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Abstract: Due to their advantages of compact size, high reduction ratio, large stiffness and high load
capacity, RV reducers have been widely used in industrial robots. The dynamic characteristics of RV
reducers in terms of vibratory response and dynamic transmission error have a significant influence
on positioning accuracy and service life. However, the current dynamic studies on RV reducers are
not extensive and require deeper study. To bridge this gap, a more effective and realistic lumped
parameter dynamic model for RV reducers is developed, considering the tooth profile modification
of cycloid gears and system errors. Firstly, for an efficient solution, the equivalent pressure angle and
equivalent mesh stiffness of the cycloid–pin gear pair are introduced in the dynamic model based
on the loaded tooth contact analysis. Secondly, the differential equations of the system are derived
by analyzing the relative displacement relationships between each component, which are solved
using the Runge–Kutta method. With this, the effects of errors such as machining errors, assembly
errors and bearing clearances on the dynamic behaviors and transmission precision are investigated
by comparison to quantify or qualify their influence. This research is helpful in characterizing the
multi-tooth mesh and dynamic behavior, and revealing the underlying physics of the RV reducer.

Keywords: RV reducer; loaded tooth contact analysis; dynamic model; dynamic transmission precision

1. Introduction

The rotary vector (RV) reducer has already been generally introduced in diverse
engineering fields, especially in industrial robot joints, making up 39% of the whole cost
among all the components of an industrial robot [1]. The RV reducer mechanism is chiefly
composed of a two-stage transmission mechanism, where an involute planet gear drive
is the first reduction and a cycloid–pin gear drive is the second reduction. Due to their
delicately designed structure, RV reducers have many advantages compared to other
types of reducers, including their compact size, small backlash, high reduction ratio, large
stiffness and high load capacity [2,3].

Recently, the analysis of the multi-tooth meshing characteristics and dynamic behav-
iors of RV reducers has become a very active topic of research. Huang et al. [4] proposed
a meshing stiffness analysis model of the BRV (beveloid rotate vector transmission) for
better understanding the dynamic characteristics of BRV transmission systems. Li et al. [5]
proposed an effective loaded analysis model based on the minimum energy principle for
the RV reducers to predict the load distribution and contact conditions. Jang et al. [6]
proposed a new modified cycloid reducer with an epitrochoid tooth profile and established
a theoretical model for force and efficiency analyses. Jin et al. [7] conducted a multi-body
dynamics simulation using virtual prototyping technology to investigate the influence of
design factors on the dynamic transmission precision. Wang et al. [8] proposed multi-tooth
contact and transmission error models by dividing the contact area of tooth pairs into
several differential elements. Wang et al. [9] established the torsional vibration equations
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of the RV reducer with the trigonometric function-fitting torsional stiffness obtained by the
torsional stiffness test, and simulated the torsional vibration response of the RV reducer
based on the Runge–Kutta method. Xu et al. [10] developed a contact dynamic model
of cycloid drives to analyze the load distribution with consideration of the cylindrical
roller-bearing effects. Wu et al. [11] analyzed the transmission error of the RV reducer with
manufacturing and assembly tolerances, and investigated the sensitivities of the kinematic
error with respect to various design parameters based on the Monte Carlo method. Li
et al. [12] established a new theoretical contact analysis model of cycloidal–pin gear trans-
mission, considering the tooth profile and pitch errors of the cycloidal gear. Li et al. [13]
proposed an analytical method to calculate the contact stress and stiffness, transmission
error and gear ratio of a cycloid speed reducer, considering the effects of tooth profile modi-
fications and eccentric error. Li et al. [14] proposed a new tooth profile modification method
involving the cycloid gears of RV reducers for robots by establishing the relationship be-
tween the modifications and the pressure angle distribution. Huang et al. [15] proposed a
computerized approach of loaded tooth contact analysis based on the influence coefficient
method, either for the contact tooth pairs of the involute stage or of the cycloid stage of
the RV reducer. Hsieh et al. [16] investigated four differently structured two-stage cycloid
speed reducers by analyzing the component motion and stress conditions during reducer
operation. Yang et al. [17] developed a dynamic model by considering the influence of
bearing stiffness, crankshaft bending stiffness and mesh stiffness; the governing equation of
motion was derived and solved by using the Fourier series method. Hao et al. [18] proposed
the rigid–flexible coupling dynamic simulation method of planetary gear transmission
based on Multi-Flexible-Body Dynamics (MFBD) technology, which was used to obtain
the dynamic stress distribution of planetary gear and to investigate the dynamic response
characteristics. Hsieh et al. [19] investigated the contact and collision conditions and stress
variations during transmission by constructing a system dynamics analysis model of a
cycloidal speed reducer. Huang et al. [20] conducted a dynamic characteristics analysis on
an internal mesh planetary gear with small tooth number difference (PGSTD) reducer by
means of the dynamic contact FE method. Wei et al. [21] proposed a dynamic modeling
method for the coupling vibration analysis of the planetary gear system by applying a
virtual equivalent shaft element in order to overcome the lack of fidelity of the lumped pa-
rameter models and the high computational cost of finite element models. Wang et al. [22]
developed a novel general system–structure coupling dynamic analysis procedure to ana-
lyze the dynamic performance of planetary gears. The dynamic loads of gears were taken as
excitations for the structural dynamic analysis. Chen et al. [23] proposed a dynamic model
for planetary gearboxes considering the clearance of the planet gear, sun gear and carrier
bearings, as well as sun gear tooth crack levels. Zhang et al. [24] proposed a non-random
vibration analysis method for RV reducers based on the deterministic vibration model
to analyze the vibration of its core components. Matejić et al. [25] provided efficiency
analysis for a new two-stage cycloid drive concept based on losses generated by friction,
and drew comparisons with the current schemes in practice. Bednarczyk et al. [26] found
that the forces, contact pressures and backlash distribution were strongly determined by
the tolerance of the radius of the bushings’ arrangement and holes in the planet wheel
by analyzing the cycloidal reducer output mechanism, considering machining deviations.
Blagojević et al. [27] designed a new concept on a two-stage cycloidal speed reducer, in
which only one cycloid disc was used per stage to enhance the structure compactness, and
conducted a simulation to confirm its dynamic balance and stability. Gorla et al. [28] pro-
posed the structure and motion principles of a novel cycloidal speed reducer and designed
a simplified procedure to calculate the force distribution on cycloid drive elements, its
power losses and its theoretical mechanical efficiency. Efremenkov et al. [29] projected an
algorithm for automatically calculating the force and stress of a cycloid reducer with the
advantage of rapidity and high accuracy to achieve the best initialization of parameters, so
as to minimize the force impact on the mechanism parts. Maccioni et al. [30] proposed a
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new three-stage gearbox architecture, called Nested, to obtain high reduction ratios and
maintain its relatively compact overall dimensions.

