaluate the accuracy of the hydroelastic model while also identifying its shortcomings.
This evaluation can guide us in effectively utilizing the hydroelastic model.

2.1. Dynamic Model

We utilize a hydroelastic model supported in DRAKE [33], a simulator that considers
surface contact and offers fast calculation speeds. In our scenario, a virtual robot guides
the peg towards a hole, accounting for friction. The term “virtual robot” refers to a robot
lacking a physical body but possessing kinematic properties. Meanwhile, a spring connects
the ghost robot and peg, as depicted in Figure 1. The initial frame of the peg remains
fixed, while users can set the initial frame of the hole, assuming the robot is equipped with
sensors, such as a camera, to perceive the pose of the hole. Consequently, the target pose of
the peg is known but subject to noise. Therefore, the motion of the peg only depends on
the force exerted by the robot and the contact force between the peg and hole. Whenever
the contact between peg and hole occurs, the hydroelastic model will generate a surface
contact force acting on the peg.

S ness: �

Figure 1. Environment description.

We account for the interaction between robot and peg via a simple linear spring model.
Therefore, the force applied on the peg is generated by a spring, which only depends on the
pose difference between the robot frameR and peg top center P1, Numerically, we make
use of a simulator, (DRAKE [33]) depicted in Figure 2, to obtain discrete-time evaluation of
the dynamics captured by:

(qP, q̇P, q̈P) = Φ(qP, qR,H) (1)

which denotes the position, velocity, and acceleration of the peg which can be generated by
this simulator with inputting the pose of the peg at the previous time step, pose of the robot,
and models. Ultimately, a successful insertion is achieved when the distance between the
bottom surface center of the peg P2 and the frame of the holeH is sufficiently close. This
criterion determines whether the peg has been successfully inserted into the hole.
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physics-based simulator

Figure 2. Input and output of simulator.

2.2. Compliant Interaction

As previously mentioned, it is essential for the robot to apply a force onto the peg
during the peg-in-hole task. Here, we shall assume a compliant interaction between robot
and peg which, in turn, will allow to evaluate interaction forces from pose differences.

Figure 1 illustrates the scenario we are considering, where {P} = TP ∈ SE(2) rep-
resents the frame of center of the peg. In addition, we utilize a rotation matrix RP and
transformation matrix TP to represent the peg frame {P} in the world coordinate system.

TP =

R(θP)
xP
yP

0 0 1

 (2)

where the general rotation matrix is

R(θ) :=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(3)

Similarly, we employ the same definitions for the robot frame {R} and hole frame {H}.
Furthermore, we introduce two additional frames to define the top surface center of the peg
{P1} and bottom surface center of the peg {P2}. Assuming the peg is a fixed rigid body,
we can consider the transformation matrix for {P1} in {P} to be constant. The length of
the peg is symbolized as l, TP

P1
equals

TP
P1

=

1 0 0
0 1 l

2
0 0 1

 (4)

The transformation matrix of {P1} can be expressed as

TP1 = TPTP
P1

(5)

We employ a function q = fvec(T) to extract a vector qP1
to describe {P1}, where

q =

x
y
θ

 = fvec(T) =

 T13
T23

arctan(T21, T11)

 (6)

The relative distance between frame {R} and frame {P1} is written as δqRP1
.

δqRP1
=

xR − xP1

yR − yP1

θR − θP1

 (7)
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where x, y denote positions, θ denotes orientation. Next, we model the interaction between
robot and peg by considering three springs with stiffness coefficients kx, ky, kθ connecting
frame {R} and frame {P1}, Additionally, we define the spring between peg and robot in
Cartesian space using stiffness matrix K:

K =

kx 0 0
0 ky 0
0 0 kθ

 (8)

Therefore, the elastic interaction between robot and peg can be accounted for by the
following energy function

ERP =
1
2
(δqRP1

)TK(δqRP1
) (9)

The elastic (interaction) force exerted by the robot onto the peg f RP can be derived as

f RP = −∇qP
ERP = −KδqRP1

(10)

2.3. Classical Whitney’s Model

Previous derivations are based on a series of simplifying assumptions. In order to
verify the realism of such a model, we will benchmark it with classical quasi-static as-
sembly results. Whitney [27] introduced a quasi-static assembly theory for rigid parts
utilizing compliant supports, which has undergone comparison with real-world exper-
iments. Their methodology has demonstrated accuracy, making it highly valuable for
comparative analysis.

