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Abstract: Mesh phasing has a dramatic impact on the static and dynamic behaviours of planetary
gear systems. This research investigates the coupled phase-tuning mechanism of two-stage planetary
gear systems and the corresponding relationship with the coupled vibration of the system. Due to the
inherent meshing symmetry of the system, the phase-coupled tuning mechanism of the two-stage
planetary system is derived based on meshing force relationships and coupling characteristics
between different stages. The excitation and suppression relationships associated with the teeth
number, harmonic order, and coupling vibration of the coupled system are clearly described. To
study the effect of coupled phase tuning on the vibration response of a two-stage planetary gear
system, a nonlinear dynamic model was established. The vibration responses under different
tuning modes were calculated, and a coupled phase-tuning law for two-stage planetary systems
was verified. Model 3 was used as a research tool to build a two-stage planetary transmission
experimental platform, and the transverse vibration and torsional vibration of the first stage sun gear
were analysed to further verify the correctness of the phase-coupling tuning law.

Keywords: phase-coupled tuning; multistage planetary gear; nonlinear dynamics; coupled vibration

1. Introduction

In both high-speed transmission and low-to-medium-speed transmission, the indus-
trial trend is aimed at increasing the transmission power to weight ratio in mechanical
systems. A multistage planetary gear system has the advantages of a compact struc-
ture, high efficiency, and a high power-to-weight ratio; such systems are widely used
in aero-engines, industrial transmissions, military vehicles, and other fields, especially
in electromechanical coupled power transmission systems, as shown in Figure 1. Stage
planetary transmission can promote structural fusion and functional coupling between
the motor and the engine so that the system can meet the requirements of continuously
variable speed and torque. Compared with single-stage planetary systems, multistage
planetary transmission systems have more complex nonlinear coupling characteristics. In
the predesign phase, in-depth studies of the relationship between system design parameters
and coupling characteristics can potentially identify important mechanisms, reduce system
vibration and noise, and ensure that the system is capable of delivering smooth operation
across all working conditions.

With nonlinear characteristics such as multiple degrees of freedom and parameter
coupling, planetary gears are complex and dynamic. Initially, various degrees of freedom
and influential factors were considered when studying the dynamic behaviour of a single
meshing pair. Cardona [1] presented a 3-D flexible model for a gear pair to analyse the
related meshing characteristics considering the flexible deformation of the tooth surface,
backlash, and mesh stiffness fluctuations. Kahraman [2,3] obtained the natural modes
and the forced vibration response by studying the dynamic behaviour of a planetary gear
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pair while considering static transmission errors. Spitas [4] established an accurate 3-D
multi-coupled model to predict tooth contact loss and interactions under different variable-
torque excitations by considering the backlash, torsional, and lateral displacements, and
contact geometry. Lin et al. [5,6] studied the modal characteristics of the planetary gear
and the instability of the system parameters, and the key characteristics of the natural
frequency and mode were determined. A torsional dynamic model of multistage planetary
gear trains was established by Xiang et al. [7] considering the time-varying meshing
stiffness, comprehensive gear error and backlash, and the dynamic responses of systems.
Liu et al. [8,9] established a nonlinear dynamic model of a planetary gear system; load
change, contact loss, and tooth profile modification were considered in the model. Liu [10]
established a centralised parameter model that included centrifugal force, inertial force,
and Coriolis force of the planetary wheel, thereby closely reflecting actual high-speed
operating conditions. This research and model improvements led to dynamic analyses
of stable- and variable-speed processes. Xun et al. [11] studied the statistical properties
of planetary gear systems by using a stochastic method based on the multiple-scales
method. Wei et al. [12] improved the interval harmonic balance method (IHBM) to solve
the dynamic problems of gear systems with backlash nonlinearity and time-varying mesh
stiffness under uncertainties. Liu et al. [13] studied the influence of clearance configurations
on gear system dynamics using the oscillating component of the dynamic transmission
error as the dynamic response. Yan [14] calculated the thermal time-varying mesh stiffness
and established a nonlinear dynamic model to study the influence of gear temperature on a
planetary gear system.
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Based on planetary gear system modelling and the inherent characteristics of such sys-
tems, scholars began studying the relationships between system parameters and vibration
characteristics. Due to the symmetry of planetary gears, the differing mesh phases between
the sun–planet and ring–planet meshes have a powerful impact on the dynamic response
and can have significant benefits in reducing vibration and noise [15]. R. G. Parker [16]
introduced a method for calculating the phase difference between sun–planet meshing,
ring–planet meshing, and internal/external meshing in planetary gear systems. Based on



Machines 2023, 11, 610 3 of 24

the symmetry and meshing periodicity of planetary gears, Ambarisha [17] analytically
derived design rules to suppress certain harmonics of the planet mode response in plane-
tary gear dynamics through mesh phasing. Wang [18] investigated steady deformations
and measured the spectra of spinning planetary gears with a deformable ring and equally
spaced planets; the results verified that planet mesh phasing significantly affects the mea-
sured spectral content. Zhang [19] studied the system dynamics of compound planetary
gears and calculated the mesh phase. Parker [20] systematically studied the phase relations
involving composite planetary wheels and proposed a numbering method to accurately
define and calculate the gear phases. Wang [21] studied the relationship between ring gear
vibration and the meshing phase and showed that the vibration of a ring gear with meshing
phase is mainly influenced by the number of teeth, the number of planetary wheels, the har-
monic order, and the vibration mode. Fatourehchi [22] studied the influence of the meshing
phase difference on a planetary transmission system based on the dynamic transmission
error, and further studied the relationship between the system transmission efficiency and
gear meshing phase difference. Sanchez Espiga [23] studied the influence of gear errors and
geometry on the load distribution and transmission efficiency of planetary transmission
systems. The meshing phase difference of the system will increase the influence of errors
on the load distribution of the system.

Past research has shown that differing mesh phases between the sun–planet and,
consequently, ring–planet meshes of a single-stage planetary system can have a powerful
impact on the dynamic response and significant benefits in reducing vibration and noise.
In essence, designers have a variety of options and objectives in choosing the mesh phasing
for a given application, and a clear understanding of the relations governing the mesh
phasing is essential.

For high-speed and heavy-load hybrid vehicles, multistage planetary transmission
systems are widely used, but the coupled phase-tuning law of multistage planetary trans-
mission systems has not been studied in detail. In this research, a two-stage planetary gear
transmission system is used as a case study to study the multistage coupled phase-tuning
relations in a planetary transmission system. Using the Fourier expansion method, meshing
force coupling is further used to explore coupled phase tuning in a system, establish a
lumped mass model, and identify the multistage coupled phase-tuning rules for planetary
transmission systems.

In this paper, a coupled relationship for phase tuning in a multistage planetary train is
proposed. The Fourier expansion method is used to analyse the relationship between the
fluctuating meshing forces of the central component and the phase-tuning mode in detail.
The coupled tuning principle between planetary stages at different levels is investigated. A
nonlinear dynamics model of the two-stage planetary transmission system is established,
and the coupled phase-tuning law is verified based on the system amplitude-frequency
characteristics.