The literature review shows that many research works have focused on the load distri-
bution and dynamic analyses of cycloid-type drives and planetary gear drives, respectively.
The contact strength and vibratory response are thought to have a significant influence
on the transmission accuracy and service life of gear drives. However, for the RV reducer,
as a combination of the above, the current dynamic studies are not extensive and need
to be deeper compared with those of the involute gearings. Therefore, to characterize
the multi-tooth mesh and dynamic behavior, and reveal the underlying physics of the RV
reducer, a more effective and realistic lumped parameter dynamic model for RV reducers is
developed, considering the tooth profile modification of cycloid gears and system errors.

2. Quasi-Static Analysis of Cycloid–Pin Gear Pairs
2.1. Tooth Contact Analysis of Cycloid–Pin Gear Pairs

Tooth contact analysis (TCA) is a powerful tool for determining the time-varying
meshing information of the gear pair. The TCA of cycloid–pin gear pairs is introduced
directly as the basis for the following dynamic modeling. As shown in Figure 1, two
moveable coordinate frames S1 and S2 are rigidly connected with the pin gear and the
cycloid gear, respectively. A stationary coordinate system S f has its origin coinciding with
that of S1.
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Figure 1. Coordinate system of cycloid gear with modification.

According to the gearing meshing theory, the position vector and normal vector of
cycloid-pin gear pairs at any meshing point must comply with two meshing conditions,
which are the coincidence of the position vectors and the collinearity of the normal vectors.
Thus, the corresponding equation is expressed as follows:

n(1)
f
(
θpi
)
= n(2)

f (θci, φci)

r(1)f
(
θpi
)
= r(2)f (θci, φci, φin)

(1)

where n(1)
f
(
θpi
)

and r(1)f
(
θpi
)

are the position vector and normal vector of the pin gear in

S f after matrix transformation. Similarly, n(2)
f
(
θpi, φci

)
and r(2)f (θci, φci, φin) are the position

vector and normal vector of the cycloid gear in S f after matrix transformation.
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As a consequence, two vector equations, with four unknown parameters θri, θci, ϕci
and a given value of ϕin, can be derived as nonlinear equations. Because of the unit normal
vector, the equation

∣∣∣n(1)
f

∣∣∣ = ∣∣∣n(2)
f

∣∣∣ = 1 can be determined at any time, such that the above
two vector equations can be solved by three unknown parameters. With this, the meshing
information can be determined to calculate the equivalent mesh stiffness and pressure
angle of the cycloid–pin gear pair in the loaded TCA, including the contact point, backlash
and transmission error.

2.2. Loaded Tooth Contact Analysis of Cycloid–Pin Gear Pairs
2.2.1. Hertzian Contact Stiffness

The meshing stiffness of the single cycloid–pin gear pair should be determined to
establish the relationship between the loads and corresponding deformation. In this paper,
only the contact deformation is mainly considered in the meshing stiffness based on the
Hertzian contact theory, which provides much more influence than bending and shear
deformations on tooth deflections. The contact model of a single cycloid–pin gear pair is
illustrated in Figure 2. Since the size of the elastic deformation is tiny compared with the
radial dimension of the pin and cycloid gear tooth, the curvature radius of the contact zone
can be regarded as unchanged. Thus, the Hertzian contact stiffness kn is expressed as

kn =
πB

2[ 1−ν2
c

Ec

(
ln 4ρc

b −
1
2

)
+ 1−ν2

r
Er

(
ln 4ρr

b −
1
2

)
]

(2)

where the subscripts r and c represent the pin and cycloid gear. Symbols ν and E are
Poisson’s ratio and the elasticity modulus, and E∗ and ρ∗ are the equivalent elasticity
modulus and radius of curvature, respectively. Symbols b and B are the width of the
contact zone and of the cycloid gear, respectively. Therefore, the Hertzian contact stiffness
kn is a nonlinear expression concerning geometrical parameters, material properties and
applied load.
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2.2.2. Compatibility and Equilibrium Conditions

Referring to the related literature [31], the compatibility condition can be presented as

in contact: ∆φc > φbli, αi = ∆φc − φbli
out of contact: ∆φc < φbli, αi = 0

(3)

where ∆φc is the elastic rotational angle, αi is a micro-angular displacement of its corre-
sponding tooth and φbli is the backlash of the corresponding cycloid–pin gear pair.