The derivations in the paper involve modelling the compliant supports as springs and
deriving equations to describe the forces and displacements during assembly. By analyzing
the equilibrium conditions of the system, the derived equations enable predicting the
behavior of the parts and supports, offering a flexible approach to assembly processes.
Typical insertion geometry has an insertion event with these stages shown in Figure 3:
approach, chamfer crossing, one-point contact, and two-point contact.

𝜃0

𝛼

𝑅

𝑟

𝜀0

𝑊

𝐿𝑔

(a)

𝜃

(b)

(c) (d)

Figure 3. Definition of terms for geometric analysis of part mating. The red circles represent the con-
tact positions. (a) Geometry during approach. (b) Geometry during chamfer crossing. (c) Geometry
during One-Point Contact. (d) Geometry during Two-Point Contact.
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Given the stiffness Kx, Kθ , friction coefficient µ and compliance center Lg with the peg
and hole geometrical parameters (such as its initial angular error θ0, initial lateral error ε0,
c clearance ratio), the insertion forces Fx, Fz and insertion angles θ can be calculated from
the derived analytical equations in Table 1.

Table 1. Insertion forces and angles for various insertion stages reproduced from [27].

Chamfer Crossing
(For l = −z to 0) Fx = −Kx(Uo −U)

Fz =
KxKθA(z/ tan α)

BD− E

θ = θ0 +
Kx(z/ tan α)(LgB− rA)

(KxL2
g + Kθ)B− KxLgrA

One-point Contact
(For l = 0 to l2) Fx = −Kx(Uo −U)

Fz =
µKxKθ(ε

′
0 + `θ0)

C(Lg − `) + Kθ

θ =
C(ε′0 + Lgθ0) + Kθθ0

C(Lg − `) + Kθ

Two-point Contact (l2)
(For l2 onwards) Fx = −KxLg(θ0 − cD/`)− Kxε′′0

Fz =
2µ

`
[D(θ0− cD/`)+F]+µ(1+

µd
`
[G(θ0− cD/`)−F/Lg]

θ = θ0 +
Kxε′′0 (Lg − l2 − µr)

KxL2
g + Kθ − KxLg(l2 + µr)

where
A = cos α + µ sin α

B = sin α− µ cos α

C = Kx(Lg − `− µr)

D = KxL2
g + Kθ

E = KxLgrA

F = KxLgε′′0

G = −KxLg

ε′0 = ε0 − cR

ε′′0 = ε0 + cR

2.4. Comparison between Hydroelastic Model and Whitney’s Theory

To facilitate a comparison, we build models and frame based on Whitney’s work [27]
within the DRAKE simulator. It is important to note that in this case the peg is moving
downward slowly with only a vertical velocity as it approaches the hole.

Furthermore, for defining the material properties of peg and hole in the simulator, we
refer the DRAKE’s manual [33], which provides guidelines on how to set parameters that
correspond to the physical characteristics and behavior of the materials used in the contact-
rich tasks. According to the suggestions, we set the hydroelastic modulus same as Young’s
modulus. Assuming the peg and hole are both made of steel, we set the hydroelastic
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modulus as 200 GPA [34]. Then, we set the friction coefficient as 0.6, and Hunt–Crossley
dissipation as 30 s/m, which is responsible for the energy-damping property. In order to
minimize undesired oscillations of the model during contact, we choose a heuristic value
for this parameter.

To facilitate a direct comparison between Whitney’s results and the results obtained
from the hydroelastic model, we log the contact force and other information by using the
same scenario. All simulations were performed on a desktop with an Intel i9 processor and
32 GB RAM.

We are evaluating the quality of the hydroelastic contact model, with the contact force
as the performance indicator. Thus, we plot the variation of the contact force with insertion
depth. The results are shown in Figure 4 (further results are also reported in Appendix A).
We vary the starting position xP of the peg, which corresponds to changing the horizontal
distance or offset between the central line of the hole and the peg. From Figure 4, we
observe that the hydroelastic model exhibits the same phases as observed in Whitney’s
method, albeit with some difference. In the hydroelastic model [33], the horizontal contact
force Fx in the peg frame gradually increases during the chamfer contact phase, rather than
experiencing a sudden force at the initial contact. As the peg penetrates deeper into the
hole, the contact force gradually builds up. After leaving the chamfer phase, there are
some oscillations. Subsequently, the peg transitions to one-point contact phase; the value of
contact force decreases, then increases, which aligns with Whitney’s theory. Finally, during
two-point contact phase, we observe that the behavior of the hydroelastic model closely
resembles Whitney’s theory. The final contact force values converge to very similar values
in both the hydroelastic model and Whitney’s theory.
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(c) xP =-0.0015 m
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Figure 4. Insertion Force (Fx) vs. Insertion Depth (l) at different xP after depth shifting, where CFC
symbolizes “Chamfer Contact”, 1PC symbolizes “1 Point Contact”, S2PC symbolizes “Start 2 Point
Contact”, E2PC symbolizes “End 2 Point Contact”.
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Based on the depicted figures, it is apparent that the hydroelastic model consistently
reproduces results that closely align with those of Whitney’s theory, even when the starting
points are altered. The three figures exhibit similar trends and characteristics, thereby
supporting the similarity between the hydroelastic model and Whitney’s theory; additional
results can be found in Appendix A.