The rest of the paper is structured as follows. In Section 2, the coupled phase-tuning
mechanism of a two-stage planetary transmission system is explored. In Section 3, a
two-stage planetary gear system model considering time-varying stiffness, backlash, and
other factors is established. Additionally, the coupled phase-tuning law is further studied.
In Section 4, the vibration response of the system is simulated and analysed, and the
accuracy of coupled phase tuning is verified via frequency analysis and the experiment test.
Finally, Section 5 gives some suggestions and conclusions regarding design optimisation
based on the research. The relationship of each chapter in the paper is shown in Figure 2.
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2. Coupled Phase-Tuning Analysis of a Two-Stage Planetary System

For a single-stage planetary system, the phase-tuning relationship is manifested in
four ways: the translational response suppression (TS), translational response excitation
(TE), rotational response suppression (RS), and rotational response excitation (RE) of the
central component. However, in a two-stage planetary system, the phase-tuning effect of
the system is coupled. A schematic diagram of the coupling effect is shown in Figure 3,
where one and two correspond to the first and second planetary stages, respectively. T1−2,
Fx1−2, and Fy1−2 represent the torque and the bending force in the X and Y directions,
respectively, through the connecting shaft between the two stages.

Machines 2023, 11, x FOR PEER REVIEW 4 of 27 
 

 

Section 1 
Introduction

Section 2
Study on coupling phase tuning mechanism 

of multi-stage planetary gear system 

Section 3
Study on the influence of coupled phase 

tuning on system meshing force

Section 4
Influence of coupled phase tuning law on 

frequency domain vibration characteristics

Coupled phase tuning test verification

Section 5
Conclusions

 
Figure 2. Thesis research framework. 

2. Coupled Phase-Tuning Analysis of a Two-Stage Planetary System 
For a single-stage planetary system, the phase-tuning relationship is manifested in 

four ways: the translational response suppression (TS), translational response excitation 
(TE), rotational response suppression (RS), and rotational response excitation (RE) of the 
central component. However, in a two-stage planetary system, the phase-tuning effect of 
the system is coupled. A schematic diagram of the coupling effect is shown in Figure 3, 
where one and two correspond to the first and second planetary stages, respectively. 

1-2T , 1-2xF , and 1-2yF  represent the torque and the bending force in the X and Y direc-
tions, respectively, through the connecting shaft between the two stages. 

TS1

RS1

TS2

RS2

Cpouling
Connection

TE1

RE1

TE2

RE2

T1-2

Fx1-2

Fy1-2

2nd stage1st stage

 
Figure 3. Coupled phase-tuning relationships in a two-stage planetary system. 

2.1. Relationship between Phase Tuning and the Meshing Force 
Parker [16,18] derived a phase calculation method for single-stage planetary systems 

and analysed the excitation and suppression relationships between the phase-tuning 
factor k and vibration mode of the system. For a two-stage planetary transmission system 
with strong coupling, the phase-tuning relationship is also highly coupled. This section 
derives the coupled phase-tuning relationship for a two-stage planetary system. The ini-
tial phase relationship involving the two-stage planetary gears is shown in Figure 4, and 
the red dotted area in the middle represents the connecting shaft. The central parts of the 
two planetary stages are concentric circles, and the sun gear centres in the two-stage 

Figure 3. Coupled phase-tuning relationships in a two-stage planetary system.

2.1. Relationship between Phase Tuning and the Meshing Force

Parker [16,18] derived a phase calculation method for single-stage planetary systems
and analysed the excitation and suppression relationships between the phase-tuning factor
k and vibration mode of the system. For a two-stage planetary transmission system
with strong coupling, the phase-tuning relationship is also highly coupled. This section
derives the coupled phase-tuning relationship for a two-stage planetary system. The
initial phase relationship involving the two-stage planetary gears is shown in Figure 4,
and the red dotted area in the middle represents the connecting shaft. The central parts
of the two planetary stages are concentric circles, and the sun gear centres in the two-
stage system are collinear; therefore, the two-stage planetary gears have a common oxy
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coordinate system, and ei
dn and ej

dn (d = 1, 2) are unit vectors that define planet n, which
is in stage d in local coordinates. In the planetary gear coordinate system, i and j are the
direction vectors, and n is the planetary gear number.
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Taking the first stage as the research object, due to coupling effects, the force of the
central component of the second stage is transmitted to the first stage, and the force of the
sun gear in the first stage is:[

F1nx
F1ny

]
=

[
cos ψ1n sin ψ1n
− sin ψ1n cos ψ1n

][
F1ni
F1nj

]
+

[
cos ψ2n sin ψ2n
− sin ψ2n cos ψ2n

][
F2ni
F2nj

]
(1)

where F1nx and F1ny are the meshing force components in the X and Y directions of the sun
gear in the first stage, respectively. F1ni and F1nj are the meshing force components of each
planetary gear. Additionally, ψn = zϕn, where ϕn is the initial positioning angle of the
nth planet.

The Fourier components Fl
1nx

of the sun gear force in the X direction are as follows:

Fl
1nx =

∞
∑

l=0
[ al

1n cos ϕ1n sin(lω1mt + lz1s ϕ1n) + bl
1n cos ϕ1ncos(lω1mt + lz1s ϕ1n)+

cl
1n sin ϕ1n sin(lω1mt + lz1s ϕ1n) + dl

1n sin ϕ1ncos(lω1mt + lz1s ϕ1n)+
al

2n cos ϕ2n sin(lω2mt + lz2s ϕ2n) + bl
2n cos ϕ2ncos(lω2mt + lz2s ϕ2n)+

cl
2n sin ϕ2n sin(lω2mt + lz2s ϕ2n) + dl

2n sin ϕ2ncos(lω2mt + lz2s ϕ2n)]

(2)

where ln represents the number of harmonic components for the nth planet; ali
in, bli

in, cli
in, and

dli
in are Fourier coefficients, and they are the same for each planet mesh; that is, ali

in = ali
i ,

with similar expressions for others, and ωim(i = 1, 2) is the mesh frequency in the ith
planetary stage. The first term, I, in Fl

1nx
in Equation (2) takes the form

I =
∞

∑
l=0

{
[al

1n cos ϕ1n sin(lω1mt + lz1s ϕ1n)] + [al
2n cos ϕ2n sin(lω2mt + lz2s ϕ2n)]

}
(3)

It is assumed that the relation between the amplitude and the initial phase in each
stage is as follows:

al
2n = al

1n − ∆a

ϕ2n = ϕ1n + ∆ϕ

∆a and ∆ϕ are the harmonic amplitude difference and time-varying phase difference,
respectively, and ∆ϕ= (ω1 −ω2)t + (ϕ1 − ϕ2), where ω1,2 represents the rotation speeds
in the two-stage system.
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I =
N
∑

n=0
[al

1n cos ϕ1n sin(lω1mt + lz1s ϕ1n) + al
1n cos(ϕ1n + ∆ϕ) sin(lω2mt + lz2s ϕ2n)+

∆a cos(ϕ1n + ∆ϕ) sin(lω2mt + lz2s ϕ2n)]
(4)

I =
N
∑

n=0

{
al

1n sin(lω1mt)
2 A1 +

al
1n cos(lω1mt)

2 B1+
A2 sin(lω2mt)

2 [al
1n(cos2(∆ϕ)− sin2(∆ϕ)) + ∆a]+

B2
4 [2al

1n cos(lω2mt)(cos2(∆ϕ)− sin2(∆ϕ)) + al
1n sin(2∆ϕ) sin(lω2mt) + 2∆a cos(lω2mt)]+

C2
4 al

1n sin(2∆ϕ)[cos(lω2mt) + sin(lω2mt)] + D2
4 sin(lω2mt)al

1n sin(2∆ϕ)
} (5)

where

A1 = cos(
2π(n− 1)(k1 − 1)

