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Abstract: Proportional–integral–derivative (PID) control is the most common control technique used
in hydraulic servo control systems. However, the nonlinearity and uncertainty of the hydraulic
system make it challenging for PID control to achieve high-precision control. This paper proposes
a novel control strategy that combines the soft actor-critic (SAC) reinforcement learning algorithm
with the PID method to address this issue. The proposed control strategy consists of an upper-level
controller based on the SAC algorithm and a lower-level controller based on the PID control method.
The upper-level controller continuously tunes the control parameters of the lower-level controller
based on the tracking error and system status. The lower-level controller performs real-time control
for the hydraulic servo system with a control frequency 10 times higher than the upper controllers.
Simulation experiments demonstrate that the proposed SAC-PID control strategy can effectively
address disturbances and achieve high precision control for hydraulic servo control systems in
uncertain working conditions compared with PID and fuzzy PID control methods. Therefore, the
proposed control strategy offers a promising approach to improving the tracking performance of
hydraulic servo systems.

Keywords: SAC-PID control strategy; electro-hydraulic servo system; anti-disturbance; positioning
control; time-varying PID controller

1. Introduction

Hydraulic control systems are widely used in various industrial fields, including
construction machinery [1], wind energy [2], ocean engineering [3], etc., [4] due to their
high control precision, large power–weight ratio, and rapid response speed [5]. The PID
control method is a mainstream approach for hydraulic control systems due to its simple
structure [6]. Despite its widespread use, PID control requires manual tuning of its control
parameters [7]. Moreover, various nonlinear factors, including dead band, friction, leakage,
and uncertain external disturbances, pose significant challenges to achieving optimal
control performance in hydraulic servo systems using PID control [8]. These limitations
highlight the need for advanced control methods to overcome these challenges and improve
the control performance of hydraulic servo systems.

To improve the control performance of hydraulic control systems, many researchers
have explored fuzzy PID control methods. Fuzzy PID control offers higher control accu-
racy and anti-interference capabilities than standard PID control. For instance, Çetin et al.
proposed a fuzzy PID controller based on coupling rules for position control in hydraulic
systems, achieving significant improvements in position tracking performance compared
to PID control [9]. Jin et al. also proposed a fuzzy PID control method to address nonlinear-
ity and poor control accuracy in electro-hydraulic servo transplanting manipulators [10].
Truong introduced a combined approach of a grey predictive model and a fuzzy PID
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controller to improve control performance and reduce disturbances in the system, address-
ing latency and overshoot issues [11]. However, designing fuzzy PID control algorithms
requires well-designed fuzzy rules and affiliation functions based on human experiences,
which can be time consuming and challenging. Furthermore, fuzzy PID control still suffers
from limitations in handling complex nonlinearities and uncertainties in hydraulic systems.

Research has shown that self-adaptive and self-learning control systems can effectively
improve the control performance of hydraulic servo systems under unknown working
conditions. Reinforcement learning (R.L.) is a powerful learning algorithm [12] with ap-
plications in diverse fields, such as medicine [13], architecture [14], robotics [15,16], and
aerospace [17]. RL-based control methods have shown promising results in improving the
control performance of hydraulic servo systems. Yuan et al. applied the twin-delayed deep
deterministic policy gradient (TD3) control algorithm to an electro-hydraulic servo control
system, demonstrating improved dynamic response compared to other self-tuning meth-
ods [18]. Wu et al. applied the Q-learning algorithm to a real-time control energy-saving
system in mine operation. The control algorithm learns the energy distribution of hydraulic
pumps and accumulators and then adjusts the opening of pumps and accumulator valves
to achieve energy savings [19]. Egli et al. applied an R.L. algorithm to a nonlinear hydraulic
excavator end-of-arm actuator, training the control strategy and exhibiting higher track-
ing accuracy than PID control [20]. However, RL-based control methods require careful
consideration of system modeling, reward function design, and significant computational
resources for training.