We evaluated the relative error at various contact phases for the four situations, and
the results are presented in Table 2.

Table 2. Relative error between hydroelastic model and Whitney’s theory (%).

Offset xP = −0.0005 m xP = −0.0010 m xP = −0.0015 m xP = −0.0020 m

initial contact
force of Fx

10.7575 6.9288 0.9780 2.9370

final contact force of Fx 0.2918 0.3686 0.5088 0.8534
initial contact

force of Fz
0.026 2.7455 5.0961 7.8345

final contact force of Fz 12.7314 11.7067 10.4138 7.3891
final insertion angle 25.7437 22.9141 19.2098 14.3666

Some relative errors are small, within 1%, and the majority of other features are
within 10%. However, a few of them exhibit larger relative errors, approximately around 20%.
Additionally, it may be emphasized that to get a more comprehensive understanding of how
Whitney’s results compared with hydroelastic model’s results, we need to look at the data
throughout the contact task, not just some peak values (as reported in Table 2). Therefore,
we introduce this Pearson correlation coefficient to report the overall relationship between
the two datasets, denoted as r, which is presented in Table 3. The Pearson correlation coeffi-
cient measures the strength and the direction of a linear relationship between Whitney’s
theoretical result and the hydroelastic model’s result with possible values between−1 and 1,
where a higher value of r indicates a stronger relationship between the two sets of data.
Furthermore, the Pearson correlation coefficient can serve as a quantitative measure to
assess the extent to which performance in simulations corresponds to performance in the
real world [35]. Therefore, we present the linear relationship between Whitney’s theory
and the hydroelastic model by Fx and Fz at the same insertion depth (after alignment) in
Figure 5a,b. In other words, each curve represents the simulated force versus the theoretical
force throughout the entire insertion process, with each point plotted at the correspond-
ing shifted insertion depth. We plot a total of four cases, each corresponding to different
offsets. Subsequently, we calculate r in Table 3. We can observe that there exists a strong
linear relationship between the variables, and some curvatures are caused by the oscillation
during contact.

The hydroelastic model demonstrates several advantages. Firstly, it accurately captures
the values of the contact force during both the sudden contact and final stable phases, with
some relative errors even less than 1%. Secondly, the overall trend of results obtained
from the hydroelastic model closely aligns with Whitney’s theory, which can be proved by
r(Fx), r(Fz); both of them are over 0.9.

However, there are two limitations from the results. Firstly, oscillation occurs when
the peg abruptly leaves the chamfer phase. This can be attributed to the virtual spring
between robot and peg, which can be considered as stiffness control. When a sudden
force disturbs the system, it will result in an oscillation. In this case, when the robot exerts
sufficient force to the peg, the peg will suddenly slip off the chamfer and the oscillation
phenomenon occurs.

Secondly, there always exists a depth domain delay no matter whether during the
chamfer crossing or two-point contact phase. To account for this delay, we shift the
results generated by the hydroelastic model based on the depth axis. This is because the
contact force arises linearly after instantaneous contact, which is caused by the theory of
hydroelastic contact [33]. The insertion depth and contact force will both continue increasing
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until the two bodies achieve quasi-static force equilibrium. Therefore, as sudden insertion
occurs, we observe a progressive increase in contact force corresponding to the increasing
insertion depth, while Whitney’s theory makes the contact force suddenly arise. Thus, there
exists a depth–domain disparity between these two curves, which explains these curves of
the contact results. In plotting Figure 4 and calculating the Pearson correlation coefficient,
we aligned the curves based on the peak of first contact force due to the depth domain delay
phenomenon. Otherwise, this delay will result in a low Pearson correlation coefficient.