N1
) + cos(

2π(n− 1)(k1 + 1)
N1

)

B1 = sin(
2π(n− 1)(k1 − 1)

N1
) + sin(

2π(n− 1)(k1 + 1)
N1

)

A2 = cos(
2π(n− 1)(k2 − 1)

N2
) + cos(

2π(n− 1)(k2 + 1)
N2

)

B2 = sin(
2π(n− 1)(k2 − 1)

N2
) + sin(

2π(n− 1)(k2 + 1)
N2

)

C2 = cos(
2π(n− 1)(k2 − 1)

N2
)− cos(

2π(n− 1)(k2 + 1)
N2

)

D2 = sin(
2π(n− 1)(k2 − 1)

N2
)− sin(

2π(n− 1)(k2 + 1)
N2

)

where ki = mod( lZis
N ), and the following identities hold for integer values of m:

N
∑

n=1
cos 2π(n−1)m

N =

{
0 m/N 6= integer
N m/N = integer

N
∑

n=1
sin 2π(n−1)m

N = 0
(6)

Equations (5) and (6) show that in the two-stage planetary transmission system, the
transverse vibration tuning law of the sun gear in the first stage involves coupled two-stage
phase tuning, and the tuning coefficients k1 and k2 are used to adjust the vibration mode of
the sun gear. When k1 6= 1, N − 1, A1 and B1 in Equation (5) are both zero. Thus, the lth
harmonic component of the resultant force acting on the sun gear through planet gears in
the first stage disappears. In this case, the tuning result of the second stage has the greatest
influence on transverse vibration in the first stage. When k2 = 1, N − 1, neither A2 nor C2
is zero, the transverse force in the second stage is coupled with that in the first stage, and
the vibration in the first stage is mainly associated with the lth harmonic of the meshing
frequency in the second stage.

2.2. Relation between Phase Tuning and Torque

The torsion moment is generated by the tangential component of the meshing force,
so only the force in the j direction needs to be calculated. For a uniform distribution of
planetary gears, the following conditions are met:

cl
n = cl dl

n = dl
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The torque acting on the sun gear through the N sun–planet mesh is:

Tsun/rsun =
N
∑

n=1

∞
∑

l=1
[cl

1 sin(lω1mt + lzs1 ϕ1n) + dl
1 cos(lω1mt + lzs1 ϕ1n)

+cl
2 sin(lω2mt + lzs2 ϕ2n) + dl

2 cos(lω2mt + lzs2 ϕ2n)]
(7)

Tsun/rsun = [cl
1

N
∑

n=1
cos 2π(n−1)k1

N − dl
1

N
∑

n=1
sin 2π(n−1)k1

N ] sin lω1mt

+[cl
1

N
∑

n=1
sin 2π(n−1)k1

N + dl
1

N
∑

n=1
cos 2π(n−1)k1

N ] cos lω1mt

+{
[
cl

2 sin(lω2mt) + dl
2 cos(lω2mt)

]
cos ( 2π(n−1)k2

N )

+
[
cl

2 cos(lω2mt)− dl
2 sin(lω2mt)

]
sin ( 2π(n−1)k2

N )} cos(∆ϕ)

−{
[
cl

2 sin(lω2mt) + dl
2 cos(lω2mt)

]
sin ( 2π(n−1)k2

N )

−
[
cl

2 cos(lω2mt)− dl
2 sin(lω2mt)

]
cos ( 2π(n−1)k2

N )} sin(∆ϕ)

(8)

Equation (8) shows that in a two-stage planetary transmission system, the torsional
vibration tuning law for the sun gear in the first stage involves coupled phase tuning in
two stages.

Taking the tuning law of the central components in the first stage as an example, the
coupled tuning law of the two-stage planetary transmission system is shown in Table 1.
TSli indicates that the lth harmonic translational response of the mesh frequency in the ith
stage is suppressed, and TEli, RSli, and REli can be similarly defined.

Table 1. Coupled phase-tuning law of a two-stage planetary system.

k1 = mod(lZs1/N1) k2 = mod(lZs2/N2) Influences Dynamic Response

0

0 TSl1TSl2REl1REl2

1, N − 1 TSl1TEl2REl1RSl2

k 6= 0, 1, N − 1 TSl1TSl2REl1RSl2

1, N − 1

0 TEl1TSl2RSl1REl2

1, N − 1 TEl1TEl2RSl1RSl2

k 6= 0, 1, N − 1 TEl1TSl2RSl1RSl2

k 6= 0, 1, N − 1

0 TSl1TSl2RSl1REl2

1, N − 1 TSl1TEl2RSl1RSl2

k 6= 0, 1, N − 1 TSl1TSl2RSl1RSl2

3. Analysis of the Coupling and Tuning Mechanisms of a Two-Stage Planetary System

Based on a theoretical analysis of the coupled tuning of a two-stage planetary transmis-
sion system in the previous chapter, a nonlinear dynamic model of the system is established,
and a numerical analysis method is used to determine and verify the coupling and tuning
laws of the two-stage planetary transmission system.

3.1. Nonlinear Dynamic Model of Multistage Planetary Gear Systems

A planetary gear transmission system is a multi-clearance, multi-parameter, coupled,
multi-degree-of-freedom system. In order to more clearly study the phase relationship of
the system, we ignored the influence of mass eccentricity and gear installation error in the
research process.

This research focuses on a two-stage planetary transmission system commonly used
in automatic transmissions in vehicles. The physical system is shown in Figure 5. Each
planetary line contains a sun gear, a ring gear, a planet carrier, and four planetary gears. The
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sun gear in the first stage is connected to the sun gear in the second stage, and the carrier in
the first stage is connected to the ring gear in the second stage. The power is input from the
first stage sun gear shaft and output from the second stage ring gear. Torque is applied to
the input terminal and the output terminal as the driving force and load, respectively.

Machines 2023, 11, x FOR PEER REVIEW 8 of 27 
 

 

TSli indicates that the lth harmonic translational response of the mesh frequency in the ith 
stage is suppressed, and TEli, RSli, and REli can be similarly defined. 

Table 1. Coupled phase-tuning law of a two-stage planetary system. 

k1 = mod(lZs1/N1) k2 = mod(lZs2/N2) Influences Dynamic Response 

0 
0 TSl1 TSl2 REl1 REl2 

1, N − 1 TSl1 TEl2 REl1 RSl2 
k ≠ 0, 1, N − 1 TSl1 TSl2 REl1 RSl2 

1, N − 1 
0 TEl1 TSl2 RSl1 REl2 

1, N − 1 TEl1 TEl2 RSl1 RSl2 
k ≠ 0, 1, N − 1 TEl1 TSl2 RSl1 RSl2 

k ≠ 0, 1, N − 1 
0 TSl1 TSl2 RSl1 REl2 

1, N − 1 TSl1 TEl2 RSl1 RSl2 
k ≠ 0, 1, N − 1 TSl1 TSl2 RSl1 RSl2 

3. Analysis of the Coupling and Tuning Mechanisms of a Two-Stage  
Planetary System 

Based on a theoretical analysis of the coupled tuning of a two-stage planetary 
transmission system in the previous chapter, a nonlinear dynamic model of the system is 
established, and a numerical analysis method is used to determine and verify the cou-
pling and tuning laws of the two-stage planetary transmission system. 

