
Citation: Khaneghah, M.Z.;

Alzayed, M.; Chaoui, H. Fault

Detection and Diagnosis of the

Electric Motor Drive and Battery

System of Electric Vehicles. Machines

2023, 11, 713. https://doi.org/

10.3390/machines11070713

Academic Editor: Jose Alfonso

Antonino-Daviu

Received: 7 June 2023

Revised: 30 June 2023

Accepted: 3 July 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Review

Fault Detection and Diagnosis of the Electric Motor Drive and
Battery System of Electric Vehicles
Mohammad Zamani Khaneghah 1, Mohamad Alzayed 1,* and Hicham Chaoui 1,2

1 Intelligent Robotic and Energy Systems Research Group, Faculty of Engineering and Design,
Carleton University, Ottawa, ON K1S 5B6, Canada; mohammadzamanikhane@cmail.carleton.ca (M.Z.K.);
hicham.chaoui@carleton.ca (H.C.)

2 Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
* Correspondence: mohamad.alzayed@carleton.ca; Tel.: +1-613-520-2600 (ext. 7467)

Abstract: Fault detection and diagnosis (FDD) is of utmost importance in ensuring the safety and
reliability of electric vehicles (EVs). The EV’s power train and energy storage, namely the electric
motor drive and battery system, are critical components that are susceptible to different types of
faults. Failure to detect and address these faults in a timely manner can lead to EV malfunctions and
potentially catastrophic accidents. In the realm of EV applications, Permanent Magnet Synchronous
Motors (PMSMs) and lithium-ion battery packs have garnered significant attention. Consequently,
fault detection methods for PMSMs and their drives, as well as for lithium-ion battery packs, have
become a prominent area of research. An effective FDD approach must possess qualities such as
accuracy, speed, sensitivity, and cost-effectiveness. Traditional FDD techniques include model-based
and signal-based methods. However, data-driven approaches, including machine learning-based
methods, have recently gained traction due to their promising capabilities in fault detection. This
paper aims to provide a comprehensive overview of potential faults in EV motor drives and battery
systems, while also reviewing the latest state-of-the-art research in EV fault detection. The information
presented herein can serve as a valuable reference for future endeavors in this field.

Keywords: fault detection and diagnosis (FDD); electric vehicles; PMSM; lithium-ion battery pack;
model based; data driven; machine learning; deep learning

1. Introduction

Electrified transportation is one of the main strategies to reduce carbon emissions
contributing to climate change and global warming. Additionally, limited fossil fuel sources
and instability in countries producing fossil fuels draw attention to electric vehicles (EVs).
The number of EVs is rising at a fast pace, and many governments are putting forth
legislation to increase the market share of EVs in the next decade. In this regard, the safety
and reliability of EVs become critical to gaining a considerable market share. EVs include
several components, all of which are prone to different types of faults. However, the electric
motor drive and battery system are its core components, and the main faults of an EV
usually occur in these components. As a result, the healthy operation of these parts is of
high importance and needs precise monitoring.

Electric motors are employed extensively in various industries and are especially
utilized as the powertrain of EVs. For the transportation industry, EVs’ reliability and
safety are crucial. However, due to their harsh working environment, various types of
faults can occur in the motor and its drive system that can degrade system performance and
reduce the reliability and safety of EVs. The interior permanent magnet synchronous motor
(IPMSM) is the most used in EVs based on high power density and efficiency [1]. On the
other hand, as the demand for PMSMs grows and the cost of their materials remains high,
designers are forced to optimize their designs, increasing complexity and making the PMSM
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more vulnerable to different types of faults. At the same time, the transportation industry
requires continuity despite the operating environment of EV motors. Electrical motor drive
faults may occur in the motor as the main part or in the inverter of the motor drive system,
and they can be classified into three main groups: electrical faults, mechanical faults, and
sensor faults [2]. Interturn short fault (ITSF), open- or short-phase faults, demagnetization
fault and open or short circuits of the switches in the inverter are considered electrical
faults. Faults related to the rotor, such as bearing faults, bent shaft and airgap eccentricity,
are mechanical faults. Defects in each of the various sensors are referred to as sensor faults.
If these faults are discovered early, proper measures can be taken to avoid costly damage
and catastrophic failures.

As the energy storage part of EVs, the lithium-ion battery system has taken the lead in
EV applications due to its outstanding features, including high power and energy density,
long lifespan and environmental factors [3]. A battery pack usually comprises hundreds
of cells connected in series and parallel configurations. However, different types of faults,
including battery abuse and actuator and sensor faults, may occur in battery systems
resulting in battery degradation and accelerated aging, EV failure and dangerous accidents.
It is reported that 30% of EV accidents stem from battery faults [4].

Thus, developing reliable online fault detection and fault tolerant control is needed
to guarantee safe and continuous EV operation. However, complex operations and other
unpredictable factors make early fault detection challenging. Fault detection and diagnosis
(FDD) is a technique to monitor and determine the operating state of an electric motor,
which allows early fault detection and prediction. With the use of FDD, various faults can
be detected and identified, and by taking proper measures, the safety and reliability of EVs
increase [5].

Many FDD methods have already been introduced to overcome the risk of poten-
tial faults in electric motor drives and battery systems. FDD methods can generally be
categorized into model-based, signal-based, data-driven (knowledge-based), and hybrid
methods. The model-based methods are based on the difference between the measured
and estimated values by the system model and observers. There are different model-based
techniques, such as state observer, parameter estimation, extended Kalman filter (EKF),
linear parameter varying and finite element analysis (FEA), to name a few [6]. In signal-
based methods, the fault symptoms are extracted from the output signals, and there is
no need for an accurate system model. The features can be extracted through the time
domain, frequency domain or time-frequency domain by analyzing the spectrum, phase,
magnitude, deviations, etc. [7]. Some of the feature extraction methods are fast Fourier
transform (FFT), Hilbert Huang transform (HHT), Wavelet transform (WT) and Winger
Ville [6]. Model-based and signal-based methods need prior motor knowledge, are sensitive
to load and are slow at fault detection. Data-driven methods differ from model-based and
signal-based methods, as they can be implemented without a pre-existing knowledge of
the model or signal pattern of traction systems, which is the main advantage of this type
of FDD. A considerable amount of historical data under healthy and faulty conditions
are required for the data-driven method to be performed effectively; however, it is not
considered an insurmountable challenge. Also, as in this method, the system model is
not required; it has more capability to generalize the FDD method to multiphase motors
with more complex models and more uncertainties. Some of the primary and most-used
approaches in data-driven methods include Hypothesis Test and Test Statistics, Principal
Component Analysis (PCA), Independent Component Analysis (ICA), Canonical Correla-
tion Analysis (CCA), Neural Networks (NN), Support Vector Machine (SVM), Bayesian
Network (BN), Deep learning and other machine learning methods.

This paper surveys different types of electric motor drives and battery system faults
to understand their basis and effects. Different FDD methods are introduced, and recent
works and state-of-the-art techniques are reviewed, including their advantages and limita-
tions. Section 2 introduces the different types of faults in the electric motor drive. Section 3
presents the battery system faults. The existing model-based and signal-based FDD meth-
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ods for PMSM motor drives are studied in Section 4. Section 5 focuses on the data-driven
methods, and the battery system FDD methods are reviewed in Section 6.

2. Electric Motor Drive Faults

Three main groups of faults in PMSM motor drives are categorized as electrical,
mechanical and sensor faults. These faults may occur in the motor part or the inverter part.
Figure 1 shows a diagram of various electric motor drive faults.
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Figure 1. Various electric motor drive faults.

2.1. Electrical Faults

The main electrical faults, as noted above, are winding interturn short-circuit faults
(ITSF) and open- or short-phase and demagnetization faults, which are related to the motor.
Additionally, open circuits or short circuits in switches and DC-link capacitor failures are
associated with the inverter.

2.1.1. Interturn Short-Circuit Fault

Breakdown and degradation in the stator turn-to-turn windings insulation of a PMSM
are usually due to a power surge, moisture, or mechanical, electrical and thermal stresses,
resulting in a short circuit in the windings [8]. This failure is known as the fault (ITSF) and
has the highest failure rate among motor faults [9].