To summarize, the results indicate that the hydroelastic model is capable of accurately
simulating the contact-rich behavior, especially with a slow motion that meets quasi-static,
and successfully reproducing key characteristics in Whitney’s theory, which have already
been verified through real-world experiments. Although Whitney’s theory is accurate and
mature, it fails to account for deformation during contact and lacks the ability to generalize
to complex scenarios (e.g., USB port). In other words, when dealing with intricate object
shapes, applying Whitney’s theory becomes challenging due to the consideration of nu-
merous edges. Consequently, the hydroelastic model not only addresses both deformation
and generalization, but also aligns well with Whitney’s theory. A user can easily apply the
hydroelastic model to any geometry, making it a versatile tool with the potential to support
a wide range of application scenarios and provide valuable explanations for real-world
contact tasks.
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Figure 5. Contact force of Whitney’s theory vs. hydroelastic model at same shifted insertion depth.
(a) Horizontal force (Fx)—simulated vs. theoretical. (b) Vertical force (Fz)—simulated vs. theoretical.

Table 3. r(Fx) and r(Fz).

Variable Pearson Correlation Coefficient r

Fx 0.9954
Fz 0.9032

3. Bilevel Optimization with Hydroelastic Model

With our validated simulation, we can utilize this simulated contact force in the virtual
world to optimize our policy for contact-rich tasks, eliminating the need for extensive
and time-consuming experiments in the real world. In this section, we will outline the
formulation of our planning and optimization method by a peg-in-hole task.

3.1. Bilevel Framework

Optimal control is a field of control theory that determines the control input that
enables a process to satisfy the physical constraints and minimize some criterion [36]. In
the field of robotics, optimal control can be employed to generate optimal trajectories for
robots in order to achieve specific goals.
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In our problem, the physical constraints arise from the physical contact between the
hole and peg. Our objective is to minimize a cost associated with the task. However,
calculating the gradient of the contact phenomenon analytically can be complex and
challenging. Therefore, in our approach, we utilize BBO, a gradient-free method, to search
for the solution that minimizes the cost. BBO provides a flexible and efficient method
to explore the solution space without explicitly computing the analytical gradients. By
employing BBO, we can effectively optimize the control policy, which is parameterized
by DMPs.

The whole computational framework of our approach is illustrated in Figure 6. We
propose a bilevel optimization framework. In the inner level, we apply policy parameteriza-
tion DMPs to plan for trajectory, which is introduced in the Appendix B. One of the salient
features of DMP is the definition of low-dimensional parametric vector W to parameterize
smooth spatial trajectories. Such a parameter W is then updated during optimization
to generate the robot’s trajectory. There are several parallel rollouts performed with the
varied weight value in the inner level. Additionally, the starting point and target point are
provided as inputs to DMPs. The dash arrow represents parameters qR(0), qR(T) which
will be assumed constant during each rollout of the inner level. After the planned robot
trajectory qR is generated, it is sent to the simulator for execution. The simulator provides
the resulting trajectory of the peg, which is then passed to the inner-level optimization
with the BBO algorithm. The BBO algorithm analyzes the trajectory and iteratively adjusts
the weight values in order to find the best weight. In the outer level, outer optimization
sends qR(T) to DMPs in each iteration. Here, the solid arrow represents qR(T) which will
change in each iteration of outer level. Furthermore, we assume the vision system will
detect the environment in each iteration, which represents that q̃H is constant in the rollouts
but varying during each iteration. q̃H is applied in both inner optimization and outer
optimization, which affects this task significantly. The subsequent sections will provide
detailed explanations of the components depicted in this figure.

Policy 
Parameteriza�on

(DMP)

Dynamics
(simulator)

Inner 
Op�miza�on
(BBO) via 

ini�al and final 
condi�ons

rollouts

, 

, 
selec�on

Outer op�miza�on
via 

Outer level

Inner level

Figure 6. Bilevel Framework.
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3.1.1. Inner-Level Optimization

We choose BBO as the core method for inner-level optimization, because obtaining
an analytical description of contact dynamics proves to be challenging. In the inner-level
optimization, DMPs require the start and goal points as inputs. As we possess knowledge
of the robot’s initial pose, we can define the robot trajectory as t 7→ {qR(t)}. By utilizing
Equation (9), we can compute ERP(t), while the simulator will record the trajectory of the
peg as qP(t). We employ the same method as Equation (7) to calculate TP

P2
, then determine

the distance between frame {H} and frame {P2}, which is denoted as δq̃HP2
, where visual

uncertainty is symbolized as ˜(·).
The inner-level cost function is defined as follows:

Jinn(W , qR, qP, q̃H) = α1‖W‖2 + α2

t=T

∑
t=0

ERP(t) + α3

t=T

∑
t=0

(δq̃HP2
)TΣ−1

H (δq̃HP2
) (11)

where α1, α2, α3 are weight coefficients. The first term of Equation (11) represents regular-
ization, which helps in controlling the planning trajectory. The second term represents
total energy cost incurred by the robot in the entire insertion process, as calculated in
Equation (9). This term encourages the robot to minimize energy consumption during the
task. The third term represents the kinematic distance between the current bottom of the
peg to the sensed hole, which guides the system move to the target hole. Additionally,
ΣH represents the perception error covariance matrix caused by the vision system, which
measures the belief associated with the distance between the actual position of the hole
and the sensed position of the hole.

