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Abstract: A control strategy for a certain class of hypersonic flight aircraft dynamic models with
unknown parameters is proposed in this article. The strategy is adaptive dynamic surface input
quantization control. To address the issues in conventional inversion control, a first-order low-pass
filter and an adaptive parameter minimum learning law are introduced in the control system design
process. This method has the following features: (1) it solves the problem of repeated differentiation
of the virtual control law in the conventional back-stepping method, greatly simplifying the control
law structure; (2) by using the norm of the neural network weight vector as the adaptive adjustment
parameter instead of updating each element online, the number of adaptive adjustment parameters is
significantly reduced, improving the execution efficiency of the controller; (3) the introduced hysteresis
quantizer overcomes the disadvantage of the quantization accuracy deterioration when the input value
is too low in the logarithm quantizer, improving the accuracy of the quantizer. Stability analysis has
shown that all signals in the closed-loop system are semi-globally uniformly bounded, and simulation
results have verified the effectiveness of the proposed adaptive quantized control scheme.

Keywords: hypersonic flight aircraft; dynamic surface control; quantization

1. Introduction

As an effective means of transportation for human entry into space, hypersonic flight
aircraft (HFA) have a wide range of potential applications in future aerospace systems and
have been the focus of scholars around the world over the past fifty years [1–4]. At the
same time, as strategic aircraft, Hypersonic Flight Aircraft offer advantages such as quick
response and high-precision strike capabilities. This makes the design and development
of HFA automatic control systems an important scientific and technological field, and a
crucial strategic demand for many countries. With the advancement of technologies such as
computers, sensors, and actuators, the implementation of these control systems has become
possible. Their purpose is to enhance aircraft intelligence and adaptability, ultimately
improving overall performance and reliability. However, unlike ordinary subsonic or
supersonic aircraft, supersonic aircraft are a new type of aircraft that operate in a large
airspace, at ultra-high speeds (exceeding Mach 5), over long distances, and with high
precision. Its overall layout adopts a special design structure of integrated air frame and
engine, which makes each subsystem strongly coupled and strongly nonlinear. At the same
time, the complex flight environment and parameter uncertainties of the model structure
pose great challenges to the stability performance and control system design of the aircraft.
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Therefore, it is particularly important to study adaptive controller design methods that can
overcome the system uncertainty [5–9].

Efficiently dealing with uncertainty in hypersonic flight systems is a hot topic in the
field of hypersonic flight aircraft control. A s early as 2012, Ref. [10] designed an adaptive
robust linear quadratic regulator (LQR) by linearizing the dynamic model to solve the
problem of parameter uncertainty in the system. However, linearization has limitations
when dealing with the strong nonlinearity and coupling characteristics of hypersonic flight
dynamics. With the continuous development of control technology, advanced intelligent
control methods such as intelligent learning strategies, including neural networks and
fuzzy systems, have been widely applied in the design process of hypersonic flight control
systems, as shown in references [6,11].

Another approach to effectively deal with the uncertainties in aerodynamic parame-
ters or unknown nonlinearities during the flight of hypersonic flight aircraft (HFA) is to
estimate the HFA model uncertainty online and apply function learning and feed forward
compensation. In addition, to efficiently handle the wind effects and unknown external
disturbances during the flight of hypersonic flight vehicles, disturbance observers have
been introduced in literature [12–14], achieving good control performance. In [15], the
author designed an H-infinity feedback controller for the linearized model of the oxygena-
tor through the solution of the Riccati equation at each iteration of the control strategy.
A positive definite weight matrix was introduced for the calculation of the feedback control
gain, achieving the H-infinity tracking performance standard of the control system, and a
hybrid control scheme has been proposed for combustion process in heating furnace of
compact strip production based on condition identification. The experimental results in a
steel plant showed that the proposed control scheme significantly improved the precision
of furnace temperature control and reduced energy consumption, achieving good control
effects [16].

Back stepping control is an efficient control strategy for nonlinear and uncertain sys-
tems that designs controllers based on the physical model of the system and the inverse
model of the controller. Back stepping control method has strong adaptability and robust-
ness, which can effectively solve the problems such as uncertainty and external disturbances
in the system [17–19]. However, during the design process, this method requires repeated
differentiation of the virtual control law, which may lead to the “differential explosion”
phenomenon, resulting in highly complex controllers, especially when the system order
increases, such as in 3rd order and above. Therefore, the characteristics of the system
and the applicability of inverted control must be fully considered in practical applications.
To overcome the limitations of back stepping method, the dynamic surface control (DSC)
method has been proposed [20–25]. This method introduces a first-order low-pass filter
in the each design process, which separates the coupling between the previous and the
next steps, solves the problem of repeated differentiation of the virtual control law, and
overcomes the differential explosion phenomenon. The DSC method has been widely
used, including in the control of hypersonic aircraft. To achieve stability and robustness of
hypersonic flight aircraft and address issues such as nonlinearity, uncertainty, and exter-
nal disturbances, controllers have been designed using dynamic surface control method
in [12,13], which respectively consider problems such as actuator faults, unknown nonlin-
earities, and time delays while ensuring system stability and performance indicators. Qiao
considers issues such as input saturation and external disturbances and also designs con-
trollers using dynamic surface control method to achieve system stability and performance
requirements [14].

Currently, digital computer controllers play an important role in control systems, with
control signals often generated by computers and transmitted in communication channels.
To improve communication efficiency, control signals need to be quantized before entering
the communication channel [26–30]. Therefore, to improve control accuracy, the quantiza-
tion effect of quantizers should be considered in controller design to eliminate the impact
of quantization errors on control performance [25,31–33]. In [28], a robust stabilization
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method for uncertain linear systems is introduced, which includes an input quantizer as
part of the controller. The author uses a method based on H∞ control theory and quadratic
stability to design the robust controller, and considers the effect of the input quantizer.
In [29], a control method for linear parameter-varying systems based on quantized state
feedback is discussed. The author designed a stabilizing controller using Lyapunov func-
tions and incorporated the influence of the quantizer into the system model. Additionally,
the author also discussed the impact of the input quantizer on system performance. In [34],
a fuzzy adaptive tracking control algorithm for high-speed supersonic aircraft with input
quantization and faults was proposed, and an error transformation function was estab-
lished to ensure the tracking error of the system. In [35], an backstepping control method
was used in conjunction with an interval type-2 fuzzy neural network (IT2FNN) to design
a quantization mechanism tracking control scheme for a class of HFA with prescribed
performance. The uncertainty in the system was approximated using a type-2 fuzzy neural
network, and a new control law was designed for the quantization mechanism.