Assuming the effect of each contact point as a tiny spring with time-varying Hertzian
contact stiffness kn along the action line, the detailed load distribution model is shown in
Figure 3. The number of tooth pairs in contact equals that of the springs. Then, the external
torque applied on the cycloid gear should equal the moment generated by the loads of pins
acting on the cycloid gear to establish moment equilibrium equations:{

T = ∑ Fcili
Fci = kniδci

(4)

where Fci is the contact force of the ith cycloid–pin gear pair, T is the external torque and
δci is the elastic deformation of the ith cycloid–pin gear pair along the action line. Because
the deformation angle αi is tiny, the formula δci = αili can be approximately derived.
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2.3. Equivalent Pressure Angle and Mesh Stiffness

As shown in Figure 3, each contact force of the cycloid–pin gear pair converges at the
pitch point P along their own line of action. The resultant force Fcr at the pitch point P can
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be decomposed as the resultant tangential force Ft and the resultant radial force Fr, which
can be expressed as  Ft = Σ Fci lci

rc

Fr = ΣFci

√
1−

(
lci
rc

)2 (5)

where rc = enc is the pitch radius of the cycloid gear.
Then, the total resultant force Fcr can be derived by

Fcr =
√

Ft2 + Fr2 (6)

Then, the equivalent pressure angle β and equivalent mesh stiffness kcr can be repre-
sented as follows:  β = arctan

(
Fr
Ft

)
kcr =

Fcr
lcr

= Fcr cos β
ezc∆φc

(7)

where nc is the tooth number of the cycloid gear and the ∆φc is the elastic rotation angle.
By using the two parameters, the multi-tooth contact condition of the cycloid–pin gear pair
can be made equivalent to a single tooth contact gear pair to reduce the number of degrees
of freedom and then to improve the solution speed of the dynamic model.

3. Dynamic Model of RV Reducer
3.1. Basic Assumptions and Coordinate Systems

To simplify the dynamic model of the RV reducer, several assumptions are given,
as follows:

(1) The whole structural distortion of the gears and output disc is negligible.
(2) Each component vibrates in the plane normal to its axis.
(3) The system is simplified as a lumped parameter model with gears and supports

simplified as springs.
(4) Each involute planetary gear with the same material properties and design parameters

is distributed along the circumference.
(5) The lubrication condition is negligible to avoid uncertainness and complexity.

The dynamic model of the whole RV reducer based on the lumped parameter method
is shown in Figure 4. The general form of RV reducers consists of planet gears and
crankshafts with the number of M, and cycloid gears with the number of N. Considering
the mesh stiffness of gear pairs, crankshaft bending stiffness, bearing stiffness and other
factors, a translation–torsion coupled dynamic model of RV reducers is established in
this section. Each component possesses three degrees of freedom; therefore, there are
6M + 3N + 6 degrees of freedom of the proposed dynamic model in total.

As shown in Figure 5, five movable Cartesian coordinate systems are fixed to the sun
gear, planetary gear, crankshafts, cycloid gears and output disc, respectively, which are
given by Si (i = s, p, H, c, o), uniformly revolving around the output disc at its theoretical
angular velocity, and S is a fixed coordinate system. xi and yi (i = s, p, H, c, o) indicate
the translational displacement of the ith component, θi (i = s, p, H, c, o) is the angular
displacement, and ψi and ψj are the circumferential position of the ith planet gear and the
jth cycloid gear, respectively.

In the dynamic model, the symbols ks and ko stand for the radial supporting stiffness
of the sun gear and output disc, and kst and kot stand for the torsional stiffness of the sun
gear and output disc, respectively. ksp is the mesh stiffness between the sun and planet
gear. kH and kHt represent the bending stiffness and torsional stiffness of the crank shaft.
kHb and kcb represent the stiffness between the supporting bearings and turning arm. kcr is
the equivalent mesh stiffness of the cycloid–pin gear pair.
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sp ia  and l
sp ib  are the amplitude of the harmonic wave with 

order l and m  is the initial phase angle. 
Similarly, the phase angle 

crj  is defined as the phase difference in the mesh stiffness 
of the thj  cycloid gear, which is expressed as 

crj r jn   (10)
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Figure 5. Coordinate systems of the dynamic model of the RV reducer in (a) the high-speed stage
and (b) the low-speed stage.
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3.2. Mesh Stiffness Excitation and System Error Analysis

The system dynamic excitation includes inner excitation and external excitation. The
inner excitations of RV reducers, including gear mesh stiffness excitation and transmission
error excitation are mainly investigated in this section.