In BBO, we perform multiple iterations. During each iteration i, we randomly vary
the weight parameters W i according to a Gaussian distribution N in Equation (A4) with
several rollouts, where

W (r)
i+1 = N (W∗

i , σW) (12)

Subsequently, the trajectory of the robot will be determined by utilizing DMPs
Equation (A2), which will then be transmitted to the simulator for execution. Once the sim-
ulation is finished, the simulator sends back the simulated results, enabling the calculation
of cost for this rollout J(rk)

inn by Equation (11), where a total of r rollouts are considered.
Upon completion of all the rollouts, the rollouts are sorted based on the inner level

cost, which is symbolized as W (sorted)(i). Subsequently, the fittest n% results are selected
as the optimal rollout set. The number of elements in the sorted set is dnre, where d·e
represents the ceiling function that returns the integer greater than or equal to its input.
The weights are then updated based on this selected rollout set.

W∗
i+1 =

∑
dnre
rk=1 W (rk)

(sorted)(i)

dnre (13)

Hence, the inner optimization can be written as

min
W

: Jinn(W , qR, qP, q̃H) (14a)

s.t. q̈P = Φ(qP, qR,H) (14b)

qR = DMP(W , t, qR(0), qR(T)) (14c)

t ∈ [0, T] (14d)

where Equations (14b) and (14c) are identical to Equations (1), (A1) and (14d) describe
motion duration.
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3.1.2. Outer-Level Optimization

In this case, we update the goal qR(i+1)(T) by the exploring result from the previous
iteration. The objective is for the goal of DMPs to progressively approach the actual hole
frame. Hence, we define the outer-level cost Jout as

Jout(qP2
, q̃H) =

1
2
(q̃H − qP2

)TΣ−1
H (q̃H − qP2

) (15)

Therefore, the outer-level optimization is

arg min
qP2

: Jout(qP2
, q̃H) (16a)

s.t. q̃H = [N (µH , σ2
x), yH , θH ]

T (16b)

qP2
= fvec(TP2) (16c)

TP2 = TPTP
P2

(16d)

qP ∈ QP (16e)

where Equation (16b) refers to the sensed hole frame, Equation (16c) represents Equation (6)
coming from the simulator, Equation (16d) denotes the two frames in a rigid body, and
Equation (16e) describes that qP is the element of set QP, which comprises all the peg
trajectories in each iteration.

3.1.3. Bilevel Formulation

We combine the two equations presented in Equations (14) and (16) into a bilevel
optimization formulation. The pseudocode is shown in Algorithm 1.

Algorithm 1: Bilevel framework

initialize DMPs, i = 0;
while Jout not converged do

QP = {}, Iteration : i = i + 1 ;
Optimize Jout : qRi(T)← arg min

qP1

: Jout(qP1
, q̃H) ;

for rk ← 0 to r do
W (rk)

i = N (W∗
i−1, σW) ;

qRi = DMP(W (rk)
i , t, qR(0), qRi(T)) ;

(qPi, q̇Pi, q̈Pi) = Φ(qPi, qRi,H) ;
QP.append(qPi)

end

Optimize Jinn : W (sorted)(i) ← sort by Jinn(W
(rk)
i+1 , qRi, qPi, q̃H) ;

W∗
i+1 =

∑
dnre
rk=1 W

(rk)
(sorted)(i)

dnre
end

where qPi represents the whole trajectory of the peg in this iteration.

