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Abstract: This article deals with the design of a simple predictive control algorithm applied to a
bidirectional DC-DC power converter for the angular speed control of a DC motor. We used the
dynamics of a DC motor but mathematically reduced them to arrive at a simple model that is ideal
for our purpose, not only to meet the control objective but also to generate reliable data for further
analysis. This predictive control approach is based on the discrete time mathematical model of a
DC motor. A huge capacitor to emulate an electric vehicle battery was then successfully connected
to our experimental platform. Due to the robustness of the proposed control algorithm, the same
predictive control scheme provided sufficient information to monitor the battery’s state. On this
basis, and due to the system’s efficiency, it was possible to configure a fault detection scheme in
our electric car battery emulator using only classical statistical tools. A PIC18F252 microcontroller
was used in our experimental platform to implement our predictive control algorithm. It was then
appropriately coupled to the power electronics required by the DC-DC converter to drive the DC
motor. Our experimental results proved the excellent performance of the control method and also
of the health monitoring system. On the other hand, the main difficulty in achieving our main goal
was the realization of discrete control, which had to be as simple as possible while maintaining the
control objective and while also being capable of generating reliable data for the health monitoring
stage. Thus, the primary contribution of this work was the development of the predictive control of
the speed of a universal motor, followed by the modification of the experimental design to simulate
an electric car battery and the introduction of a novel statistical method for fault detection.

Keywords: bidirectional DC-DC converter; predictive control; DC motor; health monitoring

1. Introduction

In many engineering applications, using DC (Direct Current) motors under speed
control configuration is a common requirement [1,2] because DC motors can provide a
high starting torque and are suitable for speed control. Many speed control strategies
have been developed for these motors, for example, a modified PI (Proportional-Integral)
speed controller was developed in [3], and a comparison between a fuzzy logic and a
PID (Proportional-Integral-Derivative) controller for a universal DC motor was reported
in [4]. The latter report concluded that fuzzy logic performs better than PID controllers,
but they require several fuzzy algorithm rules, which are not easy to conceive. There have
been many other control strategies for the speed control of DC motors, for example, the
well-known sliding mode control theory was used in [5], the H∞-robust control was in-
voked in [6], the adaptive control point of view was conceived in [7], and machine learning
techniques were used in [8]. Whatever the strategy, the implementation of nonlinear con-
trollers requires the programming of complex mathematical formulas. Therefore, designing
controllers that are as simple as possible is attractive, as long as the control objective is
met. Predictive control theory can help in this regard because predictive control relies
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on modeling for prediction, which can be as simple as possible [9]. The development of
an experimental platform for controlling DC and AC motors was described in [10]. This
experimental platform was realized by using an Arduino Uno board and Matlab. An exper-
imental platform for controlling a DC motor using the dSPACE DS1104 system was also
reported in [11]. In contrast, some recent works used numerical simulations to study speed
control strategies, as in [12], where a PI controller was designed using the dominant pole
compensation method. However, this approach introduced a certain delay in the control
implementation, which undermined the system’s behavior. Our experimental platform
uses a PIC microcontroller unit due to its low cost and reliability [13].

From a power electronics point of view, the bidirectional DC-DC converter is a com-
mon power converter used in many applications, such as fuel cell hybrid power systems,
battery chargers, and uninterruptible power suppliers [14,15]. Therefore, the correct han-
dling of a bidirectional DC-DC converter is essential to ensure the efficiency of the whole
system [16,17]. Moreover, an essential property of bidirectional DC-DC converters is their
ability to transfer electrical energy between two DC sources, such as batteries and capaci-
tors [18]. Within the various control technologies, predictive control, or model predictive
control, has its own advantages and disadvantages, but its efficiency in developing control
algorithms is well accepted [9,19]. The essence of predictive control is based on three ele-
ments: (a) a predictive model; (b) time window optimization; and (c) feedback correction.
The key to this method is to work on a moving time interval, especially when dealing
with complex systems with dynamic changes and uncertainties, as in such cases, there is
no reason to judge the optimization performance over the full time range [20,21]. As an
example of how simple predictive control can be, see [22]. This control method can also be
used for fault detection in a controlled system [9,23,24]. In addition, there are many control
strategies in the literature. However, in order to generate data for health monitoring, the
control method needs to be carefully programmed. Firstly, the control strategy must meet
its control objective. Secondly, the control must be fault tolerant in order to generate the
data needed for a health diagnosis (see, for example, [25]). In this article, a simple discrete
control is proposed to generate feasible data for fault diagnoses in wind turbines. In our
approach, we propose a simple predictive control for the health monitoring stage, which is
simpler than the previous one and is also easy to implement.