In addition, in adaptive control schemes, neural networks [5,17,18,36] or fuzzy sys-
tems [19,29] are often used to compensate for uncertainty and unknown dynamics in the
system online. In [37], a novel reference tracking control method has been proposed for
servo system, and the experimental results show that the Grey Wolf Optimizer method can
solve the main shortcomings of the Gradient Descent scheme in Reinforcement Learning
-based control problems. However, the online adjustment of parameters often increases as
the input-output dimension and number of nodes of the neural network or fuzzy system
increase, leading to excessive computational requirements and decreased control system
efficiency. Therefore, to address the issue of excessive online adaptive parameter adjust-
ment in adaptive control schemes, a minimal learning method has been proposed [38–42],
here, by estimation of the weight vector norm of neural networks, each step of the con-
troller design process can update only one parameter online, greatly reducing the system’s
computational requirements and improving the control system’s execution efficiency.

Inspired by the literature mentioned above, this paper proposes a quantized input
control scheme based on the minimum learning method for a class of hypersonic vehi-
cles. In contrast to previous literature, dynamic surface control is introduced to address
the problem of differential explosion in the backstepping control scheme, simplify the
final controller structure, and reduce the complexity of controller design. The hysteresis
quantizer is introduced to address the disadvantage of reduced quantization accuracy
in the quantizer when the input value is too low, thereby improving the accuracy of the
quantizer. By introducing the minimum learning method, the problem of too many online
updated parameters in conventional adaptive control is addressed, reducing the system’s
computational complexity and improving control efficiency.

The remaining parts of this paper are structured as follows. In Section 2, the back-
ground of the problem, the dynamic model of hypersonic aircraft and its general form, as
well as the quantizer and neural network are introduced. Section 3 describes the process of
controller design and the stability analysis of the system. In Section 4, a set of experimental
results and their corresponding design parameters are presented. Finally, the paper is
concluded in Section 5.

2. HFA Mathematical Model and Preliminaries
2.1. HFA Dynamic Model

The aerodynamics of hypersonic vehicles exhibit strong coupling and high nonlinearity.
A ccording to the literature [43–45], the mathematical model of the HFA can be described
as follows:

V̇ =
T cos α− D

m
− g sin γ,

ḣ = V sin γ,

γ̇ =
L + T sin α

mV
− g cos(γ)

V
,
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α̇ = q− γ̇,

q̇ =
Myy

Iyy
+

ψ̃1η̈1

Iyy
+

ψ̃2η̈2

Iyy
, (1)

with the
η̈i = −2ιiζiη̇i − ζ2

i ηi + Ni + ψ̃i q̇ (2)

here, the velocity is denoted by V, the flight path angle by γ, the altitude by h, the attack
angle by α, the pitch rate by q. A nd ηi, (i = 1, 2) are the flexible states of HFA. The thrust,
drag, lift-force, and pitching moment are represented by T(V, β), D(V, α), L(V, α) and
Myy(V, α, q, δE) , respectively, and can be expressed as:

T = Cα3

T α3 + Cα2

T α2 + CT
αα + C0

T ,

D = q̄SCD(α, δe),

L = q̄SCL(α, δe),

Myy = zTT + q̄Sc̄[CM,α(α) + CM,δe(δe)],

with CL = Cα
Lα + C0

L, CD = Cα2

D α2 + Cα
Dα + C0

D, CM,α(α) = Cα2

M,αα2 + Cα
M,αα + C0

M,α,

Cα3

T = β1Φ + β2,Cα2

T = β3Φ + β4, Cα
T = β5Φ + β6, C0

T = β7Φ + β8, q̄ = ρV2/2, and
ρ = ρ0 exp(−(h− h0)/hs), where δe, Φ are denote the elevator deflection and throttle
setting, respectively. Letting θ denote the pitch angle, we have θ = α + γ. Then, we define
state variables as x = [xV , xh, xγ, xθ , xq]T , with xV = V, xh = h, xγ = γ, xθ = θ and xq = q.
u = [δe, Φ]T is the control input. Note that during trimmed cruise condition, the flight path
angle γ is typically very small, which justifies the approximation sin(γ) ≈ γ. Therefore
Equation (1) can be rewritten as

ẋ = f (x) + g(x)u,

y = [xV , xh], (3)

where f (x) = [ fV(x), fh(x), fγ(x), fθ(x), fq(x)]T , g(x) = [gV(x), gh(x), gγ(x), gθ(x),
gq(x)]T , fV(x) = (βa ϕ0 cos α− D)/m − g sin γ, fh(x) = 0, fγ = q̄S

(
C0

L − Cα
Lxh
)
/mV +

T sin α/mV− g cos xh/V, fθ(x) = 0, fq = (zTT + q̄Sc̄CM,α(α))/Iyy, gV(x) = βb ϕ0 cos α/m,
gh(x) = V, gγ(x) = q̄SCα

L/mV, gθ(x) = 1, gq(x) = q̄Sc̄ce/Iyy, βa = [β2, β4, β6, β8],

βb = [β1, β3, β5, β7], and ϕ0 =
[
α3, α2, α, 1

]T . The inertial and aerodynamic parameters’ val-
ues being uncertain implies that the functions fi(x) and gi(x), i = V, h, γ, θ, q, are unknown.
Additionally, as mentioned in [44,45], the model of the HFA indicates that gV(x), gh(x) and
gγ(x) are strictly positive, while gq(x) is strictly negative due to ce being negative.