3.2. Validation by Peg-in-Hole Task

We continue to utilize the same scene in the simulator and rely on a camera as being
susceptible to inaccuracies. In the peg-in-hole task, the horizontal uncertainty exerts a
significant impact. Specifically, when there is a horizontal mismatch between the peg and
the hole, it may lead to the peg getting stuck. Therefore, researchers focus on horizontal
variation [11]. To account for this, we introduce visual noise for horizontal information
x̃H = N (µx, σ2

x) with Gaussian distribution, where µx = 0.005 m because the translation
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error could reach 5 mm [4], and we also choose σx = 0.005 m to simulate a wide range
of uncertainty. The sensed visual information is q̃H = [x̃H , yH , θH ]

T . Regarding the
stiffness parameter, it is common to choose 1000 N/m [37]. Similarly, there are no specific
requirements for the starting position parameters xH , yH , θH . Additionally, it is common
to consider the coefficients of friction between steel to be around 0.6. The only selected
parameters are the weights α1, α2, α3. It is important to note that the magnitudes of these
three terms in Equation (11) should be similar. If the magnitude of one term is too small,
it may not produce the intended effect. Therefore, balancing the weights appropriately
is essential to achieve a successful insertion. In practice, we have a rough calibration to
compare different weight values for α1, α2, α3 and their corresponding terms in Equation (11)
in order to select suitable weight values. The initial parameters are detailed in Table 4.

Table 4. User-defined parameters.

Parameter Value Units Description

kx 1000 N/m stiffness
ky 1000 N/m stiffness
kθ 1 Nm/rad stiffness
xH 0 m initial pose
x̃H N (µH , σ2

x ) m sensed pose
yH −0.01 m initial pose
θH 0 rad initial pose
α1 10,000 - weight factor
α2 20 - weight factor
α3 10 - weight factor
µ 0.6 - friction

In the simulation, we performed iterations with 10 rollouts until convergence. Figure 7
displays intermediate results from different iterations. By observing the progression from
iteration 1, the initial solution is quite far from the target. However, in subsequent iterations,
the policy exhibits a tendency to explore the environment. This improvement can be
attributed to the third term in the cost function (11), which evaluates the uncertain distance
between the hole and the bottom of the peg. The outer-level optimization in Equation (15)
then updates the goal to keep approaching the hole iteratively, motivating to find trajectories
towards the uncertain hole against the visual uncertainty.

Around iteration 20 in Figure 7, we observe that the peg has successfully identified
the location of the hole but requires further exploration to achieve the bottom. The policy,
with the help of the second term of the cost function (11), aims to avoid excessive contact
force or getting stuck during the insertion process. As a result, the policy explores different
approaches and adjusts its trajectory to achieve a balance between successful insertion and
avoiding undesirable contact forces.

In iteration 35 of Figure 7, we observe that the peg has successfully inserted into the
hole. At this stage, the policy has refined its trajectory by discarding the exploratory curves
from previous iterations. The optimization process, guided by both the first and second
terms of the cost function (11), aims to generate a trajectory that is more direct towards the
goal. The first term encourages the policy to move towards the target, minimizing deviation
on insertion path. Meanwhile, the second term continues to ensure that the contact forces
remain within acceptable limits and avoid potential stuck or excessive force during the
insertion process.

Figure 8a displays the results of the best peg trajectory for each iteration, while
Figure 8b showcases the results of the optimal robot trajectory for each iteration. The
gray value of the trajectories represents the iteration number, enabling the observation of
policy improvement over time. In the shallow trajectories, the robot moves towards the
hole, indicating the searching phase when the policy explores the environment. As the
trajectories move into the chamfer region, the policy starts to move downwards, indicating
the insertion phase. Through the entire optimization process, we can clearly observe the
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gradual improvement of the policy, with trajectories becoming more directed towards
successful insertion. Hence, we conclude that the iterative optimization approach allows
the policy to explore and refine its trajectory, resulting in a more accurate and effective
contact-rich insertion.
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Figure 8. Optimal trajectory in each iteration.

3.3. One-Level Optimization vs. Bilevel Optimization

In order to further validate and evaluate the performance of our approach, we conducted
a large-scale simulation with varying starting positions of the peg xP = [−0.04 : 0.001 : −0.03]
for only one-level optimization (only Jinn) and bilevel optimization (Jinn and Jout). In fact,
the routine solution for planning with DMP and BBO is identical to one-level optimization
in our framework. For one-level optimization, we directly provide the perceived goal
q̃H to DMPs, resulting in qR(T) = q̃H . To make a fair comparison, we give the same
initial goal for our bilevel framework. During the simulation, we run bilevel optimization
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until converge, and run same iterations for one-level optimization. The simulation of
50 iterations with 10 rollouts can be finished in 10 min.