3.1. Nonlinear Dynamic Model of Multistage Planetary Gear Systems 
A planetary gear transmission system is a multi-clearance, multi-parameter, cou-

pled, multi-degree-of-freedom system. In order to more clearly study the phase rela-
tionship of the system, we ignored the influence of mass eccentricity and gear installation 
error in the research process.  

This research focuses on a two-stage planetary transmission system commonly used 
in automatic transmissions in vehicles. The physical system is shown in Figure 5. Each 
planetary line contains a sun gear, a ring gear, a planet carrier, and four planetary gears. 
The sun gear in the first stage is connected to the sun gear in the second stage, and the 
carrier in the first stage is connected to the ring gear in the second stage. The power is 
input from the first stage sun gear shaft and output from the second stage ring gear. 
Torque is applied to the input terminal and the output terminal as the driving force and 
load, respectively. 

 
Figure 5. The physical system diagram of the two-stage planetary gear. 

A lumped parameter model for spur planetary gears is shown in Figure 6. The sub-
scripts is , ic , ir , and ijp  (i = 1, 2; j = 1, 2, 3, 4) represent the ith stage sun gear, carrier 

gear, and ring gear and jth planet gear in the ith stage, respectively. ax , ay , and aθ  are 
the small translational displacement and small angular displacement of component a (a = 

Figure 5. The physical system diagram of the two-stage planetary gear.

A lumped parameter model for spur planetary gears is shown in Figure 6. The
subscripts si, ci, ri, and pij (i = 1, 2; j = 1, 2, 3, 4) represent the ith stage sun gear, carrier gear,
and ring gear and jth planet gear in the ith stage, respectively. xa, ya, and θa are the small
translational displacement and small angular displacement of component a (a = si, ci, ri, pij).
ksipij, csipij, and bsipij are the time-varying meshing stiffness, meshing damping, and backlash
for sun–planet gear pairs in the ith stage, respectively, and the means of kripij, cripij, and
bripij are similarly defined. kxa and kya are the support stiffnesses along the horizontal and
vertical axes.
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Figure 6. Lumped parameter model of the two-stage planet gear system.

Backlash must be assessed in advance to ensure that a gear pair can work normally.
Notably, backlash is a main nonlinear factor in a gear system, and the backlash function of
a gear pair can be written as shown in Equation (9); the same function is relevant for a ring
gear and planet gear pair.

f (Lsipij, bsipij) =


Lsipij − bsipij Lsipij > bsipij

0
∣∣Lsipij

∣∣ ≤ bsipij
Lsipij + bsipij Lsipij < −bsipij

(9)

Lsipij is the meshing line deformation between the sun gear and planet gear, and bsipij
is the backlash. Due to gear installation error, manufacturing error, and displacement, the
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meshing line length will change. The meshing line deformation variables Lsipij and Lripij
are included in the mathematical model and can be expressed as{

Lsipij = Lu
sipij + Lxy

sipij
Lripij = Lu

ripij + Lxy
ripij

(10)

Lu
nipij is the variation in the meshing line caused by small torsional displacement, Lxy

nipij
is the variation in meshing line caused by small translational displacement, n = s or r for
the sun or ring gear, i = 1 or 2 is the stage of the planet gear system, and j = 1, 2, 3, or 4 for
the planet gears.

The meshing line deformation caused by small torsional displacement can be expressed as:{
Lu

sipij = θsiRsi − θciRsi − θpijRpij

Lu
ripij = θpijRpij − θciRri − θriRri

(11)

The variation in the meshing line caused by minor displacement Lxy
nipij can be expressed

as
Lxy

sipij = xsi sin
(
ψij + α

)
− ysi cos

(
ψij + α

)
− xci sin

(
ψij + α

)
+ yci cos

(
ψij + α

)
−xpij sin α + ypij cos α

Lxy
ripij = −xri sin

(
ψij − α

)
+ yri cos

(
ψij − α

)
+ xci sin

(
ψij − α

)
− yci cos

(
ψij − α

)
−xpij sin α− ypij cos α

(12)

The nonlinear meshing force can be written as shown in Equation (13).{
Fsipij = ksipij f (Lsipij, bsipij) + csipij

.
Lsipij

Fripij = kripij f (Lripij, bripij) + cripij
.
Lripij

(13)

In Equation (13), ksipij and kripij are the time-varying meshing stiffness of the sun–
planet gear pair and ring–planet gear pair, respectively.

Then, the equations of motion for the two-stage planet gear system can be written as
shown in Equations (14)–(23) according to the Lagrange equations. In these equations, ma
and Ja (a = siciri pij) are the mass and inertia of component a.

The differential equation of vibration for the first stage sun gear is

ms1
..
xs1 +

4
∑

j=1
sin
(
ψp1j + α

)
Fs1p1j + kxs1xs1 + cxs1

.
xs1 + Fbys1s2 = 0

ms1
..
ys1 −

4
∑

j=1
cos
(
ψp1j + α

)
Fs1p1j + kys1ys1 + cys1

.
ys1 + Fbxs1s2 = 0

Js1
..
θs1 +

4
∑

j=1
Fs1p1jRs1 + Ts1s2 = Tin

(14)

The differential equation of vibration for the first stage ring gear is

mr1
..
xr1 −

4
∑

j=1
sin
(
ψp1j − α

)
Fr1p1j + kxr1xr1 + cxr1

.
xr1 = 0

mr1
..
yr1 +

4
∑

j=1
cos
(
ψp1j − α

)
Fr1p1j + kyr1yr1 + cyr1

.
yr1 = 0

Jr1
..
θr1 −

4
∑

j=1
Fr1p1jRr1 = −Tbrake

(15)

The differential equation of vibration for the first stage carrier is
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mc1
..
xc1 +

..
xc1

4

∑
j=1

mp1j +
4

∑
j=1

mp1j
..
xp1j cos ψp1j −

4

∑
j=1

mp1j
..
yp1j sin ψp1j −ω2

c1

4

∑
j=1

mp1jxp1j cos ψp2j

+ω2
c1

4

∑
j=1

mp1jyp1j sin ψp1j − 2ωc1

4

∑
j=1

mp1j
.
xp1j sin ψp1j − 2ωc1

4

∑
j=1

mp1j
.
yp1j cos ψp1j

−
4

∑
j=1

sin
(
ψp1j + α

)
Fs1p1j +

4

∑
j=1

sin
(
ψp1j − α

)
Fr1p1j + kxc1xc1 + cxc1

.
xc1 + Fbxc1r2 = 0

mc1
..
yc1 +

..
yc1

4

∑
j=1

mp1j +
4

∑
j=1

mp1j
..
xp1j sin ψp1j +

4

∑
j=1

mp1j
..
yp1j cos ψp1j −ω2

c1

4

∑
j=1

mp1jxp1j sin ψp1j

−ω2
c1

4

∑
j=1

mp1jyp1j cos ψp1j + 2ωc1

4

∑
j=1

mp1j
.
xp1j cos ψp1j − 2ωc1

4

∑
j=1

mp1j
.
yp1j sin ψp1j

+
4

∑
j=1

cos
(
ψp1j + α

)
Fs1p1j −

4

∑
j=1

cos
(
ψp1j − α

)
Fr1p1j + kyc1yc1 + cyc1

.
yc1 + Fbyc1r2 = 0

Jc1
..
θc1 −

4
∑

j=1
Jp1j

..
θc1 +

4
∑

j=1
Jp1j

..
θp1j +

4
∑

j=1
mp1jR2

bc1

..
θc1 −

4
∑

j=1
Fs1p1jRbs1

−
4
∑

j=1
Fr1p1jRbr1 + Tc1r2 = 0

(16)