3.2.1. Mesh Stiffness Excitation

The plots of two kinds of mesh stiffness for the involute gear pairs and cycloid–pin
gear pairs vary with the change in mesh position, with the same curve shape. Therefore,
the phase angle is used to express the mesh stiffness at different meshing positions. The
phase angle γsi is defined as the phase difference in the mesh stiffness of the ith planet gear,
which is expressed as

γspi = nsψi (8)

where ns is the number of sun gear teeth.
Assuming the mesh stiffness of the involute gear pairs varies with the rule of the

rectangle wave, it can be expanded into a Fourier series:

kspi(t) = ksp +
∞

∑
l=1

[
Cl

spi cos lωm(t + ϕm) + Dl
spi sin lωm(t + ϕm)

]
(9)

where ksp is the average mesh stiffness, ωm is the involute gear meshing frequency, l is
the order of harmonic waves, Cl

spi = al
spi cos lγspi + bl

spi sin lγspi, Dl
spi = bl

spi cos lγspi −
al

si sin lγspi, al
spi and bl

spi are the amplitude of the harmonic wave with order l and ϕm is the
initial phase angle.

Similarly, the phase angle γcrj is defined as the phase difference in the mesh stiffness
of the jth cycloid gear, which is expressed as

γcrj = nrψj (10)

where nr is the pin tooth number.
According to the calculation method of the mesh stiffness of cycloid–pin gear pairs

mentioned above, it can be derived and expanded into a Fourier series form:

kcrj(t) = kcr +
∞

∑
l=1

[
Cl

crj cos lωc(t + ϕc) + Dl
crj sin lωc(t + ϕc)

]
(11)

where kcr is the average value of mesh stiffness, ωb is the meshing frequency of the cycloid-
pin gear pair, Cl

crj = al
crj cos lγcj + bl

crj sin lγcj, Dl
crj = bl

crj cos lγcj − al
crj sin lγcj, al

crj and bl
crj

are the amplitude of the harmonic wave with order l, γcj = γcs + γcrj, γcs is the phase angle
of γsi and γc1 and ϕc is the initial phase angle.

3.2.2. System Error Analysis

(1) Equivalent error between the sun and planet gear at the mesh and support positions.

The equivalent error generated by the machining error between the sun and planet
gears along the mesh line is shown in Figure 6, where two circles represent the base
circles. The eccentric machining error of the sun and planet gears is expressed as (Es, βs)
and

(
Epi, βpi

)
. Then, the equivalent error es and epi along the mesh line is represented

as follows: {
es = −Es sin(βs + θs + α− θo − φi)
epi = Epi sin

(
βpi + θpi + α− θo − φi

) (12)

where θo =
θs
I = ωot, ωo is the angular velocity of the output disc, I is the reduction ratio

of the whole reducer system, α is the mesh angle of the sun and planet gear and θs, θp
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and θo are the rotation angle of the sun gear, planet gear and output disc, respectively.
φi =

2π(i−1)
N (i = 1, 2, 3) is the initial phase angle of the ith planet gear.
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Figure 6. Equivalent error between the sun and planet gears.

Assuming the eccentric assembly error of the sun gear as (Esa, βsa), the generated
equivalent error along the mesh line can be written as follows:

as = −Esa sin(βsa + α− θo − φi) (13)

Then, it can be decomposed to the X-axis and Y-axis, where the equivalent errors asx
and asy can be yielded as follows: {

asx = Esa cos βsa
asy = Esa sin βsa

(14)

(2) Equivalent error of the cycloid-pin gear drive at the mesh and support positions.

The equivalent error of the cycloid–pin gear drive is mainly derived from two parts:
the connection between the crankshaft cam and a cycloid gear hole through the turn-arm
bearing, and the meshing between the cycloid gears and pins.

The eccentric error of the cycloid gear hole is
(

EH
cji, βH

cji

)
, as shown in Figure 7, and its

components eH
cjiX and eH

cjiY in the X-axis and Y-axis can be yielded as follows: eH
cjiX = EH

cji cos
(

θo + φi + βH
cji

)
eH

cjiY = EH
cji sin

(
θo + φi + βH

cji

) (15)

where θcj = θo, since the self-rotation velocity of the cycloid gear is equal to the rotation
velocity of the output disc.
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Figure 7. Equivalent error (a) in the crankshaft holes of the cycloid gear and (b) in the crankshaft cam.

The eccentric error of the crankshaft cam is
(

Edji, βdji

)
, and its components edjiX and

edjiY in the X-axis and Y-axis can be yielded as follows: edjiX = Edji cos
(

θpi + φj + βdji

)
edjiY = −Edji sin

(
θpi + φj + βdji

) (16)

where φj = π(j− 1)(j = 1, 2) is the initial phase angle of the jth cycloid gear.
Then, the bearing clearance of the crankshaft bearing is εcj, and the generated equiva-

lent error ecj at the contact point is expressed as

ecj = −εcj (17)

The equivalent error of the cycloid–pin gear pair along the mesh line is represented
as follows:

ecrj = Ecr sin
[
ωo
(
t + γcrjT

)]
(18)

where, Ecr is the total composite error along the mesh line.

(3) Equivalent error of the output disc at the contact or support position.