2.2. RBF Neural Networks

Mathematically speaking, the utilization of Radial Basis Function Neural Networks
(RBFNNs) was employed in this study to estimate continuous unknown functions within a
designated compact set. A n RBFNN, as expressed in [46,47], can take the following form:

F(ξ) = ϑTψ(ξ), (4)

where F ∈ R and ξ ∈ Rn represent the network output and input, respectively ϑ ∈ Rn is
the weight vector, and ψ(ξ) = [ψ1(ξ), · · · , ψN(ξ)]

T is the basis function vector. typically,
the basis function vector ψi(ξ) are selected as Gaussion functions:

ψi(ξ) =
1√
2πb

exp

(
−‖ξ − ξi‖2

2b2

)
, b > 0, i = 0, ..., N, (5)
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the constants ξi ∈ Rn and b ∈ R are known as the center and width of the
basis function, respectively.

Lemma 1. Ref. [47] for any continuous function F(ξ) : Ωξ → R, where Ωξ ⊂ Rn is a compact
set, and any constant ε > 0, it is possible to appropriately select b and ξi, i = 1, ..., N, for some
sufficiently large integer N, such that there exists an RBF NN ϑ∗Tψ(ξ) satisfying the equation

F(ξ) = ϑ∗Tψ(ξ) + ∆(ξ), |∆(ξ)| ≤ ε, ∀ξ ∈ Ωξ , (6)

here ϑ∗ represents the optimal weight vector defined as

ϑ∗ = arg min
W∈Rn

{ sup
ξ∈Ωξ

∣∣∣Ψ(ξ)− ϑTψ(ξ)
∣∣∣}, (7)

while ∆(ξ) represents the approximation error.

Remark 1. In the design of adaptive control systems, RBF neural networks can effectively improve
the performance of the controller when the system has significant uncertainty. In this paper, the
RBF neural network is introduced to estimate the unknown terms in the FLA system online, and the
adaptive laws can be derived using the Lyapunov method. The stability and convergence of the entire
closed-loop system are ensured by adjusting the adaptive weights. Currently, many achievements
have been published about using RBF neural networks to design adaptive controllers for nonlinear
systems [48,49].

2.3. Quantizer with Hysteresis Characteristic

This paper achieves the computer control of FLA by introducing a hysteresis quantizer
illustrated in Figure 1.

d+1

1P 1P

d-1

1P 2P

1P

)1(1 d+P

2P

du

)( duQ

)1( d-=slop

)1( d+=slop

0

Figure 1. Hysteresis Quantizer.
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Q(ui) =



pi,j, if
pi,j

1+δi
< ui ≤ pi,j,

Q− ≥ pi,j or Q− ≤ pi,j

pi,j ≤ ui <
pi,j

1−δi
,

(1 + σi)pi,j, if pi,j < ui ≤
pi,j

1−δi
,

Q− ≥ (1 + σi)pi,j,
or

pi,j
1−δi
≤ ui < pi,j+1,

Q− ≤ (1 + σi)pi,j,
0, if 0 ≤ ui ≤

pi,1
1+δi

or pi,1
1+δi

< ui < pi,1,
Q− = 0,

−Q(−ui), if ui < 0,

(8)

Here, δi(t) = 1−εi(t)
1+εi(t)

and pi,j(t) = ai(t)ε
1−j
i (t), where 0 < εi(t) < 1, ai(t) > 0 and

j = 1, 2, 3.... The parameter ai(t) determines the size of the dead-zone for Q(ui), while
εi(t) represents the density of the quantized signal. Q− represents the latest value of Q(ui).
The maximum and minimum values of ai(t), εi(t) are defined as āi, ai, ε̄i, εi, respectively.
For the quantized control signal, it is defined as:

li1 =


Q(ui)

ui
, if |ui| ≥ ai(t),

1 , if |ui| ≤ ai(t),
(9)

li2 =

{
0 , if |ui| ≥ ai(t),

Q(ui)− ui , if |ui| ≤ ai(t).
(10)

Then, we have
Q(ui) = li1(t)ui + li2(t). (11)

From Figure 1, it can be obtained that

1− δi(t) ≤
Q(ui)

ui
≤ 1 + δi(t) , if |ui| ≥ ai(t),

|Q(ui)− ui| < ai(t) , if|ui| ≤ ai(t),
(12)

where
li1(t) ≥ λi , li2(t) ≤ āi , ∀t ≥ 0 (13)

with λi > 0 , such that λi =
2εimin

1+εimin
.

Remark 2. Unlike the logarithmic quantizer, the introduced hysteresis quantizer in this article will
stay a certain time interval during the transition between two different input values [50,51], and
increases the quantization levels to overcome the vibration phenomenon that occurs in the logarithmic
quantizer. The hysteresis quantizer can also adaptively adjust the quantization interval based on the
amplitude of the control signals, compared to the logarithmic quantizer [52], significantly reducing
the number of transitions and enhancing the ability to overcome chattering. It overcomes the problem
of decreased quantization accuracy when the input value is too low in a quantizer, thus improving
the accuracy of the quantizer.

3. Quantized Controller Design and Stability Analysis

Based on the parameterized Equation (1) of the HFA described in Section 3.1, the HFA
control system is divided into two parts: velocity subsystem controller design and altitude
subsystem controller design. Firstly, an adaptive quantized controller is designed for the
velocity subsystem.
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3.1. Velocity Subsystem Control Design

The velocity subsystem with input quantizer can be formulated as follows

ẋV = fV + gV Q(Φ), (14)

y1 = xV = V,

where fV and gV are supposed to be smooth functions with unknown parameters. Q(Φ)
denotes the control input signal of velocity subsystem with hypersis quantizer. Then the
tracking error of velocity is defined as

SV = xV − xVd, (15)

here xVd is the velocity reference signal, then the time derivative of SV is

ṠV = ẋV − ẋVd

= fV(x̄V) + gV Q(Φ)− ẋVd (16)

To obtain the specific expression of Q(Φ), according to Equations (9)–(11),
we define here

ιV1(t) =

{
Q(Φ)

Φ , if |Φ| ≥ aV(t)
1, if |Φ| < aV(t)

(17)

ιV2(t) =
{

0, if |Φ| ≥ aV(t)
Q(Φ)−Φ, if |Φ| < aV(t)

(18)

Then the control signal can be obtain as

Q(Φ) = ιV1(t)Φ + ιV2(t) (19)

substituting (19) into (16) leads to

ṠV = fV(x̄V) + gV ιV1(t)Φ + gV ιV2(t)− ẋVd (20)