Given the above, the main objective of this article is four-fold: to design an experimen-
tal platform for the speed control of a DC motor (Target 1) by using a simple predictive
control (Target 2), and to emulate an electric vehicle battery on the road (Target 3) for health
monitoring using only classical statistical tools (Target 4), such as histograms and Pareto
distribution charts. To do this, we modified a DC-DC converter to emulate a faulty car
battery system. We also set up two stages to achieve our goal. First, using the predictive
control framework, we used the bidirectional DC-DC converter to realize the speed control
of a DC motor. However, the bidirectional DC-DC converter was used to power a resistive
load, and the motor was located on the inductive power management side. The predictive
control algorithm was implemented by using a PIC18F252 microcontroller.

Moreover, the DC motor used had a nominal power of 220/240 V at 50/60 Hz and a
nominal angular speed of 1000 rpm. After the first stage, we modified the experimental
platform to emulate an electric car battery on the road and applied the control strategy to
obtain a statistical diagnostic system to detect faulty battery behavior. Our approach can be
summarized as follows:

• Design a predictive controller to regulate the angular speed of a bidirectional DC-DC
converter. This control strategy must be robust against system faults.

• Design a fault emulator for an electric car battery emulator by modifying the DC-DC
experimental platform by adding an external capacitor. This modification captures
damage to the charge capacity of an electric battery.

• Propose a statistical fault detection algorithm to capture the failure behavior of
the battery.
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• From the point of view of electronics, we designed an experimental platform capable
of emulating the energy management between a battery and an ultra-capacitor.

• From the point of view of statistical data analyses, our approach can discriminate between
healthy and faulty cases of the ultra-capacitor model on our experimental platform.

The novelty of this work is the conception of a new experimental implementation
capable of capturing the behavior of a car battery. Our proposal presents an easy-to-
implement battery car emulator, ahead of the usual expensive car battery experiments.
Most of the existing literature uses numerical simulations (see [15] and the references
therein). In addition, we conducted a new statistical analysis to determine whether failure
affects the battery performance. Nevertheless, we designed a predictive controller to
regulate the speed of the DC-DC motor as a car battery emulator.

Furthermore, our experimental platform provides us with experimental data for
further analysis. Due to the observed data being similar between the different experimental
realizations, it was a data processing challenge for our algorithm to discriminate between
the healthy and unhealthy behaviors of our system. For comparison, in [26], the authors
proposed a boxplot and a Gini fault diagnosis method using data from two cars involved
in a fire ignition fault for their diagnostic approach. In [27], the authors proposed a residual
system based on a disturbance system to tune the fault diagnosis of electric car batteries.
This tuning process requires some threshold selection based on expertise. In other cases,
Shannon entropy is used, which requires long-term data storage [28,29]. Our approach
is complementary to the previous ones, with the advantages of simplicity and ease of
reproduction. From the point of view of experimental realization, our approach has some
advantages. For instance, our design is low cost relative to the one in [30]. We use a DC
motor for the car actuator, which is not used, for example, in [31,32]. Finally, our control
motor algorithm is simple. For reference, see, for example, [33,34].

The rest of the article is structured as follows. Section 2 introduces the bidirectional
DC-DC converter and the proposed configuration for speed control of a DC motor. Section 3
presents the mathematical model of a DC motor. A simplified model only is also shown
for the control layout. A predictive control scheme is also designed. Section 4 presents the
developed experimental platform, including some practical results, and Section 5 presents
some remarks on its performance. Then, Section 6 details the observed modification of
the platform to emulate a car battery with healthy and faulty behavior, respectively. The
statistical study of fault detection is explained in Section 7. Finally, the concluding remarks
are given in Section 8.

2. The Bidirectional DC-DC Converter Configuration

The bidirectional DC-DC converter diagram is shown in Figure 1. This circuit has two
standard operating modes [18]:

• Mode 1: transistor T2 is turned on and T1 is turned off. The current iL increases almost
linearly. Then, the capacitor is discharged through the electrical load R.

• Mode 2: transistor T2 is turned off and T1 is turned on. The current iL decreases almost
linearly. In this mode, the capacitor is charged. The electrical load R also receives
electrical energy.