As is presented in Figure 8, the eccentric error of the hole in the output disc is
(
EH

oi , βH
oi
)
,

and its components eH
oiX and eH

oiY in the X-axis and Y-axis can be yielded as follows:{
eH

oiX = EH
oi cos

(
θo + φi + βH

oi
)

eH
oiY = EH

oi sin
(
θo + φi + βH

oi
) (19)

The bearing clearance of the support bearing between the hole in the output disc and
the corresponding crankshaft is εoH , and the generated equivalent error eoH at the support
point is expressed as

eoH = −εoH (20)
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Assuming the assembly error of the output disc is (Eo, βo), its equivalent errors in the
X-axis and Y-axis, eoX and eoY, can be yielded as follows:{

eoX = Eo cos βo
eoY = Eo sin βo

(21)

The bearing clearance of the support bearing between the output disc and pinwheel is
εh, and the generated equivalent error eh at the support point is expressed as

eh = −εh (22)

3.3. Formulations of Motion Equations
3.3.1. Relative Displacements

The acting forces between two movable components in RV reducers are in direct
proportion to the relative displacements of the corresponding components. To establish
the motion equations, the relationships in terms of the relative displacement of all the
interactional movable components are determined.

(1) Relative displacement projection of the sun and planet gears along the mesh line.

The relative displacement is obtained:

δsi = xs cos ψsi + ys sin ψsi + rsθs − xpi sin αs − ypi cos αs + rpθpi − es − epi − as (23)

where ψsi = ψi − αs, αs is the engagement angle of the sun and planet gears, and rs and rp
are the base circle radius of the sun and planet gears, respectively.

The relative displacements of the sun gear at the support position decomposed to the
X-axis and Y-axis, δsx and δsy, can be yielded as follows:{

δsx = xs − asx
δsy = ys − asy

(24)

(2) Relative displacement projection of the crankshaft and cycloid gear along the transla-
tional direction of the crankshaft.
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The relative displacement between two components can be derived as follows:

δHicjx = xHi − eθHi sin ψ
cj
Hi − xcj cos ψ

cj
Hi + ycj sin ψ

cj
Hi − eH

cjiX − edjiX − ecj

δHicjy = yHi + eθHi cos ψ
cj
Hi − xcj sin ψ

cj
Hi − ycj cos ψ

cj
Hi − rHθcj − eH

cjiY − edjiY − ecj
(25)

where ψ
cj
Hi = ωHt + ϕ0

cH −
2π(n−1)

N + (j− 1)π and ϕ0
cH is the initial phase angle of the

crankshaft.

(3) Relative displacement projection of the crankshaft and the output disc along the
translational direction of the crankshaft.

The relative displacement between two components can be derived as follows:

δiox = xHi − xo coso
Hi +yo sin ψo

Hi − eH
oiX − eoH − eoX

δioy = yHi − xo sino
Hi −yo cos ψo

Hi − rHθo − eH
oiY − eoH − eoY

(26)

where ψo
Hi = ωot + ϕ0

oH −
2π(n−1)

N and ϕ0
Hi is the initial phase angle of the crankshaft.

The relative displacement of the output disc at the support position decomposed to
the X-axis and Y-axis, δox and δoy, can be yielded as follows:{

δox = xo − δiox
δoy = yo − δioy

(27)

(4) Relative displacement projection of the cycloid gear and pins along the mesh line.

The relative position relationship of the components can be derived:

δcjr = xcj sin β + ycj cos β + rcθcj cos β− ecr (28)

where β is the equilibrium pressure angle of the cycloid–pin gear pairs.

3.3.2. Motion Equations

Based on Newton’s second law and the theorem moment of the momentum of the
relative mass center, motion equations of each component can be derived.

The motion equations of the sun gear are expressed as follows:

ms

(••
x s − 2ωo

•
ys −ω2

o xs

)
+

M
∑

i=1
kspδsi cos ψsi + ksδsx +

M
∑

i=1
csp
•

δsi cos ψsi + cs
•

δsx = 0

ms

(••
y s + 2ωo

•
xs −ω2

o ys

)
+

M
∑

i=1
kspδsi sin ψsi + ksδsy +

M
∑

i=1
csp
•

δsi sin ψsi + cs
•

δsy = 0

Js
••
θ s +

M
∑

i=1
kspδsirs + kstθs +

M
∑

i=1
csp
•

δsirs + cst
•
θs = Ts

(29)

The motion equations of the planet gear are expressed as follows:

mp

( ••
xpi − 2ωo

•
ypi −ω2

o xpi

)
− kspδsi sin αs + kH

(
xpi − xHi

)
− csp

•
δsi sin αs

+cH

( •
xpi −

•
xHi

)
= mp

(
rs + rp

)
ω2

o

ms

( ••
ypi + 2ωo

•
xpi −ω2

o ypi

)
− kspδsi cos αs + kH

(
ypi − yHi

)
− csp

•
δsi cos αs

+cH

( •
ypi −

•
yHi

)
= 0

Jp
••
θ pi + kspδsirp + kHt

(
θpi − θHi

)
+ csp

•
δsirp + cHt

( •
θpi −

•
θHi

)
= 0

(30)

The motion equations of the crankshaft are expressed as follows:
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mH