Equation (20) can be rewritten as

ṠV = gV(
1

gV
fV(x̄V)−

1
gV

ẋVd +
1
2

SV) + gV(ιV1(t)Φ + ιV2(t)−
1
2

SV)

choose the unknown function

1
gV

( fV(x̄V)− ẋVd) +
1
2

SV = ϑ∗TV ψV(ξV) + εV(ξV) (21)

Let υ∗V =
∥∥ϑ∗TV

∥∥2, υ̃V = υ̂V − υ∗V , with υ̂V is the estimation of υ∗V . Then the following
are the control signal Φ and adaptive law ι̂v, υ̂V can be chosen as follows

Φ = − SV ῡ2
v

|SV ῡv|+ $v
(22)

ῡv = ι̂vῡ
′
v (23)

ῡ
′
v = kVSV +

a2
V υ̂VψT

V(ξV)ψV(ξV)SV

2
(24)

˙̂υV =
γV a2

VψT
V(ξV)ψV(ξV)S2

V
2

− γVσV υ̂V (25)
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˙̂ιv = γιvSV ῡ
′
v − γιvσιv ι̂v (26)

where kV γV σV γιv are the design parameters greater than zero. The candidate quadratic
equation can be chosen as

ΓV =
1

2gV
S2

V +
1

2γV
υ̃2

V +
λ

2γV
ι̃2v (27)

then the time derivative of ΓV is computed as

Γ̇V =
1

gV
SV ṠV +

1
γV

υ̃V ˙̂υV +
λ

γιv
ι̃v ˙̂ιv (28)

according to (14)–(26), (28) can be rewritten as

Γ̇V = SV

(
ιV1(t)Φ + ιV2(t)−

1
2

SV

)
+ SV

[
ϑ∗TV ψV(ξV) + εV(ξV)

]
+

1
γV

υ̃V ˙̂υV +
λ

γιv
ι̃v ˙̂ιv (29)

by using the following equations

SVϑ∗TV ψV(ξV) ≤
a2

V
∥∥ϑ∗TV

∥∥2
ψT

V(ξV)ψV(ξV)S2
V

2
+

1
2a2

V

SVεV(ξV) ≤
1
2

S2
V +

1
2

ε2
Vm (30)

then, (29) can be rewritten as

Γ̇V ≤ SV [ιV1(t)Φ + ιV2(t)] +
a2

V
∥∥ϑ∗TV

∥∥2
ψT

V(ξV)ψV(ξV)S2
V

2

+
1

2a2
V
+

1
2

ε2
Vm +

1
γV

υ̃V ˙̂υV +
λ

γιv
ι̃v ˙̂ιv (31)

submitting (22)–(26) into (31), yields

Γ̇V ≤ −kVS2
V +

1
2

S2
V +

1
2

ε2
Vm +

1
2a2

V

− σV υ̃V υ̂V + λ$v +
ā2

2
− λσιv ι̃v ι̂v (32)

3.2. Altitude Subsystem Controller Design

The altitude subsystem with input quantizer can be formulated as follows [53]

ẋh = ghxγ,

ẋγ = fγ(x̄γ) + gγxθ ,

ẋθ = xq,

ẋq = fq
(
x̄q
)
− gqQ(δe),

yh = xh = h, (33)

It should be noted that the variation range of the flight path angle γ is very small during
the cruising of hypersonic aircraft [43,44], and it has a precise corresponding relationship
with the altitude signal h. Therefore, in the design process of the control system, the given
altitude command signal hd is converted into the flight path angle command signal d, and



Machines 2023, 11, 630 9 of 23

the altitude controller is designed based on this. Then, defining the altitude tracking error
as eh = h− hd, we can obtain the following equation:

γd = arcsin
(
−kh1eh + kh2ḣd

V

)
(34)

where kh1, kh2 are positive design parameters. Then, the remaining controller design process
is completed using the dynamic surface strategy.

Step 1: Firstly, the flight path angle tracking error of the aircraft is defined as

Sγ = γ− γd. (35)

Taking the time derivative of Sγ and combining it with the second equation in
(33) yields:

Ṡγ = fγ(x̄γ) + gγxθ − γ̇d (36)

Since fγ and gγ are unknown functions, here we use RBF neural networks (6) to
approximate them. Let

1
gγ

( fγ(x̄γ)− γ̇d) +
1
2

Sγ = ϑ∗Tγ ψγ(ξγ) + εγ(ξγ) (37)

Here, we choose υ∗γ =
∥∥∥ϑ∗Tγ

∥∥∥2
, and υ̂γ as the estimated value of υ∗γ, then the estimation

error is υ̃γ = υ̂γ − υ∗γ. Choosing the Lyapunov candidate function as:

Γγ =
1

2gγ
S2

γ +
1

2γγ
υ̃2

γ (38)

where γγ is the positive design parameter. Taking the derivative of Equation (38), one has

Γ̇γ = Sγ

(
xγ +

1
gγ

( fγ(x̄γ)− γ̇d)

)
+

1
γγ

υ̃γ ˙̂υγ (39)

then, the control law xγd and the adaptive update υ̂γ can be chosen as follows:

xγd = −kγSγ −
a2

γυ̂γψT
γ (ξγ)ψγ(ξγ)Sγ

2
(40)

˙̂υγ =
γγa2

γψT
γ (ξγ)ψγ(ξγ)S2

γ

2
− γγσγυ̂γ (41)

Then, submitting (40) and (41) into (39), and using the following inequations,

Sγϑ∗Tγ ψγ(ξγ) ≤
a2

γ

∥∥∥ϑ∗Tγ

∥∥∥2
ψT

γ (ξγ)ψγ(ξγ)S2
γ

2
+

1
2a2

γ

Sγεγ(ξγ) ≤
1
2

S2
γ +

1
2

ε2
γm (42)

we can obtain

Γ̇γ ≤ −kγS2
γ + Sγ

(
xθ − xγd

)
+

1
2a2

γ
+

1
2

ε2
γm − σγυ̂γυ̃γ (43)

let xγd pass through a first-order low pass filter, then we can obtain a new variable zθ

τγ żθ + zθ = xγd, zθ(0) = xγd(0) (44)
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let y2e = zθ − xγd is the filter error, then (43) can be rewritten as