The differential equation of vibration for the first stage planet gear is

mp1j
..
xc1 cos ψp1j + mp1j

..
yc1 sin ψp1j + mp1j

..
xp1j − 2mp1jωc1

.
yp1j

−mp1jω
2
c1xp1j − sin αFs1p1j − sin αFr1p1j + kxp1jxp1j + cxp1j

.
xp1j = 0

−mp1j
..
xc1 sin ψp1j + mp1j

..
yc1 cos ψp1j + mp1j

..
yp1j + 2mp1jωc1

.
xp1j

−mp1jω
2
c1yp1j + cos αFs1p1j − cos αFr1p1j + kyp1jyp1j + cyp1j

.
yp1j = 0

−Jp1j
..
θc1 + Jp1j

..
θp1j − Fs1p1jRp1j + Fr1p1jRp1j = 0

(17)

The differential equation of vibration for the second stage sun gear is

ms2
..
xs2 +

4
∑

j=1
sin
(
ψp2j + α

)
Fs2p2j + kxs2xs2 + cxs2

.
xs2 − Fbxs1s2 = 0

ms2
..
ys2 −

4
∑

j=1
cos
(
ψp2j + α

)
Fs2p2j + kys2ys2 + cys2

.
ys2 − Fbys1s2 = 0

Js2
..
θs2 +

4
∑

j=1
Fs2p2jRs2 − Ts1s2 = 0

(18)

The differential equation of vibration for the second stage ring gear is

mr2
..
xr2 −

4
∑

j=1
sin
(
ψp2j − α

)
Fr2p2j + kxr2xr2 + cxr2

.
xr2 − Fbxc1r2 = 0

mr2
..
yr2 +

4
∑

j=1
cos
(
ψp2j − α

)
Fr2p2j + kyr2yr2 + cyr2

.
yr2 − Fbyc1r2 = 0

Jr2
..
θr2 +

4
∑

j=1
Fr2p2jRr2 − Tc1r2 = 0

(19)

The differential equation of vibration for the second stage carrier is
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mc2
..
xc2 +

..
xc2

4
∑

j=1
mp2j +

4
∑

j=1
mp2j

..
xp2j cos ψp2j −

4
∑

j=1
mp2j

..
yp2j sin ψp2j −ω2

c2

4
∑

j=1
mp2jxp2j cos ψp2j

+ω2
c2

4
∑

j=1
mp2jyp2j sin ψp2j − 2ωc2

4
∑

j=1
mp2j

.
xp2j sin ψp2j − 2ωc2

4
∑

j=1
mp2j

.
yp2j cos ψp2j

−
4
∑

j=1
sin
(
ψp2j + α

)
Fs2p2j +

4
∑

j=1
sin
(
ψp2j − α

)
Fr2p2j + kxc2xc2 + cxc2

.
xc2 = 0

mc2
..
yc2 +

..
yc2

4
∑

j=1
mp2j +

4
∑

j=1
mp2j

..
xp2j sin ψp2j +

4
∑

j=1
mp2j

..
yp2j cos ψp2j −ω2

c2

4
∑

j=1
mp2jxp2j sin ψp2j

−ω2
c2

4
∑

j=1
mp2jyp2j cos ψp2j + 2ωc2

4
∑

j=1
mp2j

.
xp2j cos ψp2j − 2ωc2

4
∑

j=1
mp2j

.
yp2j sin ψp2j

+
4
∑

j=1
cos
(
ψp2j + α

)
Fs2p2j −

4
∑

j=1
cos
(
ψp2j − α

)
Fr2p2j + kyc2yc2 + cyc2

.
yc2 = 0

(20)

Jc2
..
θc2 −

4
∑

j=1
Jp2j

..
θc2 +

4
∑

j=1
Jp2j

..
θp2j +

4
∑

j=1
mp2jR2

bc2

..
θc2 −

4
∑

j=1
Fs2p2jRbs2

−
4
∑

j=1
Fr2p2jRbr2 = −Tout

The differential equation of vibration for the second stage planet gear is

mp2j
..
xc2 cos ψp2j + mp2j

..
yc2 sin ψp2j + mp2j

..
xp2j − 2mp2jωc2

.
yp2j

−mp2jω
2
c2xp2j − sin αFs2p2j − sin αFr2p2j + kxp2jxp2j + cxp2j

.
xp2j = 0

−mp2j
..
xc2 sin ψp2j + mp2j

..
yc2 cos ψp2j + mp2j

..
yp2j + 2mp2jωc2

.
xp2j

−mp2jω
2
c2yp2j + cos αFs2p2j − cos αFr2p2j + kyp2jyp2j + cyp2j

.
yp2j = 0

−Jp2j
..
θc2 + Jp2j

..
θp2j − Rp2jFs2p2j + Rp2jFr2p2j = 0

(21)

where 
Ts1s2 = ks1s2(θs1 − θs2) + cs1s2

( .
θs1 −

.
θs2

)
Fbxs1s2 = kbs1s2(xs1 − xs2) + cbs1s2

( .
xs1 −

.
xs2
)

Fbys1s2 = kbs1s2(ys1 − ys2) + cbs1s2
( .
ys1 −

.
ys2
) (22)

kbs1s2, ks1s2, cs1s2, and cbs1s2 are the bending stiffness, torsional stiffness, bending
damping, and torsional damping of the shaft between the sun gears, respectively.

The torsional torque and transverse force of the shaft between the first stage ring gear
and the second stage carrier can be expressed by Equation (23).

Tc1r2 = kc1r2(θc1 − θr2) + cc1r2

( .
θc1 −

.
θr2

)
Fbxc1r2 = kbc1r2(xc1 − xr2) + cbc1r2

( .
xc1 −

.
xr2
)

Fbyc1r2 = kbc1r2(yc1 − yr2) + cbc1r2
( .
yc1 −

.
yr2
) (23)

kbc1r2, kc1r2, cbc1r2, and cc1r2 are the bending stiffness, torsional stiffness, bending
damping, and torsional damping of the connecting shaft between the first stage carrier and
second stage ring gear, respectively.

3.2. Analysis of the Tuning Mechanisms of Different Models

The symmetrical arrangement of the planetary transmission system makes the mesh-
ing positions symmetrical, and this relation is the source of phase tuning. The meshing
force itself is a complex nonlinear periodic function. To study the coupled phase-tuning
relationships in the two-stage planetary transmission system, starting from the meshing
force, the characteristics of excitation forces acting on central components at all levels were
analysed, and the component locations were assessed. The characteristics of the resultant
force or the resultant moment were obtained to determine the coupled vibration mode and
law for the central part of the two-stage planetary transmission system. In the following
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description, positive direction refers to the clockwise direction, and negative direction
refers to the counter-clockwise direction. Three tuning models are established, and the
specific tuning parameters are shown in Table 2.

Table 2. System parameters.