As shown in Figure 2, the shorted turns create an additional circuit loop connected to
flux linkages created by other motor windings and the rotor magnet. A high-fault current is
created in the ITSF windings because of the low impedance and high-coupled flux linkage
voltage leading to stator overcurrent and overheating [10,11]. At the early stages of the
ITSF, with failure in only a few percentages of turns, the motor can continue to operate
with degraded performance. However, the heat produced by the overcurrent can damage
the insulation of the nearby turns and expand to the whole phase at a high pace [12]
and lead to a phase-to-phase or phase-to-ground short circuit and severe motor failure
in a short time with high repair costs. Also, the rotor permanent magnet can potentially
be permanently demagnetized by the high fault current in the extra current route [13,14].
Therefore, incipient fault detection becomes critical for ITSF. Usually, the ratio of the shorted
turns to the number of turns in a coil is regarded as the severity of ITSF. As the severity
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increases, the induced back-EMF voltage of the shorted turns rises and subsequently, the
short-circuit current rises rapidly, resulting in more system imbalance [15].
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2.1.2. Demagnetization Fault

Physical damage, high-temperature operation, aging or an inverse magnetic field
can all induce demagnetization, which reduces the strength of the permanent magnet
(PM) inside the IPMSM. Also, an ITSF, if not detected and tolerated in time, can result in
partial demagnetization due to the induced reverse magnetitic field [16]. Reversible and
irreversible demagnetization are the two forms of demagnetization. The former is caused
by a field weakening control, whereas the second suffers from permanent demagnetization.
An inappropriate operating point of the IPMSM because of the combined influence of
temperature and a shift in the permeance curve [17] is a key cause of irreversible demag-
netization. If demagnetization happens, it lowers the torque of the PMSM due to the
reduced PM flux linkage. Consequently, it negatively impacts the motor’s characteristics
and efficiency [18]. The current in demagnetized PMSMs must increase to compensate for
the effect of a weakened PM and produce the same torque as a healthy state [19]; neverthe-
less, this means increasing copper losses and temperature [20]. On the other hand, high
temperatures can result in far more severe irreversible demagnetization [21]. Consequently,
the reliability and safety of the system would be decreased. Utilizing fault detection and
diagnosis technologies is vital to avoid such consequences. Demagnetization fault can
result in additional frequency components in stator current and the vibration and result
in pulsation in torque and speed. These signatures can be used for demagnetization fault
detection [22,23].

2.1.3. Open or Short Switches in the Inverter

Inverters are used in electric motor drive systems as a core component, as shown in
Figure 3. Due to the high-frequency operation, high power stresses, aging and other condi-
tions, the switching devices are the components most expected to fail while in use (about
38% of faults in drivers [24]), which commonly appear as a short-circuit or open-circuit
failure. Open-circuit faults usually occur because of a gate signal failure or disconnecting
of the wire. Such a fault does not stop the drive system from operating [25]. As an open-
circuit fault stops the defective phase winding stimulation in a switching device, the system
operates in phase-locking mode. As a result, the drive system loses equilibrium, and the
rotor is subjected to an imbalanced force, resulting in a considerable reduction in system
performance [2] and noticeable vibrations and can end in secondary faults in the motor due
to the lack of FDD. Short-circuit faults are usually the result of overvoltage, overheating,
breakdown of the protection components or a wrong gate signal [25]. Furthermore, when
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a power switch is short-circuited, the defective phase winding is constantly stimulated,
regardless of the rotor position, and causes instant overcurrent. Consequently, the faulty
phase creates a significant, reversed braking torque during its demagnetization period, and
the drive system’s stability is significantly damaged, resulting in a subsequent failure of
the entire system [26]. In this case, the protective circuits come into effect as an overcur-
rent is produced immediately, making the inverter shut down; it needs to be repaired to
operate again. Hence, identifying and isolating power transistor faults and their locations
accurately and quickly is critical for the safe functioning of a PMSM drive.
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2.2. Mechanical Faults

Mechanical faults are as important as electrical faults and need in-time detection. The
main mechanical faults are bearing faults and air–gap eccentricity. Some other mechanical
faults include a bent shaft, damaged magnet and bolt loosening [28].

2.2.1. Bearing Faults

A bearing fault is the most common fault among all possible motor faults, contributing
about 40–50% [29]. Bearing faults can be in the inner raceway, outer raceway, cage or
ball bearings. The main reasons behind the bearing fault are poor lubrication, mechanical
vibrations, shaft misalignment, overload, corrosion and eventually fatigue, even under
normal conditions. If the bearing defect is not detected and repaired in time, other forms of
faults, such as air–gap eccentricity, ITSF and even complete motor failure, are expected [30].
Figure 1 in [31] illustrates the rolling bearing structure.

2.2.2. Air–Gap Eccentricity Faults

Some mechanical problems, such as unbalanced loads, shaft misalignments, rotor
imbalance, missing bolt and bearing faults, result in a rotor eccentricity fault within the
motor [28]. In fact, it is the uneven air gap between the stator and rotor and is categorized
into three types: static eccentricity (SE), dynamic eccentricity (DE), and mixed eccentricity
(ME). SE refers to the condition that the minimum air gap has a fixed value and hardly
ever alters with time, mainly caused during the manufacturing stage. DE occurs where the
minimum air gap location rotates along with the rotor and is brought on by rotor flaws,
worn bearings, and bent shafts. The ME has both SE and DE defects simultaneously [32].

2.3. Sensor Faults

Different types of sensors, including current, voltage, speed, or position sensors, are
needed to provide a motor drive control system with different feedback signals. A sensor
fault refers to any defect or failure in such sensors which can happen due to vibration,
temperature, moisture, etc. [33]. Sensor faults can be open circuits, gain deviation or high
noise [34]. If a fault occurs in any of these sensors, incorrect information is fed to the
motor’s monitoring and controller system, leading to degraded performance and even
complete motor failure. Therefore, fault detection and diagnosis are essential to avoiding
such failure and reduced reliability [35].
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2.3.1. Current Sensor Faults

At least two current sensors are used to measure the phase currents of a three-phase
PMSM. Current sensor faults can be found in three types, zero output, incorrect gain and
dc offset, none of which need rapid detection and repair but can lead to reduced efficiency
and overheating [2].

2.3.2. Voltage Sensor Faults

If the voltage sensor fault causes a rapid increase in the measured DC-link voltage, it
can lead to system failure in a small period. In this situation, fast fault detection and repair
are critical. Sometimes a fault can cause slight changes and deviations in the measured
value, allowing the motor to operate for some time with reduced performance. Eventually,
any fault in the voltage sensor must be detected and tolerated [2].

2.3.3. Speed or Position Sensor Faults

The rotor position and speed are measured by the position and speed sensors in the
motor drive to feed the control system. Photoelectric incremental encoders are mostly
used for this object. Any fault in this sensor can affect motor functionality. It can result in
wrong-direction rotation, reducing the speed from the desired speed to zero, making the
motor stop, or, most dangerously, increasing the speed more than desired to the maximum
possible motor speed. The last situation results in persistent overload and even catastrophic
accidents. As a result, FDD has a crucial role in preventing such conditions [2].

3. Battery System Faults

The potential faults of the battery pack can be classified into three main groups: battery
abuse, connection faults, and sensor faults. The occurrence of each of these faults can result
in heat generation and, if they are not detected or tolerated in time, can increase the aging
speed and even result in thermal runaway and explosion [36]. Figure 4 shows a diagram of
battery system faults.
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3.1. Battery Abuse Faults

This group of faults contains overcharge, over-discharge, internal short circuit, external
short circuit, thermal runaway, etc., which can happen inside the battery. Errors in the
battery management systems and cell capacity degradation can result in overcharge and
over-discharge faults. These faults can lead to chemical and physical damage to the battery,
degrading the battery’s performance and safe operation [37]. The internal short circuit
refers to the insulation failure between the layers inside the battery, while the external one



Machines 2023, 11, 713 7 of 33

notices the shorted positive and negative terminals [38]. An external short circuit is a more
dangerous and noticeable fault than an internal short circuit, which is negligible in the early
stages. However, the internal short circuit can turn into an intense fault after a while [39].
Rapid voltage drop and thermal runaway are expected when a short circuit occurs.

3.2. Actuator Faults

Connection faults, cooling system faults, controller area network bus faults, etc. belong
to this group of faults. Due to the need for a high level of energy in EV applications,
the battery system usually consists of many battery cells connected in a parallel–series
configuration. Due to the working environment of EV, temperature changes, vibration and
aging, the connection can become defective. Loose connections can reduce the available
power, resulting in potential accidents. Increasing the resistance of the connection can cause
heat production and affect the battery performance [40]. If the cooling system fails, the
battery temperature may exceed the allowed temperature range and even lead to thermal
runaway, so it is one of the considerable battery faults.

3.3. Sensor Faults

Battery management system (BMS) plays a crucial role in the safe, reliable and effective
performance of EVs. This unit is responsible for several tasks, including estimating the
state of charge (SOC) and state of health (SOH) of the battery, thermal management, cell
balancing, etc., by monitoring the voltage, current and temperature of the cells [41]. In this
regard, many current, voltage and temperature sensors are utilized in the battery system.
Any defect and fault in these sensors can be reflected in the BMS performance and lead to
further faults such as battery abuse faults and significant failures, all of which reduce the
battery lifespan and safety.