The manual tuning of PID parameters can be time consuming and challenging, par-
ticularly for complex systems with uncertainty and nonlinearities. RL-based PID control
algorithms have recently gained popularity in overcoming these challenges. Carlucho et al.
proposed a Q-learning algorithm to tune the PID parameters for mobile robot control
in unknown situations [21]. Yang et al. developed a deep deterministic policy gradient
(DDPG)-based control algorithm to adjust PID parameters for vehicle queueing systems
autonomously, adapting to different acceleration and deceleration operating conditions
after training [22]. Yu et al. applied the SAC algorithm to the PID control scheme for
trolley trajectory motion, demonstrating higher accuracy and robustness than fuzzy PID
control [23].

This paper proposes a novel model-free adaptive SAC-PID control strategy for hy-
draulic servo control systems. By dynamically adjusting PID parameters, our approach
tracks changing target trajectories without requiring accurate physical models or extensive
training data. The proposed SAC-PID control method utilizes a hierarchical structure with
SAC and PID layers, where the SAC layer inputs system status and outputs optimal PID
parameters periodically, effectively compensating for real-time tracking errors. In addition,
we design various random signals with perturbations for SAC-PID training, enhancing
training sample diversity and improving the control strategy’s tracking performance and
robustness. Our SAC-PID control strategy outperforms traditional adaptive PID methods,
such as fuzzy PID, particularly for hydraulic servo systems with unknown nonlinearities
or disturbances. To our knowledge, this is the first application of a model-free adaptive
PID control strategy using the SAC reinforcement learning algorithm to control hydraulic
servo systems subject to internal and external disturbances.

The remainder of this paper is organized as follows. Section 2 presents the mathemati-
cal model of the hydraulic servo system. Section 3 presents the proposed SAC-PID control
strategy in detail, including the upper-level SAC controller and the lower-level PID con-
troller. The principles of the SAC algorithm and the tuning process of the PID parameters
are described. In Section 4, the simulation model of the hydraulic servo system is presented
and the performance of the SAC-PID control strategy is analyzed when tracking random
signals with different disturbances and uncertainty. Finally, Section 5 concludes the paper
and summarizes the contributions of the proposed SAC-PID control strategy.
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2. System Description and Modeling
2.1. Introduction of Hydraulic Servo System

As shown in Figure 1, the system consists of a hydraulic pump, servo valve, position
transducer, hydraulic cylinder, controller, etc. In each sampling time, the controller mea-
sures the tracking signal through the position transducer and produces the control signal
to the servo valve, thereby driving the hydraulic cylinder.
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2.2. Mathematical Model

The linearized flow equation is derived as follows based on the characteristics of the
ideal servo valve [24].

qL = Kqxv − Kc pL (1)

where qL is the servo valve’s output flow, Kq is the servo valve’s flow gain, Kc is the flow
pressure coefficient, xv is the displacement of the spool valve, and pL is the load pressure.

The servo amplifier and servo valve are equivalent to the proportional link, and the
equations are given by [7,8]:

Ku =
i
u

(2)

Kpv =
xv

i
(3)

where Ku is the amplification factor of the servo amplifier; Kpv is the gain of the servo valve;
i is the input current of the servo amplifier; u is the input voltage of the servo amplifier,
and xv is the displacement of the servo spool valve.

According to Equations (2) and (3), the relation between the displacement of the servo
valve spool and the control signal is as follows:

xv = KpvKuu (4)

According to Equation (4), the total flow QL is:

QL = qL = KpvKuKqu− Kc pL (5)

According to the flow continuity equation [25], the flow continuity equation of the
obtained asymmetrical hydraulic cylinder is:

qL = A1
dxp

dt
+

Vt

2(1 + n2)βe

dpL
dt

+ Ct pL (6)

where A1 is the area of the hydraulic cylinder piston; xP is the displacement of the piston;
Ct is the external leakage coefficient of the hydraulic cylinder; Vt is the total volume of the
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pipeline and the hydraulic cylinder; βe is the volumetric elastic modulus of the hydraulic
cylinder; and n is the ratio of the effective area of the rod cavity of the hydraulic cylinder to
that of the rod-free cavity [8].