Item Sun Gear Ring Gear Carrier Planet Gear

Model 1 Number of teeth 27/39 77/77 — 25/29

Model 2 Number of teeth 28/36 76/76 — 24/20

Model 3 Number of teeth 28/39 76/77 — 24/29

General
parameters

Number of planets 4

Half backlash/mm bs1p1j = 0.18 br1p1j = 0.2 bs2p2j = 0.2 br2p2j = 0.2

Module 4

Pressure angle/◦ 20

3.2.1. Model 1: Coupled Tuning Mechanism Analysis

The two-stage planetary transmission system in model 1 displays meshing phase
differences, and these differences are listed in Table 3; γspj and γrpj represent the meshing
phase difference of S–P and R–P, respectively.

Table 3. Meshing phase difference of model 1.

Meshing Phase Difference

Stage number γsp1 γsp2 γsp3 γsp4

1st stage 0 0.75 0.5 0.25

2nd stage 0 0.75 0.5 0.25

Stage number γrp1 γrp2 γrp3 γrp4

1st stage 0 0.25 0.5 0.75

2nd stage 0 0.25 0.5 0.75

Figure 7 shows the time-domain curve of the fluctuating meshing force of the sun gears
in each stage in mode 1 and the instantaneous force diagram at time points A and B. The
time-domain curve shows that the direction and magnitude of the meshing force between
each planetary gear and the sun gear change over time. Consequently, the resultant force
acting on the sun gear is converted from a lateral force to a torsional moment, resulting in
the transient vibration of the sun gear.

To further analyse the fluctuating meshing force of sun gears at different times, the
time points A = 0.0302 s and B = 0.0312 s were selected, and the corresponding force
diagrams were obtained. In Figure 7, Fmsipin indicates the fluctuating meshing force for
S–P gear pairs, where i = 1, 2 and n = 1, 2, 3, 4 indicate the stage number and the number
of planet gears, respectively; the two black dotted lines correspond to A = 0.0302 s and
B = 0.0312 s. The instantaneous meshing force diagrams between four planetary gears and
the sun gear are shown below the dotted frame, where S1A represents the force diagram of
the sun gear in the first stage at time point A, with similar expressions for others.



Machines 2023, 11, 610 13 of 24

Machines 2023, 11, x FOR PEER REVIEW 14 of 27 
 

 

grams were obtained. In Figure 7, 
sipin

Fm  indicates the fluctuating meshing force for S–P 

gear pairs, where i = 1, 2 and n = 1, 2, 3, 4 indicate the stage number and the number of 
planet gears, respectively; the two black dotted lines correspond to A = 0.0302 s and B = 
0.0312 s. The instantaneous meshing force diagrams between four planetary gears and 
the sun gear are shown below the dotted frame, where S1A represents the force diagram of 
the sun gear in the first stage at time point A, with similar expressions for others. 

S1A and S2A are taken as examples to illustrate the relationship between the force on 
the sun gear and the vibration mode in mode 1. For S1A, the meshing forces of the four 
planetary gears are represented by p1, p2, p3, and p4. If p1 p2 p3 p4≈ ≈ ≈ , then 
these four forces will cancel each other, and the sun gear will maintain the TS and TE 
vibration modes; if ( p1 p3 )>( p2 p4 )≈ ≈ , then the RE mode will be triggered. For 
S2A, the force directions of p1 and p3 are the same, as are those of p2 and p4; therefore, the 
TE mode of translational vibration for the sun gear is directly excited. 

The above analysis indicates that when the two-stage planetary transmission system 
exhibits a phase difference, the vibration mode of the central part of the system switches 
between translational vibration, torsional vibration, and equilibrium based on the rele-
vant forces. Due to the periodicity of the meshing force, the vibration mode of the central 
part of the system also periodically varies. 

S1A S1B

S2A S2B

B=0.0312sA=0.0302s

A=0.0302s B=0.0312s

p2 p1

p3 p4
p2

p1

p3

p4

p2 p1

p3 p4

p2 p1

p3 p4

 
Figure 7. Dynamic S-P meshing force in model 1. 

3.2.2. Model 2: Coupled Tuning Mechanism Analysis 
In model 2, the meshing phase differences in the first stage and second stage are 

zero, and these differences are listed in Table 4; spjγ and rpjγ  represent the meshing 
phase differences of S–P and R–P, respectively. 

Table 4. Meshing phase differences for model 2. 

 Meshing Phase Difference

Figure 7. Dynamic S-P meshing force in model 1.

S1A and S2A are taken as examples to illustrate the relationship between the force on
the sun gear and the vibration mode in mode 1. For S1A, the meshing forces of the four
planetary gears are represented by p1, p2, p3, and p4. If |p1| ≈ |p2| ≈ |p3| ≈ |p4|, then
these four forces will cancel each other, and the sun gear will maintain the TS and TE
vibration modes; if (|p1| ≈ |p3|) > (|p2| ≈ |p4|), then the RE mode will be triggered. For
S2A, the force directions of p1 and p3 are the same, as are those of p2 and p4; therefore, the
TE mode of translational vibration for the sun gear is directly excited.

The above analysis indicates that when the two-stage planetary transmission system
exhibits a phase difference, the vibration mode of the central part of the system switches
between translational vibration, torsional vibration, and equilibrium based on the relevant
forces. Due to the periodicity of the meshing force, the vibration mode of the central part of
the system also periodically varies.

3.2.2. Model 2: Coupled Tuning Mechanism Analysis

In model 2, the meshing phase differences in the first stage and second stage are
zero, and these differences are listed in Table 4; γspj and γrpj represent the meshing phase
differences of S–P and R–P, respectively.

Table 4. Meshing phase differences for model 2.

Meshing Phase Difference

Stage number γsp1 γsp2 γsp3 γsp4

1st stage 0 0 0 0

2nd stage 0 0 0 0

Stage number γrp1 γrp2 γrp3 γrp4

1st stage 0 0 0 0

2nd stage 0 0 0 0
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Figure 8 shows the time-domain curve of the fluctuating meshing force in each stage
for sun gears in mode 2 and the instantaneous force diagram at time points A and B. The
time-domain curve shows that the direction and magnitude of the meshing force between
each planetary gear and the sun gear are the same; therefore, the force acting on the sun
gear always includes a torsional torque component, leading to the torsional vibration of
the sun gear.
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To further analyse the fluctuating meshing force acting on the sun gear at different
times, the time points A = 0.0152 s and B = 0.0162 s were selected, and the corresponding
force diagrams were obtained. S1A is taken as an example to illustrate the relationship
between the force on the sun gear and the vibration mode in mode 2. For S1A, the meshing
forces of the four planetary gears are represented by p1, p2, p3, and p4, and their direction
and magnitude are the same (i.e., |p1| = |p2| = |p3| = |p4|); then, these four forces form a
torsional torque, which directly excites the RE mode of torsional vibration for the sun gear.
According to the above analysis, when the phase difference between the two planetary
transmission systems is 0, the vibration mode of the centre part of the system is dominated
by torsional vibration.

3.2.3. Model 3: Coupled Tuning Mechanism Analysis

In model 3, the meshing phase differences in the first stage and second stage are listed in
Table 5; γspj and γrpj represent the meshing phase differences of S–P and R–P, respectively.
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Table 5. Meshing phase differences for model 3.