4. Fault Detection and Diagnosis of Electric Motor Drives

Reliability and safety are always of high priority in every application, but in trans-
portation systems, they are even more critical, as transportation needs continuity and safety,
notwithstanding the operating environment of EV motors. As discussed, the electric motor
and its drive system are always vulnerable to different types of faults, which inevitably
occur [42]. Undetected faults can lead to performance degradation, high repair expenses
and even catastrophic accidents. To overcome such risks, increase reliability, avoid unex-
pected EV stops and high repair costs, and increase safety, FDD is considered in many
systems with different applications. FDD is a method of keeping track of motor performance
to detect, identify and locate faults as early as possible. FDD provides the opportunity to
take proper measures as soon as the fault occurs and tolerate the faults. An FDD technique
needs to comply with certain requirements to be considered effective, such as: (i) fast
detection time, (ii) robust to varying operating conditions, (iii) sensitive enough but with
no false alarm, and (iv) requiring no additional hardware (due to cost and complexity).
Selecting the proper fault index plays the most critical role in fault detection. Since the fault
can alter a motor’s parameters, utilizing multiparameter fault indicators can improve the
detection method’s robustness and accuracy [43]. Figure 5 indicates the overall schematic
of the EV motor drive system with FDD and fault-tolerant control.

As indicated in Figure 6, the FDD methods utilized in PMSM motor drives are di-
vided into three main classes: model-based, signal-based (or signal processing) and data-
driven [44,45]. Also, in some applications, combining these methods is used to take
advantage of different methods simultaneously, referring to hybrid FDD methods. Table 1
indicates a summary of FDD categories.
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Table 1. Summary of FDD categories.

Type Basis Features

Model-based Using the system model and the
estimated parameters for fault detection

Very effective and reliable for simple systems
Low cost and fast detection

Modelling complex systems is difficult
Uncertainties affect the model

Sensitive to load and parameters variations
Prior knowledge and model are needed

Signal-based
Using output signal and

signal-processing methods for
fault detection

Easy implementation
Suitable for complex systems

Slow detection speed or high cost for faster detection
methods due to the need for extra hardware

Data-driven Using historical data for training the
system and fault detection

No prior knowledge needed
No system model or signal pattern needed

Suitable for complex systems
Generalization capability

High accuracy, even for incipient fault detection
Quality and quantity of the historical data can

affect FDD performance

4.1. Model-Based FDD Methods

Model-based techniques are developed by comparing the measured values with the
estimated values produced by the system model. In the first stage, the mathematical model
of the motor is used to estimate the expected signal values in a healthy condition. Then,
these estimated values are compared with the actual measured signals and the residual
signals are generated. The signal (signals) considered for fault detection can differ based on
the desired fault type and fault detection methodology. In the second stage of model-based
FDD, the residual signals reveal if there is a fault or if the motor is operating in a healthy
condition [46,47]. Model-based approaches are fast and effective, but they need an accurate
system model, which brings limitations and reduces the efficiency of the FDD method for
complex systems with many uncertainties. Furthermore, expert knowledge is needed [48].
There are different model-based techniques [49], such as state observer [50], parameter
estimation [51], parity space equations [52], extended Kalman filter (EKF), linear parameter
varying, finite element analysis (FEA) and model predictive control (MPC), to name a few.
Different types of model-based FDD techniques have been introduced and some of them
have been studied as follows. Figure 7 shows general schematic of model-based method
where the green cycle is the fault detection unit.
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The state-observer method, as one of the most-used techniques with the general
diagram shown in Figure 8, is usually divided into two main subgroups: voltage-based
observer [54] and current-based observer [55]. The voltage-based methods are fast diagnosis
techniques and can be used to increase the fault detection speed, but usually, extra voltage
sensors are needed. Consequently, adding voltage sensors increases the system’s cost,
volume and complexity, which is regarded as a drawback for FDD techniques [56]. A stator
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flux linkage (SFL) DC-offset observer is proposed in [57] for stator fault detection. It is
analyzed in an antisynchronous reference frame (ASRF) after SFL is estimated in the stator
reference frame and transformed into ASRF. This method is simple and is unaffected by
operating conditions and stator connection type (delta or star). In [54], a voltage-based
observer is utilized for robust open fault detection to estimate the converter voltages and
takes advantage of obtaining reference voltage from the control system. In this case, there
is no need for extra hardware, reducing the cost of the FDD method. On the other hand,
as current sensors are usually utilized for motor control, using current-based observers
does not require additional sensors. In [58], a current state observer is used to generate a
residual current vector (RCV) by comparing the estimated value with the stator current. To
prevent false alarms caused by disturbances, the RCV is separated into different reference
frames to accurately detect and measure the severity of interturn short-circuit faults in
any stator-phase winding. Also, the electrical angular speed is estimated using the stator
voltages, eliminating the need for a speed sensor. Using state observers to detect sensor
faults needs robustness to parameter uncertainties and load variation as they can affect the
residual signal and cause nonzero values under healthy conditions. Based on the dynamic
characteristics of the EV, using adaptive thresholds can noticeably increase the efficiency
and performance of the FDD [59–61]. It is highly important to design an adaptive threshold
to avoid false or missing alarms.
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The theory of interval observer has introduced fresh concepts for detecting faults and
incorporating them into control. In contrast to the conventional scheme for observer-based
fault detection, the interval observer scheme eliminates the need for designing a residual
evaluator and threshold selector, reducing computational load. An improved interval
observer relying on the established mathematical model of the motor was used in [63],
which shows better robustness to electromagnetic perturbation and enables incipient ITSF
fault detection.

The Luenberger observer is another effective residual observer gaining attention and
improving observer-based FDD techniques. In [64], the Luenberger observer is utilized
for encoder fault detection for very low- to high-speed ranges. However, the Luenberger
observer has the drawback of sensitivity to motor parameter variations. To overcome
the nonlinearity of complex systems, the sliding mode control system is widely utilized,
which shows more robustness comparing the Luenberger observer-based methods. The
sliding mode observer for fault detection was first introduced and triggered attention [65].
In [66], sliding mode observer parameters are selected using linear matrix inequalities
so that the residual signal is affected only by the fault signals. It is used for detecting
PMSM demagnetization faults with high accuracy. In [67], a sliding mode observer is
used along with an exact differentiator to estimate the PMSM stator resistor for online
ITSF fault detection. It needs low tuning effort and is applicable for measurements under
noisy conditions.

Parameter estimation is the other model-based technique used for detecting faults. In
this technique, different motor and inverter parameters, such as current, voltage, back-EMF,
resistance and speed, are estimated based on the system models, and they are considered
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the expected healthy values or references. Then, these values are compared to the real
parameter values acquired online from the system. Deviations from the reference values
reveal the fault occurrence. In [68], the estimated DC-link current is used as the reference
value and compared with the actual measured value to detect and distinguish single
and multiple sensor and nonsensor faults. Also, the phase signal residual is utilized to
isolate the detected faults. The suggested technique in [69] utilizes the resistance and
inductance obtained from online parameter estimation, along with the second harmonic of
control voltage, as fault indicators. In the case of the demagnetization fault, flux linkage is
usually considered a fault indicator, and it is mainly estimated based on d-axis and q-axis
inductances. However, flux density variations under the demagnetization fault result
in PMSM inductance variations that affect the accurate demagnetization fault detection
and severity identification. In [70], structural analysis is utilized to estimate the changing
inductance values considering the saturation effect and, consequently, along with the
least square method, to estimate flux linkage to detect and estimate demagnetization fault
severity. In [71], a detailed magnetic equivalent circuit (MEC) model was derived, and it
used current, voltage and rotor angular signals to detect an ITSF fault and estimate the
ITSF severity and short-circuit resistance.

The parity space equation produces the residual vectors utilizing mathematical equa-
tions using past measurements in a finite period. These residuals are then analyzed to
detect faults. However, they are affected by noise and model uncertainties [72].