An alternative mode could be when both transistors are turned off [16]. In this option,
the circuit can be in Boost or Buck mode. In our predictive control strategy, we will call it
the transition mode from Mode 1 to Mode 2 and vice versa. The location of the DC motor is
shown in Figure 1. To highlight, vin can be replaced by a short circuit or by another electrical
element. Normally, in other applications, the DC motor is located on the electrical side of
the load R. Therefore, to achieve the control objective, the predictive control must generate
the triggering signals to the aforementioned transistors. Figure 2 shows the control block.
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Figure 1. Diagram of the bidirectional DC-DC converter with a DC motor. The input voltage vin is
the optional power supply to the motor. L is the field inductive load of the motor.

Motor Speed
Sensor

Predective

Control

ωref

T1

T2

1

Figure 2. An overview of the predictive control block, where ωre f is the setpoint and T1 and T2 are
the output signals from the controller to the transistors.

3. Mathematical Model of a DC Motor

For control realization, we use a DC motor in a series-excited connection given by [35]:

J
dω

dt
= Tem − TL − Bω, (1)

where TL is the load torque, B is the viscous friction constant, J is the shaft inertia of the
motor, and ω is the motor rotational speed (the controlled variable). The electromagnetic
torque generated by the DC motor is:

Tem = KaφiL. (2)

The above torque depends on the motor constant Ka and the current through the motor
iL, which is given by:

L
diL
dt

= Vin − RMiL − Kaφω, (3)

where RM and L are the winding resistance and inductance of the DC motor, respectively,
and φ is a magnetic flux function that depends mainly on the current, the saturation, and the
hysteresis effects of the motor’s electromagnetic components. For control design, a simple
model of the DC motor is possible by assuming φ ≈ iL and zero viscous friction, resulting
in [36]:

J
dω

dt
= Kai2L − TL. (4)

An option for the predictive control design is to further simplify the above model.
Note that the system is stationary when Kai2L = TL. So, using a coordinate change
y(t) = ω(t) + t[TL/J], we obtain:

J
dy
dt

= Kai2L. (5)

For simplicity, we rename y(t) = ω(t). This gives us a simplified model for the
control design:

J
dω

dt
= Kai2L. (6)
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Finally, we need to analyze the above equation in the discrete time domain:

ω(k + 1) = ω(k) +
h
J
[Kai2L] = ωre f , (7)

where h is the Euler parameter. The above equation predicts that w(k+ 1) is ωre f . Therefore,
Kai2L can be considered as the desired control signal. This is the one-step-ahead prediction
similar to that reported in [9,37]. Hence, the optimization phase is not necessary. From
Equation (7), we obtain:

Kai2L =
[ωre f − ω(k)]J

h
. (8)

In our declaration, the h parameter must be set to a possible small number. Fi-
nally, from Equation (8), we arrive at the predictive control scheme which is described in
Figure 3. This algorithm will increase or decrease the current supplied to the motor so that
it will run at the desired speed ωre f in a zigzag manner around this value.

Figure 3. Flowchart of the proposed predictive control algorithm, where k is the iteration label.

Note. According to [38] (chapter 6), if the prediction is fulfilled, then the closed-
loop system can be assumed to be stable. However, if the experiment has robustness
problems, then there is a way to improve the controller performance by adding some
constraints [38] (chapter 8). In our experimental platform, it was not necessary to do that
since the experiment showed an acceptable performance.

4. Experimental Platform Design: The Short Circuit Battery Set-Up

Here, we will show the results of the experimental platform shown in Figure 4 but
configured for the battery case, called the short circuit (vin = 0) battery stage. Therefore,
the main objective of this experiment is to test the performance of the main parts of our
electronics, including the motor speed sensor circuit.
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Figure 4. An overview of the experimental platform. The reference command ωre f is given by the
software inside the microprocessor −µp− program. Here, Q1 = 2N2222A, D1 = D2 = 1N4004,
T1 = T2 = MJE3055T, R1 = R2 = 330 Ω, R3 = 1 KΩ, C = 470 µF, Rs = 1 Ω, VH = 24 V, and Vi = 12 V
at a rated current supply of 2.1A (data from the manufacturer of the power source). The DC motor
has a nominal power of 220/240 V at 50/60 Hz and a nominal angular speed of 1000 rpm (data from
the manufacturer of the universal motor). This motor is universal. Here, the battery is a charging
capacitor, a standard emulator for electric car batteries on the road.

Figure 5 shows the motor speed sensor implemented in our platform. We used the
12-pole analog inductive tachometer fitted to the motor by the manufacturer. Experimen-
tally, an output sensor gave readings of 0.82 V about 2200 rpm motor speed, and about
0.61 V at 1600 rpm. Figure 6 shows the diagram connection to the microcontroller unit.
A picture of the experimental platform is given in Figure 7. For clarity, Appendix A shows
an screenshot of the C-Program located inside the microcontroller unit.