Γ̇γ ≤ −kγS2
γ + Sγ(Sθ + y2e) +

1
2a2

γ
+

1
2

ε2
γm − σγυ̂γυ̃γ (45)

Step 2: Define the second error surface is S
θ
= x

θ
− z

θ
, then according (33), the time

division of S
θ

is
Ṡ

θ
= ẋ

θ
− ż

θ
= xq − ż

θ

Then, the Lyapunov function can be chosen as

Γ
θ
=

1
2

S2
θ (46)

the time division of (46) is
Γ̇

θ
= S

θ
Ṡ

θ
= S

θ

(
xq − ż

θ

)
(47)

then, the virtual control law can be chosen as

xqd = −k
θ
S

θ
− Sγ + ż

θ
(48)

then submit (48) into (47), yields,

Γ̇
θ
= S

θ

(
xq − xqd

)
− k

θ
S2

θ − S
θ
Sγ (49)

similar to (44), let xqd pass first-order low pass filter, then we can obtain a new variable zθ

τ
θ
żq + zq = xqd, zq(0) = xqd(0) (50)

let the filter error y3e = zq − xqd, then

Γ̇
θ
= −k

θ
S2

θ
− SγS

θ
+ S

θ
Sq + S

θ
yq (51)

where Sq is the third error surface Sq = xq − zq.
Step 3: The time of division of Sq is

Ṡq = ẋq − żq = gq

(
−Q(δe) +

1
gq

(
fq
(
x̄q
)
− żq

))
(52)

define

ι1(t) =

{
Q(δe)

δe
, if |δe| ≥ a(t)

1, if |δe| < a(t)
(53)

ι2(t) =
{

0, if |δe| ≥ a(t)
Q(δe)− δe, if |δe| < a(t)

(54)

the control law can be chosen as

Q(δe) = ι1(t)δe + ι2(t) (55)

Form Figure 1, it arrives at

1− δ1 ≤
Q(δe)

δe
≤ 1 + δ1, if |δe| ≥ a(t)

0 ≤ |Q(δe)− δe| < a, if |δe| < a(t) (56)
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considering (53), (54) and the relationship

δ1 =
1− ε1

1 + ε1
(57)

one has
ι1(t) ≥ λ, ι2(t) ≤ ā, ∀t ≥ 0 (58)

where λ > 0, satisfying

λ =
2ε1 min

1 + ε1 min
(59)

according (52), since 1
gq

(
fq
(
x̄q
)
− żq

)
+ 1

2 Sq is unknown function, the RBF neural networks
are used to approximate it. Let

1
gq

(
fq
(
x̄q
)
− żq

)
+

1
2

Sq = ϑ∗Tq ψq
(
ξq
)
+ εq

(
ξq
)

(60)

Here, we choose υ∗γ =
∥∥∥ϑ∗Tγ

∥∥∥2
, and υ̂γ as the estimated value of υ∗γ, then the estimation

error is υ̃γ = υ̂γ − υ∗γ. Choosing the Lyapunov candidate function as:

Γq =
1

2gq
S2

q +
1

2γq
υ̃2

q +
λ

2γι
ι̃2h (61)

where ι̃h = ι̂h − ι∗h, ι∗h = 1
λ , ι̂h is the estimate value of ι∗h then, the time division of Γq is

Γ̇q =
1
gq

SqṠq +
1

γq
υ̃q ˙̂υq +

λ

γι
ι̃h ˙̂ιh (62)

according (60) and (62) and the following inequations

Sqϑ∗Tq ψq
(
ξq
)
≤

a2
q

∥∥∥ϑ∗Tq

∥∥∥2
ψT

q
(
ξq
)
ψq
(
ξq
)
S2

q

2
+

1
2a2

q

Sqεq
(
ξq
)
≤ 1

2
S2

q +
1
2

ε2
qm

then, (62) can be rewritten as

Γ̇q ≤ Sq(−[ι1(t)δe + ι2(t)])

+
a2

q υ̂qψT
q
(
ξq
)
ψq
(
ξq
)
S2

q

2
−

a2
q υ̃qψT

q
(
ξq
)
ψq
(
ξq
)
S2

q

2

+
1

2a2
q
+

1
2

ε2
qm +

1
γq

υ̃q ˙̂υq +
λ

γι
ι̃h ˙̂ιh (63)

where δe is the control law has the following form

δe =
Sqῡ2

h∣∣Sqῡh
∣∣+ $h

(64)

with
ῡh = ι̂hῡ

′
h (65)

and

ῡ
′
h = −kqSq −

a2
q υ̂qψT

q
(
ξq
)
ψq
(
ξq
)
Sq

2
(66)
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The adaptive laws for the unknown parameter υ∗q and ι∗h = 1
λ is chosen as

˙̂υq =
γqa2

qψT
q
(
ξq
)
ψq
(
ξq
)
S2

q

2
− γqσqυ̂q (67)

˙̂ιh = γιSqῡ
′
h − γισι ι̂h (68)

Then, submitting (64)–(66) into (63), yields

Γ̇q ≤ −kqS2
q −

1
2

S2
q + λ$h +

ā2

2
+

1
2

ε2
qm +

1
2a2

q
− σqυ̃qυ̂q − λσι ι̃h ι̂h (69)

So far, the controller design process has been completed, and the next step is to analyze
the stability of the entire control system.

Remark 3. It should be noted that in adaptive control schemes, neural networks or fuzzy systems
are often used to compensate for the uncertainties and unknown dynamics in the system online.
However, the online adjustment of parameters often increases as the input-output dimensions and
number of nodes of the neural network or fuzzy system increase, leading to excessive computation
and reduced efficiency of the control system. Therefore, to address the problem of excessive online
adaptive parameter adjustment in adaptive control schemes, a minimum learning method has been
proposed [38,39]. By online estimating the norm of the weight vector of the neural network, only
one parameter needs to be updated online in each controller design process, as shown in (25), (41)
and (67), greatly reducing the computation of the system and improving the execution efficiency of
the control system.