Extended Kalman filter (EKF) is another powerful mathematical algorithm based
on minimizing the variance of estimation error applicable in nonlinear systems used to
estimate motor parameters such as stator current, rotor speed and torque in case of fault
detection. They show robust estimation against noise, have a low false alarm and have good
detection speed. They need the last estimated values and measured signals to estimate the
next step parameters. The Kalman filter can be used for different applications; in [73,74],
the Kalman filter is used for autonomous driving vehicle state estimation and removing
noise and outliers, and detailed information about the Kalman filter is provided due to
its importance on state estimation, generating residuals and signal innovation. Figure 9
indicates the Kalman filter procedure. In [75], EKF is used to estimate the PMSM driver
inverter switches Ron to detect open-switch faults. The high value of the estimated on-state
switch resistance reveals the open-circuit fault.
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The finite element method (FEM) is a highly effective computational technique for
determining parameters (inductance, flux density and linkage, torque, etc.) of electromag-
netic devices such as motors. It obtains precise results by dividing a large electromagnetic
device into smaller elements and using complex mathematical equations, and it has been
used for detecting PMSM faults, especially eccentricity, demagnetization and ITSF [77,78].
Figures 2 and 3 in [79] show the finite element model of the PMSM.

Model predictive control is a motor drive control technique, which, due to simplicity
and superior performance, is attracting attraction. MPC and cost functions have been
used for fault detection recently. MPC for PMSM motor drive can be divided into two
categories based on the control objective: model predictive current control (MPCC) and
model predictive torque control (MPTC) [80], where MPCC shows priority over MPTC
due to less computational efforts and its cost function with no weighting factors, which
make it simpler and more effective [81]. In [82], open-phase fault (OPF) is detected based
on a cost function in a PMSM motor drive with MPCC. The DC component and second
harmonic component in the cost function designed for the current to track the references are
involved in fault detection, and the phase angle difference of the stator current is utilized for
locating the fault phase. This method is simple, and the operating condition and parameter
variations do not affect its performance. Twenty-one combinations of open-switch faults in
the inverter of the PMSM motor drive can be detected in the proposed method [83] based
on the cost function and normalized αβ-current characteristics. In the case of ITSF in a
PMSM motor drive with MPC, in [84], the fault signature is revealed by applying Wavelet
transform to the MPC cost function. Table 2 shows a summary of some recent model-based
FDD methods.

Table 2. Summary of the reviewed model-based FDD methods.

Method Fault Index Fault(s) Features Ref.

Voltage observer voltage Open circuit No extra hardware needed [54]

Stator flux linkage
DC-offset observer Flux linkage Stator faults

High accuracy
Low computational complexity

Suitable for real-time FDD
[57]

Current observer current ITSF Stationary and transient condition
High accuracy and low false alarm [58]

Luenberger Observer current Open switch
Current sensor fault

Adaptive threshold
Stationary and transient condition
Robust to machine parameter and

load variations
High accuracy and low false alarm

[46]

Current observer current Open switch

Adaptive threshold
Stationary and transient condition
Robust to machine parameter and

load variations
Fast detection
High accuracy

[61]

Luenberger observer Current Encoder fault Different speed range [64]

Sliding mode observer Flux Demagnetization Operating condition independent
Suitable for real-time FDD [66]

Sliding mode observer Resistance ITSF Locating and estimating fault severity [67]

Parameter estimation Current Current sensor fault Multiple sensor fault detection
Robust to motor imbalance [68]

Parameter estimation +
Machine learning

Resistance
Inductance Voltage ITSF Combine model-based and machine

learning for fault detection [69]
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Table 2. Cont.

Method Fault Index Fault(s) Features Ref.

Parameter estimation Flux linkage Demagnetization
Flux linkage estimation based on the

varying inductance to
improve reliability

[70]

Parameter estimation Current Voltage
Rotor angle ITSF Locating and estimating fault severity [71]

EKF Resistance Open switch Fault detection and isolation [75]

FEA Reactance ITSC Incipient fault detection
High computational cost [77]

FEA + ANN Current
Torque Eccentricity Robust to noise [78]

MPC Current Open switch

Fast detection
Single and multiple switch

fault detection
Robust to the motor parameter and

operation condition

[80]

MPC Current Open phase
Robust against operation point and

parameter variations
Simple implementation

[81]

MPC current Open switch

Fast detection
Robust against operation point
Detection of 21 combinations of

open-switch fault in 3-phase inverters

[82]

MPC Voltage ITSF Low computational load [83]

4.2. Signal-Based FDD Methods

Unlike model-based strategies, signal-based methods do not need an accurate system
model. As a result, signal-based FDD approaches show superior performance in complex
systems with inaccurate models and parameter uncertainties. The principle of such methods
is extracting the fault features from the motor output signals, including current, voltage,
magnetic flux density [85], torque [86], vibration, etc. Different types of faults can cause
changes in output signals from the expected values under healthy conditions. One or more
signals can be chosen as fault indicators based on the fault symptoms. Then, by applying
signal feature extraction techniques to the measured values, the fault features are extracted,
and by comparing them to a reference or threshold, the fault occurrence is detected, and
the type of fault can be identified. Figure 10 presents the summary of signal-based method
workflow in general.
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Different types of faults can result in the same symptoms, so choosing the proper
signal or signals as fault indicators is crucial. Stator current is needed in most motor drive
controls, so it is always available without the need for extra sensors. Motor current signature
analysis (MCSA) is the mostly used signal-based FDD technique [87]. In this technique,
the stator current is usually transformed to the frequency domain using signal-processing
techniques such as discrete furrier transform (FTT). The frequency domain can be utilized
for fault detection under stationary and steady-state operations. On the other hand, the
EV motor has dynamic nature, so the frequency domain is not applicable during transient
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motor operations. Therefore, using time-frequency domain feature extraction techniques
provide the FDD with the capability of fault detection in non-stationary condition and
improves the performance and reliability of EV motor FDD. Totally, signal-processing
methods are divided into the time domain, frequency domain and time-frequency domain
methods. Hilbert–Huang transform (HHT) [88], continuous and discrete wavelet transform
(CWT and DWT) [89], short-time Fourier transform (STFT), empirical mode decomposition
(EMD) [90] and Winger–Vile distribution are the most-used time-frequency domain signal-
processing methods [91].

Current signal-based methods are widely used for fault detection as a current is easy
and cheap to measure, and it is usually available as it is needed for motor drive control.
MCSA-based diagnosis methods, dq-frame current analysis, negative- and zero-sequence
current and Park’s vector approach are some of the methods. Generally, phase current-
based methods are easy to implement, and there is no need for extra hardware, but they
have a slow detection drawback (at least one fundamental period). In [92], MSCA-based
partial demagnetization fault detection was proposed. In this technique, the additional
even harmonics in the stator current caused by partial demagnetization were taken as
fault indicators. In [93], the zero-sequence current (ZSC) is analyzed for open-switch fault
detection in a dual inverter five-phase PMSM motor drive. ZSC is zero under the healthy
condition, while under open-switch fault, it deviates from zero and is used as the fault
indicator. The ratio of phase current positive sequence to negative sequence is considered
as the open-switch fault indicator in [94] and analyzed using the Fourier series. Different
open-switch faults are detected by setting a proper threshold for this fault indicator. Then
the fault location is revealed using the current DC component. A simple method for open
circuit and current sensor fault detection and identification is proposed in [95] where the
normalized average current is utilized. Comparing other current-based methods, the FDD
proposed in this paper has better rapidity in fault detection. An approach based on the mean
value of the harmonic of the secondary subspace and current magnitude was proposed
in [96] for open-phase fault detection. This method is not affected by operating conditions
and motor parameters. It can detect the fault in less than half of the fundamental period.

In voltage signal-based methods, the motor phase voltage, line voltage, etc. are
directly measured, and faults are detected based on the variations from reference voltages.
It is very fast, reliable and usually more immune to false alarms, but the need for the voltage
sensor increases the cost and complexity of the FDD. Symmetrical component analysis
(zero and negative sequence) and dq-frame voltage analysis are two common voltage base
methods. In [97], two-line voltages are analyzed, and their features are extracted to detect
one or two open-switch faults in the PMSM motor drive inverter. This technique needs
extra voltage sensors; however, fewer sensors make the FDD method cost friendly and
simple. Also, it is very fast, and the detection time is 1/20 of the fundamental period.
In [98], the change in the d and q axis’s voltage angle, which results from demagnetization
and the ITSF effect on magnetic flux, is taken as the fault indicator. It is shown that the
demagnetization fault increases this angle while the ITFS has an inverse effect, reducing
this value. Also, in this paper, dq-voltage is analyzed to detect eccentricity faults. In [99],
incipient ITSF detection and identification are investigated based on the zero-sequence
voltage component (ZSVC). The ZSVC is used to detect fault occurrence, and then the type
of fault is identified by injecting a high-frequency signal. However, the circuit needed to
reach the neural point for symmetrical component analysis increases the cost of the system.