( ••
xHi − 2ωo

•
yHi −ω2

o xHi

)
+

N
∑

j=1
kcbδHicjx + kHbδiox + kH

(
xHi − xpi

)
+

N
∑

j=1
ccb

•
δHicjx

+cHb
•

δiox + cH

( •
xHi −

•
xpi

)
= mH

(
rs + rp

)
ω2

o

mH

( ••
yHi + 2ωo

•
xHi −ω2

o yHi

)
+

N
∑

j=1
kcbδHicjy + kHbδioy + kH

(
yHi − ypi

)
+

N
∑

j=1
ccb

•
δHicjy

+cHb
•

δioy + cH

( •
yHi −

•
ypi

)
= 0

JH
••
θ Hi −

N
∑

j=1
kcbδHicjxe sin ψ

cj
Hi +

N
∑

j=1
kcbδHicjye cos ψ

cj
Hi + kHt

(
θHi − θpi

)
−

N
∑

j=1
ccb

•
δHicjxe sin ψ

cj
Hi

+
N
∑

j=1
ccb

•
δHicjye cos ψ

cj
Hi + cHt

( •
θHi −

•
θpi

)
= 0

(31)

The motion equations of the cycloid gear are expressed as follows:

mc

( ••
xcj − 2ωo

•
ycj −ω2

o xcj

)
−

M
∑

i=1
kcb

(
δHicjx cos ψ

cj
Hi + δHicjy sin ψ

cj
Hi

)
+ kcrδcjr sin β−

M
∑

i=1
ccb

( •
δHicjx cos ψ

cj
Hi +

•
δHicjy sin ψ

cj
Hi

)
+ ccr

•
δcjr sin β = mceω2

o

mc

( ••
ycj + 2ωo

•
xcj −ω2

o ycj

)
+

M
∑

i=1
kcb

(
δHicjx sin ψ

cj
Hi − δHicjy cos ψ

cj
Hi

)
+ kcrδcjr cos β+

M
∑

i=1
ccb

( •
δHicjx sin ψ

cj
Hi −

•
δHicjy cos ψ

cj
Hi

)
+ ccr

•
δcjr cos β = 0

Jc
••
θ cj −

M
∑

j=1
kcbδHicjyrH + kcrrcδcjr cos β−

M
∑

j=1
ccb

•
δHicjyrH + ccrrc

•
δcjr cos β = 0

(32)

The motion equations of the output disc are expressed as follows:

mo

(••
xo − 2ωo

•
yo −ω2

o xo

)
+

M
∑

i=1
kHb
(
δiox cos ψo

Hi + δioy sin ψo
Hi
)
+ koδox+

+
M
∑

i=1
cHb

( •
δiox cos ψo

Hi +
•

δioy sin ψo
Hi

)
+ co

•
δox =0

mo

(••
yo − 2ωo

•
xo −ω2

o yo

)
+

M
∑

i=1
kHb
(
δiox sin ψo

Hi − δioy cos ψo
Hi
)
+ koδoy

+
M
∑

i=1
cHb

( •
δioy sin ψo

Hi −
•

δioy cos ψo
Hi

)
+ co

•
δoy =0

Jo
••
θ o −

M
∑

i=1
kHbδioyrH + kotθo −

M
∑

i=1
cHb

•
δioyrH + cot

•
θo = −To

(33)

The input torque and load are Ts and To. The mass of the sun gear, planet gear,
crankshaft, cycloid gear and output disc is ms, mp, mH , mc and mo, respectively. The
corresponding rotational inertial is Js, Jp, JH , Jc and Jo, respectively.

Then, the motion equations of RV reducers in the matrix form can be derived as

M
••
q + (ωoG + C)

•
q +

(
Kb + Km −ω2

oKΩ

)
q = F(t) + Fc (34)

where q is the generalized coordinate vector.

q = [xs ys θs xp1 yp1 θp1 · · · xpM ypM θpM xH1 yH1 θH1
· · · xHM yHM θHM xc1 yc1 θc1 · · · xcN ycN θcN xo yo θo]T

(35)
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The excitation force vector Fc results from the centripetal acceleration of the planetary
component.

Fc = [0 0 0 mp
(
rs + rp

)
ω2

o 0 0 · · · mp
(
rs + rp

)
ω2

o
0 0 mH

(
rs + rp

)
ω2

o 0 0 · · · mH
(
rs + rp

)
ω2

o
0 0 mceω2

o 0 0 mceω2
o 0 0 0 0 0]T

(36)

M, G and F(t) stand for the generalized mass matrix, gyroscope matrix and excitation
force vector, respectively. C is the damping matrix, and Kb, Km and KΩ represent the
support bearing stiffness matrix, mesh stiffness matrix and centripetal matrix.

4. Analysis Results and Discussion

The solutions for the differential equations are obtained with numerical integration
methods. The standard integration procedure ode45 in MATLAB is used in this investiga-
tion to verify the correctness of the proposed dynamic model of RV reducers. The main
geometrical parameters of an experimental RV reducer are listed in Table 1. The material
properties of the gear pairs are presumed to be the same, with a Poisson’s ratio of v = 0.3
and Young’s modulus of 206 GPa. The output torque is 450 N·m, and the input rotation
speed is 1500 r/min. The dynamic parameters are listed in Table 2.

Table 1. The main geometrical parameters of the experimental RV reducer.