The result shown in Figure 9 reveals a consistent trend with our previous findings. We
can compare these two methods, the inner-level optimization and one-level optimization.
Firstly, in iteration 0, both cases start from the same initial position, and the initial goal given
to the DMPs is also the same. Therefore, the cost of the initial problem will be identical
for both methods. Secondly, these two cost curves decrease rapidly in two iterations,
then the difference between them becomes evident. The one-level optimization method
exhibits a converging cost with a high value, indicating that the peg fails to achieve a
successful insertion. This reflects the limited effectiveness of the one-level optimization
approach in achieving peg-in-hole insertions. On the other hand, bilevel optimization
demonstrates convergence of the cost during iterations, reaching a low value, indicating
successful insertion tasks. Thirdly, it is worth noting that the effect of visual uncertainty is
taken into account in the cost function (11) and (15), which means the final convergence
phase may exhibit some mild oscillations due to the inaccuracies representing the uncertain
distance between the hole and the bottom of the peg. Therefore, there exist variance
bands for both curves. In spite of these variance bands, all the starting points can achieve
successful insertions within 50 iterations via bilevel optimization, and the whole trend of
cost demonstrates a significant reduction, indicating that bilevel optimization and planning
with DMPs can adapt to the uncertainties in visual information, ultimately leading to a
successful peg-in-hole insertion.

Thus, we observe that one-level optimization, which is a conventional approach, heav-
ily relies on the accuracy of visual perception and is more susceptible to failure. It struggles
to overcome the challenges posed by visual uncertainty, which can hinder the achievement
of successful peg-in-hole insertions. In contrast, the bilevel optimization strategy effectively
addresses the challenges arising from visual uncertainty. By incorporating both inner
and outer-level optimization, it provides a mechanism to iteratively refine the trajectory
and adapt to uncertainties in visual information. This enables the cost to converge and
ultimately leads to a successful insertion. The bilevel strategy demonstrates its effective-
ness by considering different starting positions, which is a reliable approach for achieving
successful peg-in-hole insertions.
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Figure 9. Mean and variance bands of one−level optimization and bilevel optimization for different
starting positions.
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4. Conclusions

This paper presents a bilevel optimization framework utilizing DMPs and BBO with
a hydroelastic contact model for peg-in-hole tasks. Our research has yielded several key
findings. Firstly, we have demonstrated that the hydroelastic model accurately reproduces
the essential characteristics of Whitney’s theory for a peg-in-hole task. Secondly, we have
validated the feasibility of our framework for a peg-in-hole task under visual uncertainty.
Thirdly, we have established that conventional planning methods, e.g., one-level optimiza-
tion, are susceptible to failure in contact-rich tasks due to visual uncertainty. In contrast,
our bilevel framework has the capability to overcome visual uncertainty and successfully
insert the peg.

Through comparison with Whitney’s theory, we have observed that the hydroelastic
model generates results with similar features during each contact phase. Notably, the
characteristic results achieve r(Fx) = 0.9954 and r(Fz) = 0.9032. Furthermore, our find-
ings indicate that the hydroelastic model is accurate, with some relative error even less
than 1% when motion is slow. The results above prove that the hydroelastic model is a
good fit for Whitney’s theory, thereby offering potential for reducing the sim-to-real gap.
However, when motion is rapid, such as at the sudden contact, the contact force cannot be
instantaneously generated. Instead, the surface contact force gradually increases until two
complaint bodies reach equal pressure. Therefore, we have also noted the presence of a
depth delay phenomenon due to the property of the hydroelastic model.

Our investigations into the bilevel framework with DMPs and BBO have revealed
that policy parameterization is a useful and efficient method, where 50 iterations with
10 rollouts can be completed in 10 min. Meanwhile, bilevel optimization guides peg
approach to hole with different phases during iteration, which can be logically explained
and justified. Specifically, the explored goal for DMPs supported by the outer level has
successfully mitigated the visual uncertainty and achieved superior planning trajectories
compared with using sensed information directly, where the mean cost of directly using
inaccurate hole diverges. Furthermore, our solution demonstrates the ability to achieve
100% successful insertion within 50 iterations across a wide range of starting positions.
This showcases the superior performance and reliability of our approach.

For ongoing and future work, we attempt to transfer this planning policy to the real
world and test how the hydroelastic model bridges the sim-to-real gap. Additionally, we
intend to investigate a more robust framework that can further enhance the effectiveness
and reliability of our approach. Moreover, it is worth discussing the generalization of
our framework to be applicable to flexible materials. Incorporating another simulator
specialized in modeling flexible materials could prove beneficial in extending the versatility
of our approach.
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Appendix A

From Figure A1, which has same trend as Figure 4. The vertical contact force Fz delays
at initial contact compared with Whitney, but the peak force values are highly approximate;
the relative errors are shown in Table 2, and there is also an oscillation during one-point
contact. After coming to the two-point contact phase, the value of Fz increases first then
decreases. This behavior is consistent with the expected trend described in Whitney’s
theory. Then, after coming to two-point contact, the force increases first to a peak, then
converges to a highly approximate value.
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Figure A1. Insertion Force (Fz) vs. Insertion Depth (l) at different xP after depth shifting, where CFC
symbolizes “Chamfer Contact”, 1PC symbolizes “1 Point Contact”, S2PC symbolizes “Start 2 Point
Contact”, E2PC symbolizes “End 2 Point Contact”.