In addition, Figure 8 shows the experimental result of the motor speed sensor for
different values of ωre f in hexadecimal format. On the other hand, Figure 9 shows the
case of a faulty scenario by adding a capacitor of 100 µF in parallel to the capacitor C of
the bidirectional converter shown in Figure 4, and by using the same ωre f data. This is
to appreciate the sensitivity of our experimental platform to changes in its capacitance.
In Figures 8 and 9, the black arrows indicate the time moments of the control activations.
The red arrows represent the moment when external perturbations are added to the motor’s
shaft by stopping it and then realizing it by hand.
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Figure 5. Motor speed sensor. Here, DR = 1N4004, Ra = Rb = 10 KΩ, CL = 10 µF, and Cp = 1 µF.
The operational amplifiers were realized by using an IC LM358. Furthermore, VD = 5 V.

Figure 6. Microcontroller diagram connection. Here, the LED in RB4 of the microcontroller is used to
visualize the system operation. Additionally, the 5 V power supply includes a 10 µF filter capacitor
to ground it.
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Figure 7. A photo of the experimental platform for the short circuit battery set-up. From top to
bottom: the power supply, the electronic circuits, and the DC motor (a universal motor). A data
acquisition card is used to read data via the computer.

Figure 8. Experimental result of the motor speed sensor for different references. From left to right:
ωre f = 0x26; ωre f = 0x46, ωre f = 0x86. Black arrow: control activation; red arrow: external
perturbations (stopping it).

Figure 9. Experimental results for the faulty scenario by adding a capacitor, with the same reference
as Figure 8. From left to right: ωre f = 0x26; ωre f = 0x46; ωre f = 0x86. The black arrows indicate
control activations. Meanwhile, the red arrows indicate the presence of external perturbations, as in
the standard experiment.

5. Short-Circuit State Experimentation

We use a motor without a load and added external torque perturbations from the
previous section to study the proposed control performance. From Figures 8 and 9, we
can see the transient response of the controlled system for each perturbed case previously
specified. The figures do not have a consistent axis scale since their objective is not a
quantitative comparison, and to show the transient responses of the controlled system.
We can see that the transient responses of the system are different due to the non-linear
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behavior of the whole system, including friction and motor-induced hysteresis, among
others. Nevertheless, our controller responds and stabilizes the closed-loop system as
expected from the predictive control point of view. A steady state error is observed due
to the non-compensation of non-linearities of the simple predictive control, as discussed
in [39]. Figure 10 shows a visual comparison between healthy and faulty cases (when
the capacitor of 100 µF is either missing or present) for wre f = 0x26. We can see that the
controller is more sensitive to the faulty case than to the standard one.

Figure 10. Experimental results for ωre f = 0x26 (blue: nominal case; orange: faulty case).

6. Experimental Results for the Faulty Car Battery Emulator Setup

After studying the short circuit battery case to analyze our experimental platform’s
performance, we successfully added a battery emulator. Based on the experiments, the
best location for our battery emulator was found (see Figure 11). In addition to using a
10,000 µF supercapacitor, other electronics were added to emulate a failed car battery, see
Figure 12. By failures, we mean, for example, the effect of the charging/discharging process
on the performance of an electric car battery. To do this, we modified the relationship
between the resistances Ri and R0. The load resistance R0 can also affect the capacitor’s
discharge/charge time constant. Therefore, if Ri is a lot smaller than R0, and then R0
changes, we can emulate battery failures. We proceed as follows. We set the value of the
resistor Ri to 100 Ω. Then, R0 will take the following values for the healthy and faulty
states of our system:

• Healthy case: R0 = 1 M Ω;
• Faulty case A: R0 = 270 K Ω;
• Faulty case B: R0 = 150 K Ω.

The above stages emulate the depletion of the battery as R0 is reduced. Thus, the faulty
case consists of variation in the capacitor’s charge and discharge time constant around
the healthy scenario. We have used capacitance and resistance to produce time constants
similar to those presented, for example, in [40]. Furthermore, our dynamic model is close
to the model reported in [40]. After the short circuit phase, we set ωre f = 0x26. During the
experiment, the voltage signal from the battery model at point + is taken for each case and
the information from the motor speed sensor is read too (see Figure 12). These data are also
used by our fault diagnosis methods. Figures 13 and 14 show the experimental results for
the healthy scenario.
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Figure 11. A recent experimental platform for capacitive battery monitoring, where a battery emulator
is designed in terms of adding a new circuit connected to the DC motor. This circuit, which simulates
a car battery, is shown in the following figure.