Vibration signal-based methods analyze the vibration signal spectrum obtained from
vibration sensors to find fault symptoms. It is mostly suitable for mechanical fault detection.
Vibration sensors are usually installed on the external surface of the stator, which increases
the cost and complexity of the FDD. Also, environmental disturbances and external vi-
brations can easily affect FDD performance and efficiency. Other than mechanical faults,
demagnetization faults can be detected by analyzing the vibration signals caused by elec-
tromagnetic force. Demagnetization in the air gap can result in low-frequency vibrations,
which are proportional to the motor’s physical characteristics. This feature is extracted
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from the vibration signal by applying FFT in [100] and is taken as the fault indicator. Then,
the demagnetization fault is revealed by comparing this index to the generated thresholds
using Chebyshev’s inequality. An orthogonal DWT was applied to vibration signals to
obtain energy signals, and it was used for rolling bearings fault detection, which has fast
and accurate detection of the early-stage faults in [101].

Using a search coil is another reliable method to detect motor faults, especially ITSF,
demagnetization and air–gap eccentricity faults. In fact, this method analyzes the elec-
tromagnetic signature of the faults. Search coils wound around the stator teeth and the
induced voltage in the coils are measured and analyzed to detect and locate the fault [102].
When a fault occurs, additional harmonics are generated in the air–gap magnetic field,
which is used for revealing the faults [103]. This method is very reliable; however, special
installment is required during the manufacturing level, increasing the complexity and cost
of the FDD. In [104], a new structure using search coils for ITSF detection is proposed. In
this structure, the number of search coils is reduced to twice the number of phases, which
reduces the cost noticeably. Then, by analyzing the negative sequence of the second har-
monic of search coil voltages, ITSF is detected and identified. To improve the performance
of this FDD method, it is transformed into a DC frame, making it possible to perform
stationary and non-stationary operations. Another technique to detect eccentricity and
demagnetization fault based on flux variations is using the hall-effect field sensor [32].

Table 3 summarizes the signal-based methods reviewed above.

Table 3. Summary of the introduced signal-based FDD methods.

Method Fault Index Fault(s) Features Ref.

FEM + MCSA + FFT Current Partial demagnetization

Early fault detection
Cost-effective

High computational load
Not suitable for uniform demagnetization

[91]

ZSC Current Open switch Fast detection [92]

Symmetrical components Current Open switch Fast detection
Multiple open-switch fault detection [93]

Normalized average Current Open switch
Current sensor fault

Better rapidity
Cost-effective

Robust to false alarms
Detection and isolation of 27 open circuit faults

Stationary and non-stationary conditions

[94]

Secondary subspace analysis Current Open phase Independent of motor parameters
and operating condition [95]

Magnitude analysis Voltage Open switch
Very fast detection

Robust to various control methods
and false alarms

[96]

Voltage angle analysis Voltage
ITSF

Demagnetization
Eccentricity

No extra hardware needed
Multi-fault detection [97]

ZSVC + High-frequency
signal injection Voltage

ITSF
Resistive unbalance

fault
Robust to speed and load variations [98]

FFT + Chebyshev’s inequity +
Machine learning vibration Demagnetization Severity estimation

High accuracy [99]

DSW Vibration Bearing fault Not suitable for detecting bearing fault type [100]

FEA + Search coil Magnetic flux
Induced voltage ITSF Fast and accurate

Early-stage fault detection [102]

Search coil + NSVC Induced voltage ITSF
Reduced cost

Robust to speed and load
Stationary and non-stationary conditions

[104]

Using Hall-effect field sensor Magnetic flux Eccentricity
Demagnetization Robust to motor design and operating condition [32]
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5. Data-Driven FDD Methods for Electric Motor Drive

Data-driven FDD methods have emerged among FDD techniques in recent years due
to their prior performance and features. This technique uses a large amount of historical
data in healthy and faulty conditions to train the system to detect and classify faults. Data-
driven methods do not require prior knowledge of the system’s mathematical model, which
is a noticeable advantage for complex and ill-defined systems. They either use historical
data to assess the current state of the system or represent human expertise in a set of rules
as expert systems to analyze, learn, and make decisions on very complex problems. The
used model and trained system can extract hidden features of the signals and detect the
fault type even in the incipient stages and its severity based on the historical data used for
training. Since data-driven methods are based regardless of the system model, signal and
load, they have better robustness and generalization capability in varying system operating
conditions, which is a noticeable advantage of this technique [105]. This technique can
be divided into statistical-based and artificial intelligence-based. The former is based on
probabilities, and the latter is based on classification [106]. In fact, artificial intelligence
(AI) is the main component of data-driven methods, and due to the considerable and fast-
paced progress in AI and machine learning tools, as well as the increasing complexity of
systems, data-driven techniques are drawing more and more attention. Machine learning is
mainly divided into three groups: supervised, unsupervised and semi-supervised learning
methods [107]. For supervised learning, a set of labelled data is required, and the training
and learning processes are based on the labelled data to find the correlation between the
input data and output. In unsupervised learning algorithms, when there is a huge amount
of unlabeled data, the learning and classification are performed based on the common
features of the data. The semi-supervised algorithm is a combination of the two former
algorithms. The labelled data are used to train the system to a level so that the other
unlabeled data can be labelled. Then, the whole labelled data are used for learning. So far,
many different data-driven and machine-learning methods have been introduced and are
utilized for fault detection and diagnosis, such as artificial neural networks (ANN), Fuzzy
logic (FL), support vector machine (SVM), deep learning (DL) and other machine learning
tools. Regardless of the specific method, most data-driven FDDs are basically carried out
through the following steps as shown in Figure 11:
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Step 1, data collection: Due to the requirement of historical data in data-driven
methods, a big database from the healthy and faulty condition of the motor drive system is
required. If it is unavailable, a suite of nondestructive cycling tests should be performed at
healthy and faulty conditions to develop comprehensive fault-predictive models. Different
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types of faults at various severity levels should be injected. To do so, a small resistor
or copper plate can be used to connect the stator winding turns using taps to generate
interturn short faults in motors with several severity levels. The demagnetization fault
can be produced by replacing the PMs with a dummy without a magnet of the same size
and weight. The IGBT open-circuit or short-circuit faults in the inverter can be generated
by disabling the corresponding command signal or altering the faulty switches’ gate
state signal. As mentioned before, the quantity and quality of the historical data play a
crucial role in the performance and accuracy of the data-driven FDD methods. As a result,
simulating some faults, such as short circuits and collecting enough high-quality data,
is challenging.

Step 2, raw data processing using signal feature extraction: Using the dataset gener-
ated in Step 1, first, pre-processing is performed to increase the data quality and eliminate
useless data and then, advanced signal feature extraction methods such as WT, PCA, STFT,
etc. should be used to extract appropriate and useful features, reveal fault patterns and
perform classification from the collected signals. Such pre-processing techniques enhance
performance, as a properly designed agile feature engineering selection technique is crucial
to identify predictive patterns truly. Building an effective data pre-processing step also
protects from overfitting to the training data with expert knowledge about the process
and a thorough understanding of the inherent variation in the data. Combining relevant
pre-processing techniques with a proper machine-learning algorithm enables accurate fault
prediction. This step implies computational load to the FDD method and decreases the
detection speed. However, the deep learning methods which can be trained through raw
data can overcome this drawback. For instance, to achieve a fast fault detection method, a
convolutional neural network (CNN) is an appropriate candidate for this application due
to the ability to train the system based on the raw data and the employed kernels with the
need for a lower number of weights to be trained.

Step 3, training system and fault detection: In this step, collected data (step 1) with
appropriate features (step 2) are used by appropriate machine learning techniques and the
classifiers are trained by the dataset. Next, the trained system is used to detect and identify
different types of faults.

Some of the main data-driven tools used for FDD for PMSM motor drives are as follows:
Fuzzy Logic (FL) maps a feature space into Fuzzy classes and is executed in three

levels of fuzzification, inference and defuzzification for decision making based on the Fuzzy
rules. First the inputs are mapped into Fuzzy variables in the fuzzification stage. In the
inference level, the relation between input and output is formed based on Fuzzy rules.
Then, outputs are generated in the defuzzification stage.

Artificial Neural Networks (ANNs) have been used widely for fault detection and
diagnosis. It is one of the mature AI techniques used for non-linear systems working
based on the human brain with the goal of recognizing relationships and patterns. The key
feature of this method is the capability of modeling complex problems and generalizing the
model to all possible conditions. In fact, modeling is performed by adjusting the weights
and structure of neurons in the nervous system to learn based on the samples. In this
technique, data are processed through the weighted connections between nodes in multiple
layers, including the three main input, hidden and output layers. Self-learning and self-
adaptive capability are the main advantages of ANNs. Various training techniques and
network models have been introduced so far, and different data, including current, voltage,
vibration, etc., are used for training ANNs. The back propagation neural network (BPNN)
is one of the most used neural network models as a simple and reliable model [108].