From Figure A2. The trend observed in the hydroelastic model is also similar. Al-
though there is a delayed phenomenon compared to Whitney’s theory, the final insertion
angle can still converge at a value close to Whitney’s theory.



Machines 2023, 11, 741 19 of 21

-1 0 1 2 3 4 5 6 7 8

Insertion Angle (Theta) [rads] #10 -3

-5

0

5

10

15

20

25

30

35

40

45

In
se

rt
io

n 
de

pt
h 

(l)
 [m

m
]

Insertion Angle vs Insertion Depth at x = -0.0005

CFC

1PC

S2PC

E2PC

Whitney
simulator

(a) xP =-0.0005 m

-2 0 2 4 6 8 10 12 14 16

Insertion Angle (Theta) [rads] #10 -3

-5

0

5

10

15

20

25

30

35

40

45

In
se

rt
io

n 
de

pt
h 

(l)
 [m

m
]

Insertion Angle vs Insertion Depth at x = -0.001

CFC

1PC
S2PC

E2PC

Whitney
simulator

(b) xP =-0.0010 m

0 0.005 0.01 0.015 0.02 0.025

Insertion Angle (Theta) [rads] 

-5

0

5

10

15

20

25

30

35

40

45

In
se

rt
io

n 
de

pt
h 

(l)
 [m

m
]

Insertion Angle vs Insertion Depth at x = -0.0015

CFC

1PC
S2PC

E2PC

Whitney
simulator

(c) xP =-0.0015 m

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03

Insertion Angle (Theta) [rads] 

-5

0

5

10

15

20

25

30

35

40

45

In
se

rt
io

n 
de

pt
h 

(l)
 [m

m
]

Insertion Angle vs Insertion Depth at x = -0.002

CFC
1PC

S2PC

E2PC

Whitney
simulator

(d) xP =-0.0020 m

Figure A2. Insertion Angle vs. Insertion Depth at different xP after depth shifting, where CFC
symbolizes “Chamfer Contact”, 1PC symbolizes “1 Point Contact”, S2PC symbolizes “Start 2 Point
Contact”, E2PC symbolizes “End 2 Point Contact”.

Appendix B

The core idea of DMPs is exerting an external force to a simple linear spring damper
system f t , and the force has a nonlinear forcing term hW , which is a function of phase of
motion st. Define the trajectory of robot frame as t 7→ {qR(t), t = 0 · · · T}. Hence, the start
pose of robot is qR(0) while the goal pose of robot is qR(T).

Our control input, the robot trajectory, is generated by DMPs,

qR(t) = DMP(W , t, qR(0), qR(T)) (A1)

To specify, qR(t) will be solve as a ODE,

1
τ

q̈R(t) = f t + hW(st)st(qR(T)− qR(0)) (A2)

where
f t = α(β(qR(T)− qR(t))− q̇R(t)) (A3)

Since in planar motion, each degree of freedom is independent from each other with
no constraints, we expand classical DMPs [38] into three dimensions. The output of
Equation (A2) is the desired acceleration of the reference trajectory, which means that
DMPs can generate a reference trajectory to a nonlinear attractor system with attractor goal
qR(T) and start point qR(0). Moreover, the second term denotes external force based on
the phase of the movement. st is the phase and starts at 1 while it ends at 0. This design
implies that when external force equals zero, the system will converge to the attractor
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qR(T). Equation (A3) represents a feedback controller (spring-damper system) since it
covers current state.

During black-box optimization, W is the parameter that will be optimized based on
cost function. The nonlinear forcing term is a function with weight parameter W . The
general case is multiplying a set of Gaussian kernels. During iteration, the weight will learn
from the cost of each trajectory.

h(st) = φ(st)
TW (A4)

[φ(st)]j =
wj(st)

∑
p
k=1 wk(st)

(A5)

wj = [exp(− 1
2σ2

xj
(st − cxj)

2), exp(− 1
2σ2

yj
(st − cyj)

2), exp(− 1
2σ2

θ j
(st − cθ j)

2)] (A6)
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