Meshing Phase Differences

Stage number γsnp1 γsnp2 γsnp3 γsnp4

1st stage 0 0.75 0.5 0.25

2nd stage 0 0 0 0

Stage number γrnp1 γrnp2 γrnp3 γrnp4

1st stage 0 0.25 0.5 0.75

2nd stage 0 0 0 0

Figure 9 shows the time-domain curve of the fluctuating meshing force for each stage
of the sun gears in mode 3 and the instantaneous force diagram at time points A and B. The
time-domain curve shows that the direction and magnitude of the meshing force between
each planetary gear and the sun gear change over time, resulting in the force acting on the
sun gear being converted between a lateral force and torsional moment; consequently, the
vibration mode of the sun gear is a couple mode.
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To further analyse the fluctuating meshing force on the sun gear at different times,
the time points A = 0.0302 s and B = 0.0312 s were selected, and the corresponding force
diagrams were obtained. The two black dotted lines correspond to A = 0.0302 s and
B = 0.0312 s.

S1B and S2B are taken as examples to illustrate the relationship between the force
on the sun gear and the vibration mode in mode 3. For S1B, the meshing forces of the
four planetary gears are represented by p1, p2, p3, and p4, and their directions are the same
(counter clockwise). Regardless of whether the magnitude is the same, these four forces
will form a torsional torque, which directly excites the RE mode of torsional vibration for
the sun gear. For S2B, the force directions of p1 and p3 are the same, as are those of p2 and
p4; therefore, the TE mode of translational vibration for the sun gear is directly excited.



Machines 2023, 11, 610 16 of 24

Based on the above analytical comparison to a single-stage planetary system, the
phase tuning of the two-stage planetary transmission system has strong coupling charac-
teristics, and due to this coupling, the vibration characteristics of the two-stage planetary
transmission system can significantly vary. In mode 1, the magnitude and direction of the
fluctuating meshing forces on the sun gear change with time, and because the direction
of the force is inconsistent, the torsional moment cannot be directly formed, so transla-
tional vibration is dominant. In mode 2, the magnitude and direction of the fluctuating
meshing forces on the sun gear are always consistent, directly leading to torsional torque
and stimulating the torsional vibration mode of the system. In mode 3, when the tuning
modes in the first and second stages are different, the tuning of the sun gear differs from
that in a single-stage system, and a coupled tuning phenomenon appears. Theoretically, the
force characteristics of the sun gear in the first stage should be the same as those in mode 1.
However, under the coupled effect of secondstage tuning, the directions of the fluctuating
meshing forces on the sun gear in the first stage gradually become the same, resulting in
torque action, which directly excites torsional vibration. Similarly, the second stage sun
gear is theoretically influenced by torsional vibration only. Additionally, under the coupled
tuning effect in the first stage, the direction of the fluctuating meshing forces on the sun
gear gradually changes and can even reverse the forces, thus producing a lateral resultant
force and exciting the lateral vibration.

4. Analysis of Coupled Tuning Vibration in a Two-Stage Planetary
Transmission System
4.1. Analysis of Coupled Tuning Vibration in Model 1

Due to the meshing phase differences, each harmonic of the meshing frequency has
a corresponding tuning vibration mode. The phase-tuning relationships in the two-stage
planetary system in model 1 are shown in Table 6.

Table 6. The coupled tuning law for model 1.

Stage Number
Order Number

1 2 3 4 5

1st stage
TE TS TE TS TE

RS RS RS RE RS

2nd stage
TE TS TE TS TE

RS RS RS RE RS

Figure 10 is the vibration frequency spectral for the two stages of the sun gears, where
Figure 10a,b are the X-direction and θ-direction vibration frequency domain diagrams of the
first stage sun gear and Figure 10c,d are the X-direction and θ-direction vibration frequency
domain diagrams of the second stage sun gear. Notably, the vibration form of the planetary
gear transmission system recurs periodically as harmonic order increases. The abscissa
in the figure is the frequency, and the ordinate is the amplitude of the corresponding
component frequency.

Based on Figure 10 and Table 6, the main vibration modes of the two-stage planetary
transmission system are consistent with the phase-tuning law; the first, third, and fifth
order harmonics of the two-stage planetary system meshing frequency excitation are the
translational vibration, and the fourth-order harmonic excitation is the torsional vibration.
Taking the first and fourth harmonics of the meshing frequency as examples, Figure 9
shows that the amplitude of the translational vibration line is non-zero at the first-order
meshing frequency of the two rows of sun gears, whereas the torsional vibration line
has an amplitude of zero; therefore, this component stimulates excitation of translational
vibration but suppresses torsional vibration. At the fourth-order meshing frequency, the
amplitude of the translational vibration line is zero, and the amplitude of the torsional



Machines 2023, 11, 610 17 of 24

vibration line is not zero; therefore, this component stimulates torsional vibration excitation
and the suppression of translational vibration. Due to the coupling effect between the
two planetary stages, the meshing frequency component of each planet includes meshing
frequencies from both stages, and each order of the vibration frequency is determined by
the corresponding order of the planetary stages. Transverse vibration is dominated by the
meshing frequency in the first stage, and torsional vibration is dominated by the meshing
frequency in the second stage.
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Figure 10. Frequency-domain diagrams of sun gear vibration in mode 1. (a) Vibration of the 1st-stage
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4.2. Analysis of Coupled Tuning Vibration for Model 2

Since there is no meshing phase difference for model 2, the tuning mode of each
planetary stage involves excited torsional vibration and the suppression of translational
vibration. The phase-tuning relationships in the two-stage planetary system in model 2 are
shown in Table 7.

Table 7. The coupled tuning law for model 2.

Stage Number
Order Number

1 2 3 4 5

1st stage
TS

RE

2nd stage
TS

RE
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Figure 11 illustrates the vibration frequency domain diagrams for the two stages of
sun gears, where Figures 11a and 11b, respectively, are the X-direction and θ-direction
vibration frequency spectral diagrams of the first stage sun gear and c) and d) are the
X-direction and θ-direction vibration frequency domain diagrams of the second stage
sun gear, respectively. The abscissa in the figure is the frequency, and the ordinate is the
amplitude of the corresponding component frequency.
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Figure 11. Frequency-domain diagrams of sun gear vibration in mode 2. (a) Vibration of the 1st-stage
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Figure 11 shows that the amplitude of the translational vibration spectrum for each
order of meshing frequency harmonics related to lateral vibration of the sun gear in the first
and second stages is zero. However, the amplitude of the torsional vibration spectrum is not
zero, and this situation leads to stimulated torsional vibration and suppressed translational
vibration. Through the tuning effect, only the torque vibration is transmitted between the
two stages, and the lateral excitation is suppressed. This finding is consistent with the
force analysis conclusion in Section 2, and the frequency-domain diagram of directional
vibration includes the meshing frequencies of the two stages.

4.3. Analysis of Coupled Tuning Vibration for Model 3

The phase-tuning relationships for the two-stage planetary system in model 3 are
shown in Table 8.
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Table 8. The coupled tuning law for model 3.

Stage Number
Order Number

1 2 3 4 5

1st stage
TE TS TE TS TE

RS RS RS RE RS

2nd stage
TS

RE

Figure 12 shows the vibration frequency spectral diagram of sun gears in two stages, where
Figure 12a,b are the X-direction and θ-direction vibration frequency domain diagrams of the
first stage sun gear and Figure 12c,d are the X-direction and θ-direction vibration frequency
domain diagrams of the second stage sun gear, respectively. The abscissa in the figure is the
frequency, and the ordinate is the amplitude of the corresponding component frequency.
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Figure 12. Frequency domain diagrams of sun gear vibration in mode 3. (a) Vibration of the 1st stage
sun gear in the X direction and (b) vibration of the 1st stage sun gear in the θ direction. (c) Vibration of
the 2nd stage sun gear in the X direction and (d) vibration of the 2nd stage sun gear in the θ direction.