Support vector machine (SVM) is a supervised learning algorithm that uses a small
dataset for training and binary classification. It aims to classify data by finding the hyper-
plane to distinguish between two classes, as shown in Figure 12 [109].
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K-nearest neighbours (KNN) is one of the most basic, straightforward, and efficient
machine learning techniques for classification. KNN uses maps features as points in the
space and classifies the new data by comparing the distance between the new data and
K-nearest neighbours that is used for training, as shown in Figure 13 [110].
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Extreme learning machine (ELM), different from SVM, is useful for multi-classification
purposes and takes advantage of higher training speed. Optimal initial weights and thresholds
can be derived just by applying the least square one time, which increases the training speed
significantly [105].

Deep learning: In the machine learning techniques, first, it is necessary to extract
signal features before using them for training systems. So, signal-processing methods, such
as FTT, WT, HH, etc., are needed, adding more computational burden and delay for fault
detection. Also, this step needs prior knowledge, which opposes fully automated fault
detection without the need for prior knowledge [111]. To overcome this limitation, deep
learning can be trained directly with raw signals eliminating the signal-processing level. In
fact, these techniques provide the automatic feature extraction capability for fault detection.
Some widely used deep learning methods are Autoencoder (AE), recurrent neural network
(RNN), Generative advertised network (GAN), Convolutional neural network (CNN), and
Deep belief network (DBN).

• CNN: This is an AI tool that is based on the human brain visual system and multi-layer
NN. It works along with supervised learning and labelled data for fault classification,
including four layers, the convolutional layer, pooling layer, fully connected layer and
softmax layer, as shown in Figure 14. As mentioned, deep learning methods extract
features automatically from the raw data. In CNN, the first two layers, including
the convolutional and pooling layer, are responsible for this duty and classification
is preformed through the fully connected and softmax layer [112]. CNN-based FDD
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methods are a hot research topic in fault detection. They not only can detect and diag-
nose faults but they can also reveal the severity of faults. They are very effective, highly
accurate, and fast for FDD applications. However, they need higher computational
power, more training time and more complex structures [113]. As time-domain signals
are in 1D format, in some studies, CNN is used as 1D CNN. Also, by converting the
signals to 2D format as grayscale images, 2D CNN has been utilized in many recent
studies [114] Comparing 1D and 2D CNN, 1D usually shows higher accuracy and
needs less human expertise as the conversion level is eliminated [115].

• Autoencoder is a sort of symmetrical neural network, is a semi-supervised deep
learning model which aims to learn a new reconstruction of input data. As shown in
Figure 15, the autoencoder structure has two steps: encoder and decoder [116].

• Recurrent neural network (RNN) is a sophisticated sequence-data-learning machine
developed to learn the time dependency of time series data [117]. The recurrent
connections in the hidden layers result in a good ability to extract the patterns and
make predictions in sequential data.
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5.1. Recent Data-Driven FDD Methods for Different PMSM Motor Drive Faults

This section reviews some of the recent data-driven FDD methods for electrical, me-
chanical and sensor faults.

5.1.1. Recent Data-Driven FDD Methods for Electrical Faults

Due to the limitations of the model-based and signal-based FDD methods, in recent
years, data-driven methods have attracted much attention. In [118], a Fuzzy logic method
is proposed for open-switch fault detection in PMSM motor drives. The average current
Park’s vector is used as a fault indicator and to generate six fault symptom variables. Then,
the generated variables are fed to the Fuzzy-based FDD block, as shown in Figure 16.
The input variables are mapped into Fuzzy variables, the relation between input and
output is extracted based on the Fuzzy rule in the Fuzzy inference stage, and finally, at
the defuzzification stage, which is a Max–Min composition in this study, the outputs
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are generated for fault detection. The proposed method can detect single, multiple and
intermittent open-switch faults.
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Also, different types of machine learning tools are utilized for inverter open-switch
fault detection. In [119], open-switch fault detection is performed through a combination
of DWT and CNN to reduce noise and increase accuracy. For training the WCNN model, a
small set of normalized current vector trajectory graph samples is used, avoiding the need
for big datasets.

In the case of demagnetization fault, data-driven methods show superior advance-
ment. In [120], STFT is used to extract related features to PM demagnetization from the
stator current. Then, they are used to train two models based on KNN and MLP for
demagnetization fault detection. Both models reached 100% accuracy and had very low
training and detection times while keeping a simple structure. Comparing these two meth-
ods, KNN has a shorter detection time. To avoid the feature extraction level, in [115], 1D
CNN was used for detecting demagnetization, partial demagnetization and ball-bearing
faults. For this purpose, data are collected under different faulty conditions and labelled
to use for supervised training. The capability of detecting faults in incipient stages is an
important feature of a reliable FDD method. In [121], incipient demagnetization fault and
simultaneous early ITSF detection based on CNN and stator current were proposed. As
mentioned before, the raw signal-processing feature of CNN and eliminating the need for
signal-processing tools increase the rapidity of fault detection while reaching very high
accuracy in steady-state and transient conditions. The proposed method has a very high
accuracy for incipient fault detection with a maximum time of 0.03 s, which is a noticeable
merit. A semi-supervised training method was introduced in [122] for demagnetization
fault detection using magnetic leakage signals to reduce the cost of generating labelled
faulty data. First, data are converted to 2D images and features are extracted using a
wavelet scattering convolutional network (WSCN). Then, a semi-supervised deep rule-
based (SSDRB) model is trained for demagnetization fault detection. An unsupervised
learning model was used in [123] to reduce the effort and cost of labelling the samples. Five
different signals are chosen for training the system to increase accuracy. An autoencoder
model is used to train and detect the demagnetization fault. Then, the severity is estimated
using the K-means clustering algorithm.

In [124], two methods based on SVM and CNN were proposed for ITSF detection.
The PMSM mathematical model was used to select the proper feature to use for the SVM-
based approach as a model-aided method. Both algorithms could reach a high accuracy
of 99%, while SVM needs fewer data and time for training with a simple structure. This
study shows the merits of hybrid methods. Recently, deep learning has been used in more
applications in fault detection due to its advantages. In [117], an attention-based RNN
method with an encoder–decoder structure was utilized to detect early ITSF and estimate
its severity for various operating conditions. It is one of the first studies to use deep learning
for severity estimation. The stator currents and rotational speed were used as the FDD
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input, eliminating the need for extra sensors. In [125], to overcome the deep learning
method’s complexity and long training time, a simplified CNN for incipient ITSF detection
is introduced with lower training time and fewer input parameters while obtaining -high
efficiency. The three parameters of stator current, phase-to-phase voltage and axial flux
were used as inputs to find the best fault indicator signal as raw input data. It tried to
reach a trade-off between the number of connected neurons and training time to figure
out a simple and efficient CNN structure without the pre-processing stage. The structure
trained with axial flux showed a higher accuracy of 99.4% as the flux is affected by the ITSF
with better robustness to operating conditions and very fast detection. However, coils are
needed for gathering flux data. Bispectrum analysis and CNN were utilized in [126] for
ITSF fault detection and classification. In this technique, bispectrum analysis is applied
to convert the current signals to images instead using of raw data. It reduces the CNN
training time to as low as one minute while increasing the accuracy of ITSF detection to a
high of 99.4%. However, adding the pre-processing stage increases the detection time.

Table 4 summarizes the reviewed data-driven FDD methods for electrical faults.

Table 4. Summary of the reviewed data-driven FDD methods for electrical faults.