3.3. Stability Analysis

Define the filter error of (44), (50) y2e and y3e as

y2e = z2 − x
θ d = z

θ
−
(
−kγSγ −

a2
γυ̂γψT

γ (ξγ)ψγ(ξγ)Sγ

2

)
(70)

y3e = zq − xqd == zq − (−k
θ
S

θ
− Sγ + ż

θ
) (71)

According to (44) and (50) one has

ż
θ
=

x
θ d − z

θ

τ
θ

= −y2e

τ
θ

(72)

żq =
xqd − zq

τq
= −

yqe

τq
(73)

then the time differental of (70) and (71) are

ẏ2e = ż
θ
− ẋ

θd = −y2e

τ
θ

+ B2(·) (74)

ẏ3e = żq − ẋqd = −y3e

τq
+ B3(·) (75)

where

B2(·) = −ẋ
θ d = kγṠγ +

a2
γ

˙̂υγψT
γ (ξγ)ψγ(ξγ)Sγ

2
+

a2
γυ̂γψT

γ (ξγ)ψγ(ξγ)Ṡγ

2

+ a2
γυ̂γψT

γ (ξγ)Sγ

(
∂ψγ(ξγ)

∂xl
ẋl +

∂ψγ(ξγ)

∂Sγ
Ṡγ

)
B3(·) = −ẋqd = k

θ
Ṡ

θ
+ Ṡγ − z̈

θ
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Theorem 1. Consider the closed-loop system comprised of the HFA dynamic (1), control laws (22),
(64), filter (44), (50), and parameter adaptation laws (25), (26), (67) and (68). Suppose the initial
conditions satisfy Γ(0) < p, with p is any positive constant. then, all signals in the closed-loop
system are semi-globally ultimately uniformly bounded (UUB) and converge to residual sets.

Proof. Let the quadratic function be defined as

Γ = ΓV + Γγ + Γθ + Γq +
1
2

y2
2e +

1
2

y2
3e (76)

The time derivative of Γ in (76) yields

Γ̇ = Γ̇V + Γ̇γ + Γ̇θ + Γ̇q + y2eẏ2e + y3eẏ3e (77)

Based on Equations (31), (43), (51) and (69), we obtain:

Γ̇γ ≤ −kγS2
γ + Sγ(Sθ

+ y2) +
1

2a2
γ
+

1
2

ε2
γm − σγυ̂γυ̃γ (78)

Γ̇
θ
= −k

θ
S2

θ − SγS
θ
+ S

θ
Sq + S

θ
y3 (79)

Γ̇q ≤ Sq(−[ι1(t)δe + ι2(t)]) +
a2

qυ∗q ψT
q
(
ξq
)
ψq
(
ξq
)
S2

q

2

+
1

2a2
q
+

1
2

ε2
qm +

1
γq

υ̃q ˙̂υq +
λ

γι
ι̃h ˙̂ιh (80)

Γ̇V ≤ SV [ι3(t)Φ + ι4(t)] +
a2

Vυ∗VψT
V(ξV)ψV(ξV)S2

V
2

+
1

2a2
V
+

1
2

ε2
Vm +

1
γV

υ̃V ˙̂υV +
λ

γιv
ι̃v ˙̂ιv (81)

Note that
ι1(t) ≥ λ, ι2(t) ≤ ā, ∀t ≥ 0 (82)

and

Sq(−[ι1(t)δe + ι2(t)]) ≤ −λ
(∣∣Sqῡh

∣∣− $h
)
−

λ$2
h∣∣Sqῡh
∣∣+ $h

− Sqι2(t)

−Sqι2(t) ≤ −
1
2

S2
q +

ā2

2
(83)

Sq(−[ι1(t)δe + ι2(t)]) ≤ λ$h − λSqῡh −
1
2

S2
q +

ā2

2
(84)

then

Γ̇q ≤ λ$h − λSqῡh −
1
2

S2
q +

ā2

2
+

1
2a2

q
+

1
2

ε2
qm +

1
γq

υ̃q ˙̂υq +
λ

γι
ι̃h ˙̂ιh (85)

where

−λSqῡh = −kqS2
q −

a2
q υ̂qψT

q
(
ξq
)
ψq
(
ξq
)
S2

q

2
− λSq ι̃hῡ

′
h

1
γq

υ̃q ˙̂υq =
a2

q υ̃qψT
q
(
ξq
)
ψq
(
ξq
)
S2

q

2
− σqυ̃qυ̂q (86)

λ

γι
ι̃h ˙̂ιh = λι̃hSqῡ

′
h − λσι ι̃h ι̂h (87)
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According (64), (65), (66), (67) and (68), then (85) can be rewritten as

Γ̇q ≤ −kqS2
q −

1
2

S2
q + λ$h +

ā2

2
+

1
2

ε2
qm +

1
2a2

q
− σqυ̃qυ̂q − λσι ι̃h ι̂h (88)

Similarly to (82)–(88)
ι3(t) ≥ λ, ι3(t) ≤ ā, ∀t ≥ 0

SV [ι3(t)Φ + ι4(t)] ≤ λ$v − λSV ῡv +
1
2

S2
V +

ā2

2

−λSV ῡv = −SV ῡ
′
v − λSV ι̃vῡ

′
v

1
γV

υ̃V ˙̂υV =
a2

V υ̃VψT
V(ξV)ψV(ξV)S2

V
2

− σV υ̃V υ̂V (89)

λ

γιv
ι̃v ˙̂ιv = λSV ι̃vῡ

′
v − λσιv ι̃v ι̂v (90)

where

Φ = − SV ῡ2
v

|SV ῡv|+ $v

ῡv = ι̂vῡ
′
v

ῡ
′
v = −kVSV −

a2
V υ̂VψT

V(ξV)ψV(ξV)SV

2

˙̂υV =
γV a2

VψT
V(ξV)ψV(ξV)S2

V
2

− γVσV υ̂V

˙̂ιv = γιvSV ῡ
′
v − γιvσιv ι̂v

−SV ῡ
′
v = −kVS2

V −
a2

V υ̂VψT
V(ξV)ψV(ξV)S2

V
2

yields

Γ̇V ≤ −kVS2
V +

1
2

S2
V +

1
2

ε2
Vm +

1
2a2

V
− σV υ̃V υ̂V + λ$v +

ā2

2
− λσιv ι̃v ι̂v (91)

define
Π := {(y1d, ẏ1d, ÿ1d) : y1d + ẏ1d + ÿ1d ≤ B0} (92)

|y2eB2| ≤
y2

2eB2
2

2µ
+

µ

2
≤

y2
2e M2

2
2µ

+
µ

2
(93)

|y3eB3| ≤
y2

3eB2
3

2µ
+

µ

2
≤

y2
3e M2

3
2µ

+
µ

2
(94)

and utilizing the following inequalities

−σγυ̂γυ̃γ ≤ −
σγ

2
υ̃2

γ +
σγ

2
υ∗2γ (95)