The first-order and fourth-order harmonics of the meshing frequency are used as
examples. Figure 12 shows that the amplitude of the translational vibration line is not
zero at the first-order meshing frequency of the sun gear in the first stage. However, the
amplitude of the torsional vibration line is zero. In this case, translational vibration is
stimulated, and torsional vibration is suppressed. At the fourth-order meshing frequency,
the amplitude of the translational vibration spectrum is zero, but the amplitude of the
torsional vibration spectrum is not zero. Therefore, in this case, torsional vibration is
stimulated, and translational vibration is suppressed. There is no phase difference in the
second stage, and all harmonics are excited torsional vibrations. Lateral vibration is mainly
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caused by bending forces from the first stage transmitted by the connecting shaft. Therefore,
the lateral vibration of the second stage is the same as that of the first stage, as suggested
by the tuning law. At this time, in addition to the fourth-order harmonics in the first stage,
the torsional vibration of the entire system is mainly excited in the second stage. Therefore,
the frequency-domain diagram of the torsional vibration of the central parts of the system
in all two stages are the meshing frequency and the corresponding frequency components
of the second stage.

4.4. Experimental Verification

To verify the effectiveness of the coupled tuning law, a vibration response test involv-
ing a two-stage planetary gear system was performed. The vibration characteristic test is a
dynamic simulation performed in the laboratory, as shown in Figure 13.
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Figure 13. Vibration test platform.

For the coupled tuning test, model 3, containing two different tuning modes, is
investigated, and the design parameters are shown in Table 9. In this test, a motor is
used to drive and rotate the gearbox, and a dynamometer is used to apply load torque.
An acceleration sensor is installed on the bearing seat to measure the lateral vibration
acceleration of the two sun gears. The test conditions were as follows: the drive motor
input speed was approximately 2000 r/min, and the load torque of the load dynamometer
was 400 Nm. The first stage mesh frequency was 667 Hz, and the second stage mesh
frequency was 604 Hz.

Table 9. Parameters of the two-stage planetary transmission system.

Item Sun Gear Ring Gear Carrier Planet Gear

Number of teeth 27/36 77/76 — 25/20

Mass/kg 4.600/3.973 6.145/15.055 39.051/25.939 1.322/0.823

Mass moment/kg·m2 0.0094/0.0122 0.1654/0.4995 0.4762/0.3283 0.0021/0.0009

Module 3

Pressure angle/◦ 20

Tooth width/mm 25

We installed a vibration acceleration sensor on the bearing outer-ring closest to the
input sun gear and output carrier gear, as shown in Figure 14.
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In the process of studying the coupled phase-tuning law, other sources of excitation,
such as gear error, were excluded from the corresponding model. However, in actual tests,
gear errors, including installation error, mass eccentricity, and manufacturing error, are
inevitable, and these errors will influence the vibration response of the system. Figure 15
shows the vibration acceleration spectrum of the first stage sun gear in mode 3 in the X
direction, where Figure 15a is the vibration spectrum without considering the gear error and
Figure 15b is the vibration spectrum with gear error. Through comparison, the gear error
increases the vibration amplitude of the meshing frequency, especially for the first-order
vibration and even-order vibrations.
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nonlinear factors, which significantly impact the system response and influence the phase-
tuning phenomenon. Figure 16a,b is the spectrum of time-domain vibration acceleration
and frequency-domain vibration, respectively. By comparison with that in Figure 14, the
amplitude marked in blue in Figure 16b is excited by nonlinear error factors, and the
amplitude marked in black in Figure 16 is excited by phase-tuning relations. As shown
in Figure 16b, the vibration of the central part of the first planetary gear is dominated by
the odd-order first stage meshing frequencies, and the amplitude corresponding to the
first-order frequency is the largest. At this time, the transverse vibration of the second stage
is in a state of suppression, and the vibration associated with the second stage meshing
frequency and its components is not obvious.
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Figure 17 shows the torsional vibration spectrum of the first sun gear in the θ direction
obtained during the test. The actual transmission system model contains errors and
various nonlinear factors, which produce more tuned frequencies, reduce the resolution
of frequency spectrum, and greatly disturb the phase-tuning phenomenon. According to
the tuning law shown in Table 8 and Figure 13, the torsional vibration of the first stage sun
gear in model 3 is mainly excited by the fourth-order meshing frequency and coupled with
each order meshing frequency of the second stage. In Figure 17b, the torsional vibration
of the first stage sun gear is mainly distributed at the rotational frequency, the first-order
meshing frequency of the second stage, and its side frequency band. Only the meshing
frequency is marked in the figure. At the same time, it can be seen that the fourth-order
meshing frequency 2700 Hz of the first stage also plays a significant role in stimulating
torsional vibration, and this matches the tuning law of model 3.
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Combined with simulation analysis and experimental verification, it can be concluded
that the tuning law of planetary transmission systems also has coupling characteristics.
This characteristic can clearly show the relationship between the tooth number of gears in
the planetary stage and the coupling vibration response of the system, which provides a
method and theoretical basis for the further study of coupling vibration for the system.

5. Conclusions

A coupled phase-tuning theory for a multistage planetary transmission system was
proposed, and the corresponding mathematical relations were deduced. A nonlinear coupled
vibration model of a two-stage planetary transmission system was established, and the
coupled phase-tuning law was verified and described. The main results are as follows.

1. A coupled phase-tuning theory for a multistage planetary transmission system is
proposed. In a multi-stage planetary gear drive system, the phase-tuning law of each
stage will affect the vibration characteristics of each component of the system, so
that the component presents a variety of excitation characteristics. Additionally, the
mathematical expression of coupled phase tuning in this system is obtained according
to the basic force relations of the central components. The relationship between the
change in the meshing phase of each planetary stage and the coupled vibration of the
system is theoretically described.

2. The symmetry of the meshing forces is the fundamental driver of the phase-tuning
relationship, and there is a strong coupling relationship between the meshing forces
of each stage of the planetary system. The number of tooth and planetary gears in
the single-stage system can make the resultant force of the central component present
three tuning characteristics of torsional moment, lateral impact force, and mutual
cancellation, and in the multi-stage planetary system, the coupling transmission
characteristics of the central component force leads to the coupling of the phase-
tuning law. Therefore, the change of phase-tuning parameters in one stage will
change the coupling vibration response of the whole system through the coupling
characteristics of the meshing forces.

3. Due to the highly coupled characteristics of the system, the tuning coefficients k1 and
k2 not only dominate the respective planetary stages, but also generate excitation and
suppression related to the corresponding harmonic order of the frequency in other
planetary stages. Combined with the simulation and experimental results, the error
has a disturbing effect on the phase-tuning law, which will strengthen the vibration
amplitude of the system phase-tuning excitation and excite the vibration mode of
phase-tuning suppression. Finally, the correctness of the phase-coupling tuning law of
the two-stage planetary gear transmission system is further verified by experiments.

By studying the coupled phase-tuning law for a two-stage planetary transmission
system, the nonlinear coupling relationship between the design parameters and vibration
response of the system is further understood. Thus, this study lays a foundation for research
on the coupled characteristics of multistage planetary transmission systems and provides
an effective guide for resonance analyses of systems in the predesign stage.
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