Method Fault Index Feature Extraction
Method Faults Features Ref

Hybrid SVM &
2D-CNN

Current (iq)
Voltage (vq)

ITSF

Very high accuracy
Fewer samples for SVM
Combining Model-based

and data-driven

[124]

Fuzzy logic Current Open switch

Single, multiple and intermittent fault
detection and locating

Robust to load variation
Relatively slow detection with two

fundamental periods for
fault detection

[118]

WCNN Current Open-switch A small sample set needed [119]

1D CNN Current Demagnetization
Bearing fault

Can detect demagnetization, partial
demagnetization and bearing fault

with an accuracy of 98.8% at
various speeds

[115]

KNN
&

MLP
Current STFT Demagnetization

Simple structure
Fast detection and training

Very high accuracy
[120]

CNN Current Demagnetization

Incipient fault detection
Detection during

simultaneous ITSF fault
Very fast detection and high accuracy

Steady-state and transient
condition applicable

[121]

SSDRB Magnetic leakage WSCN Demagnetization High accuracy
Few labelled data needed [122]

Autoencoder
&

K-means

Current
Voltage
Speed
Power
Torque

Demagnetization
High accuracy

Severity estimation
No additional sensor

[123]

CNN Current Bispectrum
analysis ITSF

High accuracy
Low training time due to adding a

pre-processing stage, but lower
detection speed

[126]

CNN Axial flux ITSF
Simple structure with high accuracy

Robust no operating condition
Very fast detection

[125]

RNN Current
Rotational speed ITSF

ITSF severity estimation
Incipient fault detection
Applicable for different

operating conditions

[117]
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5.1.2. Recent Data-Driven FDD Methods for Mechanical Faults

Machine learning tools are being used in electric motor drive mechanical fault detec-
tion as well as for other types of fault detection. In [108], mixed eccentricity offline fault
detection is investigated based on large data with a wide variety. An analytical model
(AM) of Electromotive force (EMF) was used to generate the samples. EMF is fundamental
and harmonic components are extracted using FFT, chosen as fault indicators, and used
as labelled data to train the BPNN for mixed eccentricity fault detection. This technique
is highly accurate and efficient, showing generalization capability but with the drawback
of offline applications. However, online fault detection in incipient stages is of high im-
portance in transportation applications. In [127], incipient eccentricity fault detection for
the severity of 10–40% is investigated in IPMSM. In this study, the faulty IPMSM was
studied using ANSYS Maxwell FEA and different parameters, including stator current,
speed and flux density, were used to train various machine-learning models. Among the
tested algorithms, the FDD method based on the KNN trained with stator current reached
the highest accuracy with 96.3% precision.

In [30], bearing failure detectors that used various shallow neural network topologies,
including multi-layer perceptrons (MLPs), networks with radial base function (RBFs), and
self-organizing Kohonen maps (SOMs), were analyzed, and their efficacy in identifying and
categorizing the failures was evaluated. In this study, the vibration signal was measured
for various voltage frequencies and load torque in three axes, and X-axis showed the
most variation during bearing fault and was used as a fault indicator. FFT and HTT
were applied for signal processing to use vibration harmonic components. For the MPL
method, after 15 training series, 100% accuracy was achieved, while the other methods
needed more complex structures approving the performance of classical NNs. In [128],
a multiscale shared learning network (MSSLN) was proposed for bearing fault detection
based on vibration signals for vehicular applications. In [111], using vibration signals, a
multiscale kernel-based residual CNN (MK-ResCNN) was proposed for five types of rotor
fault detection under non-stationary conditions. Due to the need to extract useful and
deep features of vibrations signals, a deep enough network is inevitable, resulting in a
degradation problem. In this study, residual learning is applied to MK-CNN to overcome
this limitation. However, using vibration sensors to collect the vibration signals increases
the system’s cost and complexity [129].

To reduce the cost, a developed non-contact sensor was used to collect the vibration
signals [130]. The collected data were denoised using DWT, and then the proper features
were extracted and using SVM, different types of bearing faults were revealed for various
operating conditions. To avoid the vibration sensor cost and the environmental effects on
it, in [31], speed signal and CNN model were utilized to detect bearing fault.

Another bearing fault detection was proposed in [131] based on 2D CNN and MSCA
for various operating conditions. In this method, Garmian angular field (GAF) was utilized
to convert time-domain current signals to 2D images, eliminating the signal-processing
stage in CNN. The images are used for training a simple two-layer CNN for detecting
bearing faults with a reduced computational time and high accuracy of more than 99%.
Multiscale learning is key to reaching higher accuracy and better performance during
non-stationary operations and changing conditions.

Table 5 summarizes the reviewed data-driven FDD methods for mechanical faults.

Table 5. Summary of the reviewed data-driven FDD methods for mechanical faults.

Method Fault Index Feature Extraction
Method Faults Features Ref

BPNN + AM EMF FFT Mixed eccentricity
Highly accurate

Generalization capability
Offline fault detection

[108]

KNN + FEA Current FFT Static eccentricity High accuracy
Incipient fault detection [127]
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Table 5. Cont.

Method Fault Index Feature Extraction
Method Faults Features Ref

MLP
RBF
SOM

Vibration FFT
HHT Bearing fault

Reaching 100% accuracy
Cheap processor and
easy implementation

[30]

2D CNN Current Bearing faults Accuracy of more than 99%
Low computational time [129]

MK-ResCNN Vibration Rotor faults
Non-stationary condition

fault detection
Multiple rotor fault detection

[111]

MSSLN Vibration Bearing fault
Non-stationary operation and varying

conditions fault detection
High accuracy

[128]

SVM Vibration DWT Bearing fault Low cost non-contact vibration sensor [130]

CNN Speed Bearing fault
No extra sensor

Low cost
High accuracy

Fast
[31]

5.1.3. Recent Data-Driven FDD Methods for Sensor Faults

So far, different methods have been introduced for sensor fault detection; however,
several existing limitations are bringing attention to data-driven and machine learning-
based methods. In [132], various current sensor fault detection was investigated using NN
and raw speed and current signals. Comparing the conventional methods, using this NN
increased the detection speed during low computational burden. The MLP NN reached
accuracy of 100% for current sensor fault detection under various conditions in stationary
and non-stationary operating modes [133].

In [134], open-switch and current sensor fault detection for a multi-sector PMSM was
investigated based on a metric learning method. This technique takes advantage of a low
computational burden, reduces the fault detection time to 1/10 of the current fundamental
cycle and can detect and locate 28 combinations of open-switch fault and current sensor
fault. Using the structural characteristics makes the proposed method robust to current
and speed variations.

The reviewed data-driven FDD methods for sensor faults are summarized in Table 6.

Table 6. Summary of the reviewed data-driven FDD methods for sensor faults.

Method Fault Index Feature Extraction
Method Faults Features Ref

NN Speed
Current

Current sensor
fault

Fast detection
Accurate

Low computational effort
[132]

Metric Learning Current
Current sensor

fault
Open switch

Fast detection
Robustness

Low computational effort
[134]

MLP NN Current Current sensor
fault

Fast detection
High accuracy
Stationary and

non-stationary state

[133]

6. EVs’ Battery Fault Detection

As it is obvious and has been discussed, the safety and reliability of an EV is one of
the main factors affecting the electrification of transportation. The EV battery is one of the
major parts in this regard, which can have many limitations. It is always prone to different
types of faults, some of which can be hazardous and even life threatening. To overcome
these problems, fault detection and diagnosis of the battery are as crucial as fault detection
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in the EV motor drive. In recent years, many types of research have been devoted to this
field. The FDD methods for battery faults are similarly classified into three main groups,
model-based, signal processing and data-driven, with the same principles mentioned in the
electric motor drive FDD methods. Usually, the parameters used for battery fault detection
are voltage, current and temperature. In the rest of this section, different FDD methods for
battery faults are introduced briefly, and some recent methods are reviewed.

6.1. Model-Based FDD Methods for Battery Faults

Model-based battery FDD methods are based on using the battery models, filters and
observers to generate the residuals. A battery can be modeled as electrochemical, electrical,
thermal or a combination of these models [135]. The main model-based FDD methods for
battery fault detection are state estimation, parameter estimation, parity space equation and
structural analysis. Some proposed model-based methods are introduced briefly as follows.

Thermal faults were detected using the Leunberger observer and the thermal model
of the battery [136]. A partial differential equation (PDE) model-based technique was intro-
duced in [137] to detect thermal faults in Lithium-ion batteries. Two PDE observers were
used for estimation and fault diagnostic, making the fault detection robust to uncertainties.

Using voltage signals is usually more effective and accurate than the temperature for
fault detection [138]. In [139], structural analysis was used to detect internal and external
short-circuit faults by studying the residuals generated by the structural model. In [140], an
online external short-circuit fault detection was proposed based on a two-step ECM of the
battery. This method has a very fast detection speed and high accuracy. The generalization
capability of the proposed method makes it proper for battery packs with various numbers
of cells.

Due to the features of the KF, it has been used frequently for battery fault detection.
In [141], ECM and EKF were used to estimate the battery voltage terminal to detect the
voltage and sensor fault as a simple model-based method. In [142], recursive least squares
and unscented KF were used to estimate the SOC and generate the residuals. The current
and voltage sensor faults were revealed based on the generated residuals. The measured
temperature separates the sensor faults from cell faults. In [143], EKF was used to estimate
the SOC, and based on the SOC correlation of adjacent cells, an early-stage internal short
circuit was detected during dynamic operation, which is applicable for series-connected
configuration. In [144], on-board short-circuit detection was proposed using EKF. EKF
based on the voltage values is used to estimate the SOC, and it detects the fault by compar-
ing it with the calculated SOC. It shows fast, accurate and robust detection capability and
can evaluate the fault severity.