Parameter Symbols Descriptions Values

ns Tooth number of sun gear 12
np Tooth number of planet gear 36
nr Pin number 40
nc Tooth number of cycloid gear 39
m Modulus (mm) 1.5
α Pressure angle (◦) 20
ρ Pin radius (mm) 3
a Pin position radius (mm) 85.8
e Eccentricity (mm) 1.3
i Reduction ratio 121

rb Radius of pin gear (mm) 88
B Gear width (mm) 12

Table 2. Dynamic parameters used in the experimental RV reducer.

Parameter Symbols Descriptions Values

ms Mass of sun gear (kg) 1.3
mp Mass of planet gear (kg) 0.88
mH Mass of crank shaft (kg) 0.4
mc Mass of cycloid gear (kg) 2.76
mo Mass of output disc (kg) 15.33
Js Inertial of sun gear (kg·mm) 4.44× 10−4

Jp Inertial of planet gear (kg·mm) 1.01× 10−3

JH Inertial of crank shaft (kg·mm) 7.56× 10−5

Jc Inertial of cycloid gear (kg·mm) 0.0209
Jo Inertial of planet carrier (kg·mm) 0.106
kst Torsional stiffness of sun gear (Nm/rad) 1.16× 104

ks Radial supporting stiffness of sun gear (N/m) 4.68× 107

kHt Torsional stiffness of crankshaft (Nm/rad)) 6.99× 104

kH Bending stiffness of crankshaft (N/m) 5.55× 108

kHb Supporting bearing stiffness of crankshaft (N/m) 5.76× 108

kcb Turning-arm bearing stiffness of cycloid gear (N/m) 2.84× 108

ko Radial supporting stiffness of output disc (N/m) 3.15× 108
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4.1. Numerical Solution of Equivalent Pressure Angle and Mesh Stiffness

Based on the unloaded and loaded TCA mentioned in Section 2, the equivalent
pressure angle and mesh stiffness of the cycloid–pin gear pair are calculated, which are
time-varying and load-dependent. By using the above geometrical parameters of the
experimental RV reducer, the effects of the tooth profile modification of the cycloid gear are
investigated by comparing the two cases with and without modification. For the case with
tooth profile modification, the roller position and the roller radius modification amounts
are −0.05 mm and −0.01 mm, respectively. Then, the mean values of equivalent pressure
angle and mesh stiffness are fed into the proposed dynamic model of the RV reducer for
subsequent dynamic response analysis.

Figure 9 presents the plots of the equivalent pressure angle and mesh stiffness of the
cycloid–pin gear pair with and without tooth profile modification. It is clearly seen that
both the equivalent pressure angle and mesh stiffness for the two cases vary periodically as
the crankshaft rotates. For the case without modification, the equivalent pressure angle
varies from about 31.5◦ to 32.1◦ with a mean value of 31.9◦. The equivalent mesh stiffness
shows a sinusoidal shape curve and a mean value of 1.24× 109 N/m. It is well known that
the tooth profile modification of cycloid gears is able to compensate for machining errors,
to accomplish easy disassembly and assembly and to provide good lubrication conditions.
When the tooth profile modification is applied, a large disparity is observed, in that the
mean values of both decrease to 3.8◦ and 2.62 × 108 N/m, and both their amplitudes
increase, with more abrupt changes in a periodic cycle. According to the above contrastive
analysis, this indicates that the tooth profile modifications have a significant effect on the
equivalent pressure angle and mesh stiffness of the cycloid–pin gear pair, which should be
adequately considered in the dynamic model of the RV reducers.
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Figure 9. Influences of modification on the equivalent pressure angle and mesh stiffness.

4.2. Dynamic Responses in the Time Domain

Based on the proposed dynamic model of the RV reducer, the analysis of dynamic
responses in the time domain is given, considering the system errors based on the previous
data of prototype manufacturing and measuring, as presented in Table 3. The tolerance
levels are chosen from IT5 to IT6 based on the ISO tolerance system.
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Table 3. Various errors of the main components.

Parameters Descriptions Values

(Es, βs) Machining eccentricity error of sun gear (mm, ◦) (0.005, 45◦)(
Epi, βpi

)
Machining eccentricity error of planet gear (mm, ◦) (0.006, 30◦)

(Esa, βsa) Assembly error of sun gear (mm, ◦) (0.005, 100◦)(
EH

cji, βH
cji

) Eccentricity error of crankshaft hole in the
cycloid gear (mm, ◦) (0.008, 140◦)(

Edji, βdji

)
Eccentricity error of crankshaft cam (mm, ◦) (0.008, 90◦)(

EH
oi , βH

oi
) Eccentricity error of crankshaft hole in the

output disc (mm, ◦) (0.035, 270◦)

(Eo, βo) Assembly eccentricity error of output disc (mm, ◦) (0.038, 90◦)

Figure 10a–d show the dynamic responses of the sun gear, planet gear, cycloid gear
and output disc for two cases with or without errors. For all four figures, the upper-
left subfigures describe the trajectories of the components. It can be observed that the
trajectories appear to be a series of complicated and closed curves, which make it hard to
judge the motion states based only on the perspective of the motion trajectory. Moreover,
the motion space without errors is much smaller than that in cases with errors, which
implies that the vibration displacements of the components are sensitive to system errors.