Figure 12. A simple battery electric model shown schematically in Figure 11 as the battery. Ce is an
electrolytic capacitor rated at 10,000 µF.

Figure 13. Experimental results for the healthy case without disturbances. The control goes from the
off to the on position at about 2.8 seconds.
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Figure 14. Experimental results for the healthy case with disturbances.

Figures 15 and 16 show the experimental results for faulty case A. Similar results
are obtained for faulty case B and are not presented for brevity. Comparing these figures
corresponding to the healthy case (Figures 13 and 14) and the figures corresponding to faulty
case A (Figures 15 and 16), differences can indeed be observed. The next section analyzes
the corresponding data to reveal the differences between healthy and defective cases.

Figure 15. Experimental results for faulty case A without disturbances. The control goes from the off
to the on position at about 3.6 s.

The following items can be used to improve the technical quality of our experimen-
tal platform:

• The motor speed sensor can be improved by using encoders or potentiometers. These
sensors are more accurate in measuring the motor speed.

• NPN power transistors can be replaced by their equivalent MOSFET parts. These are
more applicable from a power electronics point of view.

• Change the circuit into a printed circuit.
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Figure 16. Experimental results for faulty case A with disturbances.

7. Battery Diagnoses System Design

Fault detection in electric vehicle battery systems is essential for safe driving and
extending the battery life. Battery failure has traditionally been a significant safety con-
cern for electric vehicles, and early failure diagnosis can be approached from different
methodologies, e.g., Bayesian optimization [15], statistical analysis [41–43], and neural
networks [44,45], among others. To achieve early and accurate detection of battery system
failures for rapid early warnings, this paper proposes a very simple method based only on
a classical analysis of normalized data. To compare the previous experimental data, it is
necessary to work with normalized experimental data. The “relative value” of the battery
voltage with respect to the sensor information is then calculated:

Vrel =
Vn, battery − Vn, sensor

Vn, sensor
(9)

where Vn, battery is the voltage of the n-experiment battery and Vn, sensor is that of the sensor.
This simplifies the analysis by reducing the number of variables from two to one. This new
variable is also more intuitive, as it is calculated on the basis of the sensor voltage signal,
which is in principle independent of battery failure.

A statistical analysis of this Vrel was then carried out. The initial results showed some
atypical values that made it difficult to interpret the graphs and the obtained overview
of the statistical indicators. However, before removing these outliers, they were analyzed
to see if their existence could help us to understand the dynamic behavior of the battery.
As these outliers are of a relatively high magnitude, we first investigated whether these
data could be considered extreme data to fit a Pareto distribution. The results did not
discriminate between healthy and faulty cases.

In addition, the proportion of these outliers did not allow us to distinguish between
healthy and faulty cases. Therefore, it was decided to remove them in order to facilitate
the interpretation of the results. Therefore, the removal of outliers can be considered as a
preprocessing stage.

Figures 17–22 show the experimental results after the preprocessing tasks with dif-
ferent approaches. The scatter plot and the histogram allow us to discuss the behavior
in all cases. In Figure 17, corresponding to the healthy case without disturbances, it can
be observed that the values of Vrel are distributed between approximately 0.5 and 4 with
significant variability. In faulty case A without disturbances, Figure 19 shows that the
importance of Vrel is concentrated in two bands. One band is centered at 6 (the lower band
with fewer observations) and the other at 40 (the upper band). In both regions, the points
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are significantly clustered and show much less variation than in the healthy case. Similar
results are obtained for faulty case B without disturbances (see Figure 21).

Figure 18 shows that in the healthy case with disturbances, the Vrel values are dis-
tributed approximately between the values 0 and 6, which again shows a large variability.
This variability is minimal during the time intervals with disturbances, where the variation
is significantly reduced. In comparison with Figure 20, we can see that the Vrel values are
again highly concentrated in a lower band centered around 6 and an upper band centered
around 40. In this case, in the time intervals with disturbances, the Vrel values show more
significant variability, returning to the upper range when the disturbances cease. As before,
in faulty case B with disturbances, Figure 22 shows similar results as in case A.

Figure 17. Healthy case without disturbances: (a) a dot plot of the variation in Vrel with regard to
time. (b) Histogram of the Vrel variable.