−σqυ̂qυ̃q ≤ −
σq

2
υ̃2

q +
σq

2
υ∗2q (96)

−σV υ̂V υ̃V ≤ −
σV
2

υ̃2
V +

σV
2

υ∗2V (97)

−σι ι̃h ι̂h ≤ −
σι

2
ι̃2h +

σι

2
ι∗2h (98)



Machines 2023, 11, 630 15 of 23

−σιv ι̃v ι̂v ≤ −
σιv

2
ι̃2v +

σιv

2
ι∗2v (99)

and let

1
τ2
≥ 1

2
+

M2
2

2µ
+ α0 (100)

1
τ3
≥ 1

2
+

M2
3

2µ
+ α0 (101)

Here, α0 is design positive parameter. According (74), (75), (93) and (94), one has

y2eẏ2e ≤ −y2
2e

(
1
2
+ α0

)
+

µ

2

y3eẏ3e ≤ −y2
3e

(
1
2
+ α0

)
+

µ

2
(102)

then (77) can be rewritten as

Γ̇ = Γ̇V + Γ̇γ + Γ̇θ + Γ̇q + y2eẏ2e + y3eẏ3e (103)

≤ −kγS2
γ + Sγ(Sθ

+ y2) +
1

2a2
γ
+

1
2

ε2
γm − σγυ̂γυ̃γ − k

θ
S2

θ − SγS
θ
+ S

θ
Sq + S

θ
y3 (104)

− kqS2
q −

1
2

S2
q + λ$h +

ā2

2
+

1
2

ε2
qm +

1
2a2

q
− σqυ̃qυ̂q − λσι ι̃h ι̂h (105)

− kVS2
V +

1
2

S2
V +

1
2

ε2
Vm +

1
2a2

V
− σV υ̃V υ̂V + λ$v +

ā2

2
− λσιv ι̃v ι̂v (106)

− y2
2e

(
1
2
+ α0

)
+

µ

2
− y2

3e

(
1
2
+ α0

)
+

µ

2
(107)

by using the following inequalities

Sγy2e ≤
S2

γ

2
+

y2
2e
2

, S
θ
Sq ≤

S2
θ

2
+

S2
q

2
, S

θ
y3e ≤

S2
θ

2
+

y2
3e
2

leads to

Γ̇ ≤ −
(

kγ −
1
2

)
S2

γ − (k
θ
− 1)S2

θ − kqS2
q −

(
kV −

1
2

)
S2

V

−
σγ

2
υ̃2

γ −
σq

2
υ̃2

q −
σV
2

υ̃2
V − λ

σι

2
ι̃2h − λ

σιv

2
ι̃2v − α0y2

2e − α0y2
3e + C∗ (108)

where

C∗ =
1
2

ε2
γm +

1
2a2

γ
+

σγ

2
υ∗2γ +

ā2

2
+

1
2

ε2
qm +

1
2a2

q
+

σq

2
υ∗2q +

1
2

ε2
Vm

+
1

2a2
V
+

σV
2

υ∗2V + λ$h +
µ

2
+

µ

2
+ λ

σι

2
ι∗2h + λ$v +

ā2

2
+ λ

σιv

2
ι∗2v (109)

with α0 is a positive design parameter and satisfies

α0 ≤ min

{ (
kγ − 1

2

)
, (k

θ
− 1), kq,

(
kV − 1

2

)
γγσγ

2 , γqσq
2 , γV σV

2 , γισι
2 , γιvσιv

2

}
(110)

Then, we can obtain the analytical solution of formula (108) as follows.

Γ̇ ≤ −2α0Γ + C∗. (111)
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Let
α0 ≥

C∗

2p
. (112)

Here it can be concluded Γ̇ ≤ 0 on Γ = p, it implies that Γ ≤ p is an invariant set,
further can be obtained

0 ≤ Γ(t) ≤ C∗

2α0
+

[
Γ(0)− C∗

2α0

]
e−2α0t (113)

and
lim
t→∞

Γ(t) ≤ C∗

2α0
(114)

It implies that all the signals in the closed-loop system are semi-globally uniformly
bounded and the tracking errors and the estimation errors can be arbitrarily small. All sig-
nals in the closed-loop system are proven to be semi-globally ultimately uniformly bounded
(UUB). Then the system is asymptotically stability. That is the end of the proof.

Remark 4. Note that in adaptive control, the convergence and stability of the system are interrelated.
Convergence ensures that the control error quickly approaches a neighborhood near zero, reaching the
steady-state performance of the system and improving control efficiency and accuracy. Stability is
the primary requirement for a control system to maintain stability when the system is subjected to
external or internal disturbances. In an adaptive control system, to ensure stability, the convergence
of the controller and stability analysis must be considered. Typically, control strategies based on
Lyapunov stability theory are used to analyze the stability of the system, such as the Lyapunov
function used in this paper (27), (38), (46), (61) and (76).

Remark 5. It is worth noting that this paper uses Lyapunov stability theory to design the control
system. The selection of Lyapunov function must follow three conditions: (1) Positive Definite, (2)
Continuity (3). Differentiability. In nonlinear control systems, quadratic functions are commonly
used as Lyapunov functions, including all the error terms that need to converge. In this paper,
the selected Lyapunov functions (27), (38), (46), (61) and (76) contain error parameters required
for the control system to converge and satisfy the above three conditions. The stability analysis
section proves that the derivatives are negative definite, thereby proving the stability of the closed-
loop system.