To increase the reliability of the battery FDD, in [145], a model-based method is com-
bined with entropy methods to reach a multi-fault detection system. The proposed method
can detect voltage, current and temperature sensor faults, short circuits and connection
faults. EKF is used to detect sensor faults, and by utilizing the entropy method, short circuit
and connection faults are diagnosed, which is robust against noise and inconsistencies of
SOC and temperature.

6.2. Signal-Based FDD Methods for Battery Faults

In this type of FDD, signals are collected directly from sensors, processed and studied
to reveal the faults, usually by comparing them to a threshold. The mostly used signal-
processing techniques to analyze the frequencies in which the electrochemical reactions
happen are WT and FFT [146].

In [147], various battery faults are detected using the EMD of the voltage signal
and sample entropy analysis. This method can detect different types of faults due to the
unexpected voltage drops detected by sample entropy. This method takes advantage of the
noise cancellation of EMD, so it has high accuracy.

In [148], gas and force sensors were used to detect the internal short-circuit error. This
method is based on sensing the cell swelling and generated CO2 gas caused by the chemical
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reactions due to internal short circuits. However, using extra sensors increases the cost and
complexity of the system.

6.3. Data-Driven FDD Methods for Battery Faults

Due to the same limitations of the model-based and signal-based methods, such as the
inaccurate model and very nonlinear characteristic of the lithium-ion batteries, to reach
higher accuracies and reliabilities, the data-driven methods and machine-learning-based
FDDs are growing rapidly in the case of battery fault detection recently. However, there is
a massive gap in FDD methods based on machine-learning tools in case of battery faults.
Some of the recent data-driven methods are as follows.

In [149], battery voltage fault detection was proposed based on general regression
neural network (NN). Using DWT, the voltage was denoised, and then several parameters
were used to train the GRNN to reach the highest accuracy of more than 99%. This scheme
can detect, locate and estimate the fault severity. In [138], SVM was used to detect battery
voltage faults and estimate their severity. First, the voltage data are denoised to increase
accuracy and reliability. Then, to reduce the detection time, a modified covariance matrix
was introduced as the condition indicator of the SVM, which was optimized using the grid
search technique.

In [150], battery thermal runaway detection is proposed based on abnormal heat
generation and the long short-term memory CNN (LSTM-CNN) model. PCA is used to
improve the input feature, and LSTM-CNN is trained with real-world EV data to predict the
temperature. This method is accurate and can alert the thermal runaway fault in advance.

To increase the accuracy and efficiency of FDD, in [151], an online, hybrid FDD method
based on the combination of LSTM-RNN and the equivalent circuit model (ECM) was
proposed. The model is trained based on real-world data, and by utilizing the prejudgment
module, the computational cost has been reduced.

To overcome the lack of comprehensive fault detection methods, some FDD schemes
have been proposed. In [152], different battery faults, including the voltage, discharge
current and temperature, were injected into a battery pack, and the collected data were
used to train an improved radial basis function neural network (RBF-NN) to detect the
faults. The proposed method could reach a fault detection accuracy of 100%. Another
multi-fault detection method was proposed in [153], based on multi-classification SVM
(MC-SVM). In this method, overvoltage, undervoltage, overheating and low-capacity faults
were detected using MC-SVM, which was trained using a small data set while reaching very
high accuracy. Training based on a small data set reduces the cost of generating faulty data.

Summary of the reviewed FDD methods for battery faults of EV are presented in
Table 7.

Table 7. Summary of reviewed EV battery faults detection.

Method Fault Index Faults Features Ref

Model-based

PDE observer Temperature Thermal faults Robust and effective
Simple [137]

Structural analysis current Short circuit Detecting both internal and
external short circuit [139]

ECM voltage External short circuit
Online, fast and

accurate detection
Generalization capability

[140]

ECM and EKF voltage Sensor fault Simple [141]

Parameter estimation SOC Sensor fault Simple and efficient [142]

EKF SOC Internal short circuit Online, fast and
accurate detection [143]

EKF and entropy Voltage
Sensor faults
Short circuit

Connection faults

Online, comprehensive
fault detection [145]
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Table 7. Cont.

Method Fault Index Faults Features Ref

Signal-based

Sample Entropy
and EMD Voltage

Detecting and locating
various faults
High accuracy

[147]

Gas and force sensor Gas
Force Internal short circuit Fast and simple [148]

Data-driven

SVM Voltage Voltage fault High accuracy
Severity estimation [138]

GRNN voltage Voltage fault
High accuracy

Estimating fault severity
and location

[149]

LSTN-RNN voltage Battery failure
Thermal runaway

Highly precise
Online fault detection

Fast
Trained based on real-world data

[151]

RBF-NN
Voltage
Current

Temperature
Battery faults 100% accuracy [152]

MC-SVM

Current
Voltage

Temperature
Discharging Capacity

Over/under-voltage
Overheating
Low capacity

A small training data set
High accuracy [153]

7. Conclusions

The increasing attention to the importance of electrification of transportation in recent
years has made EVs the future of transportation. In this regard, to gain the most significant
share of the market, the safety and reliability of EVs are of high priority. The electric motor
drive and the energy storage system are two main parts of EVs. Due to the outstanding
features, the PMSM motor drive is turning to the first choice for the power train of the EVs
and lithium-ion batteries are the main energy storage system. However, due to the working
environment and nature of EVs, fault occurrence is inevitable. Therefore, fault detection
and diagnosis have become vital functions, and much research has been devoted to this
field, yet there is a need to improve and address the remaining gaps. This review paper
is aimed at introducing different types of faults in the PMSM motor drive and the battery
pack of the EVs, the FDD methods and recent advancements in this field so that it can be
used for future works to reach fully reliable and safe electric transportation.

FDD for the PMSM motor drive focuses on two parts of motor side and inverter side
faults. Therefore, different FDD methods are studied thoroughly in this paper, including
the model-based, signal-based, and data-driven methods. The complex models, parameter
uncertainties and other limitations of model-based and signal-based methods, along with
the fast-paced advancement in machine-learning tools with their superior features, have
attracted attention to using various machine-learning tools for fault detection in PMSM
motor drives. Many works based on deep learning tools (especially CNN) have been
introduced until now, and significant improvements have been shown.

In the case of battery fault detection, most of the FDD methods proposed so far belong
to the model-based group and are especially based on KF. However, due to the unknown
characteristics of lithium-ion batteries and their non-linear behaviour, data-driven methods
could be the future of FDD methods for batteries. So far, many data-driven methods,
including machine-learning tools, have been used in the case of battery state estimation.
Nevertheless, for fault detection, just a few methods based on neural networks, SVM and
deep learning are investigated.

The conventional methods commonly used for fault detection of EVs are mainly
model-based and signal-based. The lack of accuracy of the motor and battery models
(especially during their lifespan) results in limitations and reduces the robustness and
precision of the FDD. Also, the measurement noises make signal-based methods slow
and unsuitable for incipient fault detection. However, recent works, especially the data-
driven methods presented in this paper, can overcome some limitations and may be the
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future of fault detection. Some of the main advancements achieved in the presented
methods are incipient fault detection, robustness to parameter uncertainties, consideration
of lifespan, increased accuracy and speed of fault detection, generalization capability and
non-stationary condition fault detection. However, several gaps remain to be addressed to
satisfy all the desired FDD features and can be investigated in future works, as follows:

1-PMSM motor drive fault detection:
Reducing the detection time, using a deep learning algorithm, may be a good choice

to overcome the long signal-processing time.
Comprehensive fault detection methods cover different types of faults and differ-

ent faults show similar symptoms, making it difficult to distinguish between them. Most of
the existing methods focus on one or two types of faults. By selecting more signals and
their features as fault indicators, multiple fault detection could be a great improvement.

Non-stationary condition fault detection; EVs have dynamic characteristics, so fault
detection during transient and non-stationary conditions is critical. This can be improved
by using time-frequency or time-domain signal-processing methods and utilizing deep
learning algorithms.

Short circuit fault detection; most of the existing electric motor drive inverter fault
detection can detect only the open-switch fault, while detecting the short circuit of the
switches is not studied.

Real-time fault detection, reducing the FDD cost and overcoming hardware limita-
tions, could also be focused on in future works. Even though many machine learning and
deep learning-based methods are proposed, there is much to expand, and more powerful
tools can be used in fault detection and diagnosis of PMSM motor drives.

2-Battery system fault detection:
Various machine-learning, deep learning and reinforcement learning tools can be

utilized to obtain higher accuracies, comprehensive fault detection and more robustness to
uncertainties. In addition, using more parameters as fault indicators could be an excellent
choice to reach higher accuracy in fault detection.

Finally, this paper can be a good reference for future works as many recent works are
studied, and state-of-art techniques are introduced.
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