The upper-right subfigures of all four figures illustrate the phase diagrams of rotation
angle and rotation velocity. The phase trajectories repeat themselves every period with a
difference in translational transformation, and then form a series of curve families. For the
cases without errors, the phase trajectories manifestly take up much less space, undergo
less translational transformation and much more closely approach a perfect circle than
those with errors. According to the relevant vibration theories with phase plane analysis
in mechanical engineering, since the phase diagrams of both the error and no-error cases
are closed, quasi-regular curves, the motion systems of both are under the quasi-period
state. It can also be observed from the phase diagrams that the motion state of components
with errors is relatively much more complicated and chaotic than those without errors, and
further shows the nonlinear characteristic of the motion system.
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Figure 10. Dynamic response curves of components of the RV reducer.
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The two subfigures at the bottom position of all four figures show the torsional
vibration angle and velocity, with the rotation of the output disc. Combined with the
above phase plane diagrams, it can be deduced that when the phase trajectories overlap
themselves relatively completely, the time domain diagram is a sine curve only with small
period variation and without large period variation, while if the phase trajectories do not
overlap, the time domain diagram is a sine curve with both small period variation and
large period variation. When the phase trajectories do not vary smoothly, there is an abrupt
change in the time domain diagrams. The larger the size of the phase trajectories, the wider
the variation range of the time domain diagrams. As a result, the dynamic responses show
that the transmission system is in state of periodic motion and much useful information
can be derived from the phase plane diagrams.

4.3. Effects of System Errors on the Dynamic Transmission Error

As shown in Figure 11a,b, for the case without errors, the system dynamic transmission
error varies with a small periodic cycle, and its peak-to-peak value is only 0.78′′, as expected
under ideal conditions, which also verifies the correctness of the proposed dynamic model
of RV reducers. For the case with system errors, it varies periodically as the output rotates,
with an increasing peak-to-peak value of 17.25′′. Therefore, it can be easily found that
the system errors have a large impact on the transmission precision of the RV reducer.
Figure 11a,b also illustrate the differences between a system with error and a system
without error in the frequency domain. It is clearly found that the system transmission
error increases and occur in more frequency ratio positions with the appearance of errors,
which can explain why both the transmission system error increases and the variation rule
changes in the time domain. To validate the predicted results of the proposed model, the
system transmission errors of a manufacturing prototype with almost the same errors and
tooth profile modifications are tested with the self-developed test platform, as shown in
Figure 12a,b. It can be observed that, in the forward and reverse rotation, the peak-to-peak
values are 22.56′′ and 23.37′′ with cyclical fluctuations, and are close to those predicted
by the proposed model, which shows the effectiveness of the precision prediction by the
proposed model.

Machines 2023, 11, 626 20 of 22 
 

 

  
(a) (b) 

Figure 11. System transmission error and spectrum analysis: (a) without error; (b) with error. 

  
(a) (b) 

Figure 12. System transmission error test of the prototype: (a) the test platform; (b) plots of the sys-
tem transmission errors. 

5. Conclusions 
In this paper, a dynamic model of RV reducers based on the lumped parameter 

method is proposed based on some assumptions and simplifications by ignoring the lu-
brication effect and the structural distortion of the gears and output disc, and by consid-
ering each gear pair with the same material properties and design parameters. The model 
can used to investigate the influences of errors such as machining errors, assembly errors 
and bearing clearances on the dynamic responses and system transmission precision of 
RV reducers. With the proposed model, a detailed parametric study using error sensitivity 
analysis can be conducted in the future, which is of great meaning for the total design and 
optimization process of the RV reducer. According to the above analysis results, some 
conclusions can be drawn, as follows: 

Output disc rotation/°

Sy
st

em
 tr

an
sm

iss
io

n 
er

ro
r/

″

Frequency ratio f/fo

A
m

pl
itu

de
/″

Output disc rotation/°

Sy
st

em
 tr

an
sm

iss
io

n 
er

ro
r/

″

Frequency ratio f/fo

A
m

pl
itu

de
/″

Sy
st

em
 tr

an
sm

is
si

on
 er

ro
r/

″

Figure 11. System transmission error and spectrum analysis: (a) without error; (b) with error.
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5. Conclusions

In this paper, a dynamic model of RV reducers based on the lumped parameter method
is proposed based on some assumptions and simplifications by ignoring the lubrication
effect and the structural distortion of the gears and output disc, and by considering each
gear pair with the same material properties and design parameters. The model can used to
investigate the influences of errors such as machining errors, assembly errors and bearing
clearances on the dynamic responses and system transmission precision of RV reducers.
With the proposed model, a detailed parametric study using error sensitivity analysis can
be conducted in the future, which is of great meaning for the total design and optimization
process of the RV reducer. According to the above analysis results, some conclusions can
be drawn, as follows:

1. Through quasi-static analysis based on the LTCA, the tooth profile modifications have
a significant effect on the values of the equivalent pressure angle and mesh stiffness
of the cycloid–pin gear pair, which should be adequately considered in the dynamic
model of the RV reducers.

2. The motion trajectories and phase plane diagrams are vulnerable to influence from
the system errors of the components. From the phase plane diagrams, it can be seen
whether the system motion state is under the quasi-static or chaotic state, and many
kinds of variation characteristics of the time domain diagrams are disclosed.

3. The system errors of the components significantly affect the dynamic transmission
error magnitude and variation rule, illustrating that error is truly an important factor
related to transmission precision.
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