Remark 6. The control scheme proposed in this article exhibits uniform asymptotic stability.
This means that over time, the system’s output gradually approaches a stable state. The control
scheme ensures that all errors in the closed-loop eventually converge to a stable equilibrium point
and remain within a certain region. In the stability analysis, the Lyapunov function is employed to
demonstrate the asymptotic stability of the control scheme. This function is non-negative, continu-
ously differentiable in the system’s state space, and decreases as time progresses. These characteristics
indicate that the control scheme proposed in this article possesses uniform asymptotic stability.

4. Simulation Results

This section presents the simulation evaluation of the proposed control stregy on
the dynamic model (1) and (2) of HFA. The simulation uses the same general parameters
and rated aerodynamic coefficients as the simulation model of HFA taken from [54,55].
Reference signals are generated by filtering step reference signals through a pre-filter (115)
with natural frequency ωn1 = 0.5, ωn2 = 0.3, and ζ = 0.85. The reference signals for velocity
and altitude are 400 ft/s and 1000 ft, respectively. In order to verify the effectiveness and
adaptability of the proposed control scheme through Matlab simulation, and to demonstrate
its ability to stabilize the system under different initial conditions, simulation experiments
were carried out under two different initial error conditions: zero initial error condition
and non-zero initial error condition, and the simulation results as shown in Figures 2–10.
The specific initial parameter selections are as follows:
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Case 1: In this case, when t = 0, it is assumed that the initial states of the system are
V(0) = 7850 ft/s, h(0) = 85, 000 ft, γ(0) = 0 rad, θ(0) = 0.02 rad, and q(0) = 0 rad/s.
The initial error of the system output are zero, which means SV(0) = 0( f t/s), Sh(0) = 0( f t).

Case 2: In this case, when t = 0, it is assumed that the initial states of the system are
V(0) = 7835 ft/s, h(0) = 84, 980 ft, γ(0) = 0rad, θ(0) = 0.02 rad, and q(0) = 0 rad/s.
The initial output errors of the system are non-zero: SV(0) = −15( f t/s), Sh(0) = −20( f t).

For the simulation. The design parameters are kV = 0.55, aV = 1.1, γV = 0.005,
σV = 0.1, γιV = 0.01, σιV = 0.5. kh1 = 1, kh2 = 0.1. kγ = 0.5, aγ = 1, σγ = 1, γγ = 1. kθ = 1,
Kq = 1, aq = 0.5. σq = 0.1, γq = 0.2. γι = 10, $h = 0.01, τγ = τθ = 0.005.

hd
hc

=
ω2

n1
ω2

n2

(p + ωn1)
2(p + 2ζωn2 p + ω2

n2

)2

Vd
Vc

=
ω2

n1

p2 + 2ζωn1 p + ω2
n1

(115)

Figures 2–10 show the simulation results in case 1 and case 2. The simulation for Case
1 are shown in Figures 2–8. Figure 2 displays the speed tracking curve and speed tracking
error of the HFA. From this figure, it can be seen that, under the condition of zero initial
error at t = 0, when the system reference changes, the velocity tracking error will decrease.
Due to the presence of the control system, the speed error is kept within 3 f t/s. After about
16 s, the tracking error is less than 0.5 f t/s and gradually approaches zero.

Figure 3 illustrates the altitude tracking response and tracking error. From this figure,
it can be seen that under the condition of zero initial error at t = 0, when the system
tracking signal changes, the altitude will have a 1.5 f t fluctuation in a short time, but
it will be effectively controlled within 3 s, making the system tracking error gradually
approach zero.

Figure 4 illustrates the response curves of the system states, including flight angle γ,
pitch angle θ and pitch rate q. Figure 5 shows the response curve of the flexible structure in
the system η1 and η2. It can be seen from the figure that when the system state changed, the
flexible state quickly returns to stability after a brief oscillation. Figure 6 shows the system
control signal Φ, δe and quantization signal Q(Φ), Q(δe). Figures 7 and 8 are the system
adaptive adjustment rate curves.

In order to verify the adaptability of the proposed control scheme, Figures 9 and 10
show the speed and altitude tracking response curves when the system is in the case of
non-zero initial error. Figure 9 is the speed response curve when the initial error of the
system speed is −15 f t/s. It can be seen from the figure that the system error can converge
and approach stability in a very short time. Figure 10 is the altitude response curve when
the initial error is −20. It can be seen from the figure that under non-zero initial conditions,
the control system can also make the system track the command signal in a short time
(within 5 s) and keep it stable. Through the simulation verification of the control system
under two kinds of initial tracking errors conditions, the simulation results show that the
control scheme proposed in this paper has good adaptability, and can achieve satisfactory
control effect under zero and non-zero initial errors. The effectiveness of the proposed
control scheme is proved.

Remark 7. It is worth noting that in practical physical systems, most control variables are also con-
tinuous variables, such as position, velocity, acceleration, etc. However, the control system simulation
experiments on the Matlab platform are based on discrete time, using discrete-time simulation methods
to simulate the continuous behavior of physical systems. A s long as the control system is appropriately
sampled and transformed, accurate and effective simulation results can still be obtained.

Remark 8. In order to make the proposed quantized control scheme more feasible, the design
parameters can be selected using the following steps. Firstly, choose a smaller value for the time
constants of the first-order low-pass filter, denoted as τγ, τθ , within the range of 0.001–0.1 that is
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practically acceptable. Secondly, after obtaining the value of B0 using Equation (92), determine the
values of a0 using Equations (100) and (101). Thirdly, using the value of obtained in Step 2 and based
on Equation (110), choose the design parameters kγ, kθ , kq, kV , γγ, σγ, γq, σq, γV , σV , γι, σι, γιv, σιv.
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5. Conclusions

In this article, an adaptive dynamic surface input quantization control strategy is
proposed for hypersonic flight aircraft with parameter uncertainties. By introducing
a first-order low-pass filter in each design step, the differential explosion problem of
traditional backstepping control methods is addressed and the control law structure is
simplified. By online adjusting the norm of the neural network weight vector, the number of
online updated parameters in the control system is reduced, and the operational efficiency
is improved. The introduced hysteresis quantizer overcomes the disadvantage of the
quantization accuracy deterioration when the input value decreases in the quantizer, and
improves the quantization accuracy. The stability analysis proves that all signals in the
closed-loop system are semi-globally uniformly bounded. Simulation results demonstrate
the effectiveness of the proposed control scheme.
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