Figure 18. Healthy case with external disturbances: (a) a dot plot of the variation in Vrel with regard
to time. (b) Histogram of the Vrel variable.

Figure 19. Faulty A case without disturbances: (a) a dot plot of the variation in Vrel with regard to
time. (b) Histogram of the Vrel variable.
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Figure 20. Faulty A case with external pertubations: (a) a dot plot of the variation in Vrel with regard
to time. (b) Histogram of the Vrel variable.

Figure 21. Faulty B case without disturbances: (a) a dot plot of the variation in Vrel with regard to
time. (b) Histogram of the Vrel variable.

Figure 22. Faulty B case with disturbances: (a) a dot plot of the variation in Vrel with regard to time.
(b) Histogram of the Vrel variable.

For example, in faulty cases A and B, both in the disturbed and undisturbed cases,
the Vrel values are generally higher than the corresponding values in the healthy cases.
They also show less variability. In general, the data distributions in the healthy and faulty
cases show different behavior. Moreover, this fact allows us to consider the Vrel variable as
a good indicator for diagnosing the battery status. Thus, from what has been presented so
far, our objective of using a statistical tool that allows the diagnosis of failures in our system
has been fully achieved. From here, a comparative study using other statistical methods,
such as Bayesian optimization and neural networks, is left for future work.

In summary, and based on the experimental results, our control strategy was able
to generate reliable data for the health monitoring phase. In other words, because of the
efficiency of the controller and the electronic design, the data generated were sufficiently
reliable that we were able to perform fault diagnosis with standard statistics. We think this
is an important point. Furthermore, the technology used for this is simple and cheap. All
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the electronic components of our experimental platform are accessible almost anywhere in
the world. Furthermore, from an academic point of view, our design can improve the skills
of future engineers regarding the subject of the article.

8. Conclusions

Dealing with fault detection in electric vehicle batteries is not an easy problem, as
the extensive literature shows. In this paper, we presented a study on an experimental
diagnostic system. First, we designed an emulator for an electric car battery and conceived
a predictive controller to regulate the velocity of the motor that is robust to external
perturbations and system faults. This control strategy is based on a reduced mathematical
model of a DC motor. The advantage is its simple control algorithm, which is easy to
implement on the experimental platform.

In addition, its robustness was experimentally proven, but light chattering is intro-
duced, which could affect the behavior of the electric motor. Therefore, a new experimental
platform has also been designed. In future work, the controller can be improved to reduce
this effect. Once the platform was created, a modification was introduced to detect damage
to the battery’s charge capacity. Then, a statistical fault diagnosis method was presented
based on a study of the normalized error in voltage measurements, which allows for the
discrimination of the faulty behavior of the ultra-capacitator. The experimental results
prove the suitability of our approach.

Thus, we can state that the main contribution of this paper was the design of a
discrete predictive controller to regulate the speed of a universal motor, and the subsequent
modification of the experimental setup to emulate an electric car battery to test fault
scenarios and propose an innovative statistical fault detection method.
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Appendix A

In order to make the experiment reproducible, we here present the implementation
of the control algorithm, where the operational modes presented in Section 2 are clearly
identified. Moreover, a time delay of 25 µs was introduced for computational reasons.
Figure A1 shows the C-Program inside the microcontroller unit.
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#include "pic18f252.h"
#pragma config WDT=OFF, BOR=OFF, OSC=HSPLL, PWRT=0FF
void Delay(int i);
void main(void)
{

TRISBbits.RB4=0;
TRISBbits.RB0=0;
TRISBbits.RB1=0;
TRISAbits.RA0=1;
ADCON0=0b00000001;
ADCON1=0b10001110;
unsigned char wref=0x46;
for(;;)
{

ADCON0bits.GO=1;
while(ADCON0bits.GO==1);
if(wref>ADRESL)
{

PORTBbits.RB0=0;
PORTBbits.RB1=0; //Mode 2
PORTBbits.RB4=1;
Delay(1);

}
else
{

PORTBbits.RB0=1;
PORTBbits.RB1=1; //Mode1
PORTBbits.RB4=0;
Delay(1);

}
PORTBbits.RB0=1;
PORTBbits.RB1=0; //Transition mode
Delay(1);

}
} // End main program
void Delay(int i)
{

int j=0;
for(int k=0;k<(i*100);k++)
{

j++;
}

}

Figure A1. Screenshot of the PIC18F252 microcontroller C-Program. This is a simple program and
easy to follow. The time delay introduced by the program is about 25 µs.
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