The force balance equation of the piston is as follows [26]:

A1 pL = mt
d2xp

dt2 + Bp
dxp

dt
+ Kpxp + F (7)

where mt is the total mass of the piston and the load; Bp is the viscous damping coefficient
of the rod and load; Kp is the elastic stiffness coefficient; and F is the external load force
acting on the hydraulic cylinder.

According to Equations (5)–(7), the dynamic model of the system is as follows [27]:

Ku = My
...
x p + By

..
xp + Cy

.
x + Dyxp + dy (8)

where K = KpvKuKq, My = Vtmt
2(1+n2)βe A1

, By =
VtBp+2(1+n2)βeKCEmt

2(1+n2)βe A1
, Cy =

A1
2+KpVt

2(1+n2)βe A1
,

Dy =
KCEKp

A1
and dy = Vt

2(1+n2)

.
F

A1
+ KCE

A1
F.

In the above equations, it assumes x1 = xp, x2 =
.
xp, x3 =

..
xp, where x1, x2, and

x3, respectively, represent the displacement, velocity, and acceleration of the piston. The
system’s state space equation can be expressed as [28]:{ .

x = Ax + Bu + D
y = Cx

(9)

where x = [x1, x2, x3], A =

 0 1 0
0 0 1
a1 a2 a3

, B =

0
0
G

, C =
[
1 0 0

]
, D =

[
0 0 d

]T ,

a1 = − 4βeKCEKp
mtVt

, a2 = −Kp
mt
− 4βe

mtVt

(
A1

2 + KCEBp
)
, a3 = − Bp

mt
− 4βeKCE

Vt
, G = 4βe A1

Vtmt
(KpvKpKq)

and d = −
.
F

mt
− 4βeKCE

mtVt
F, where u is the system input; y is the system output, d is the external

disturbance. When the piston is moving in the positive direction, Kq = Cw
√

2(ps−pL)
ρ(1+n3)

,

KCE = Ct − Cdwx

√
2(ps−pL)
ρ(1+n3)

2(ps−pL)
; otherwise, Kq = Cdw

√
2(nps+pL)

ρ(1+n3)
, KCE = Ct − Cdwx

√
2(nps+pL)

ρ(1+n3)
2(nps+pL)

.

3. SAC-PID Control Strategy
3.1. Overview of the Control Strategy

Compared to the DDPG algorithm, SAC algorithm employs a stochastic exploration
strategy that has demonstrated superior performance in open benchmark tests and has
been successfully applied to real-world control applications [29]. As shown in Figure 2, we
propose a hierarchical controller with an upper controller based on the SAC algorithm and
a lower controller based on the PID method. The upper controller continuously adjusts the
lower controller’s parameters based on the system’s feedback and tracking error, enabling
the lower controller, which runs at 10 times the frequency of the upper controller, to achieve
more precise tracking performance, particularly in the presence of unknown disturbances
and system uncertainties.

The critic and actor neural networks [30] in the upper controller comprise an input
layer, three hidden layers, and an output layer. The rectified linear unit (ReLU) function is
adopted as the activation function in the hidden layers, which maps the input to the output
signal. The critic network takes both the states st and actions at as input, while the action
network takes only the states st as input.
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3.2. Design of the Upper Controller

The long-term reward Gt obtained by an agent under a given action strategy can be
expressed as Equation (10):

Gt = rt + γrt+1 + γ2rt+2 + . . . = ∑
i=0

γiri+1 (10)

where γ is the discount factor and rt is the extrinsic reward.
This method employs a maximum entropy objective to facilitate the learning of policies

for complex tasks:

J(π) =
T

∑
t=0

E(st, at) ∼ ρπ [r(st, at) + αH(π(·|st))] (11)

where α is a temperature coefficient. The action state value function Q(st, at) in maximum
entropy objective can be formulated as Equation (12) [31]:

Q(st, at) = r(st, at) + γESt+1∼p[V(st+1)] (12)

where
V(st) = Eat∼π [Q(st, at)− α log π(at|st)] (13)

The updated critic networks to minimize the loss function can be formulated as
Equation (14):

JQ(θ) = E(st ,at)∼D

[
1
2
(
Qθ(st, at)− Q̂(st, at)

)2
]

(14)

With
Q̂(st, at) = r(st, at) + γEst−1∼p

[
Vψ(st+1)

]
(15)
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The updated of policy πφ trained by actor networks can be expressed as Equation (16):

Jπ(φ) = Est∼D,∈t∼πφ

[
log πφ( f (∈t; st)|st)−Qθ(st, f (∈t; st))

]
(16)

where ∈t is the input noise vector, which is sampled from spherical Gaussian [29].
The reward function is crucial in the upper controller as it determines the controller’s

behavior and guides the learning process toward achieving the desired goals. The reward
function must consider several factors in the upper controller to ensure effective tracking
performance. Firstly, the function should prioritize minimizing the tracking error when
following input signals. Secondly, it should encourage reducing the tracking error by
comparing the current error ext and the previous error ext−1 . Thirdly, the function should
discourage excessive acceleration to avoid oscillations. To incorporate these considerations,
we design the reward function as follows:

r(s) = r1 + r2 + r3
r1 = k1|ex|

r2 =

{
k2

∣∣ext

∣∣>∣∣ext−1

∣∣
k3

∣∣ext

∣∣<∣∣ext−1

∣∣
r3 = k4|a|

(17)

where a represents the current acceleration and k1, k2, k3, k4 are negative gain coefficients.

3.3. Algorithm Statement

The proposed control algorithm comprises three phases: initialization, interaction,
and optimization. In the initialization phase, the system loads the parameter settings and
initializes an empty replay buffer to store the transition tuples.

During the interaction phase, as depicted in Algorithm 1, the agent observes the
current state st, selects an action by sampling from the current actor network according to
st, and receives a reward rt after executing the action. The transition tuple (st, at, rt, st+1) is
stored in the replay buffer R after transitioning to the next state st+1.

Algorithm 1: Pseudocode of the SAC-PID control strategy.

Initialize the relevant parameters of the policy network, replay buffer size
for t = 1, 2, . . . do
e(t) = xp(t) − xd(t)

u(t) = KPe(t) + KI
t

∑
n = 0

e(n) + KD( e( t ) − e( t − 1 ) )

if t = 10, 20, . . . do
for episode = 1, 2, . . . , E do

Receive initial state s1
for step = 1, 2, . . . , T1 do

Select actions at based on the current state st
Compute the control signals u(t) according to the action at
Apply control signals u(t) and observe the next state st + 1
Compute the current reward rt
Store following transition (st, at, rt, st + 1) into replay buffer R

if it is time to update then
Update Q network parameters: Qi ← Qi − λQ∇̂Qi J( Qi ) f or i ∈ {1, 2}
Update critic network parameters: π ← π − λπ∇̂π J( π )
Update entropy parameters: α← α − λ∇̂π J( α )
Updating of target network parameters online

End if
End for

End for
End if

End for
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In the optimization phase, the policy J(Qi) is optimized using two Q functions during
each gradient step. The actor network parameters are updated using the minimum Q-
functions for policy gradient in Equation (12). The target network loss function is updated
according to Equation (14), and the entropy parameters are updated automatically. Finally,
the target network parameters are updated online using Equation (16) where λQ denotes
the learning rate and λπ is the target smoothing coefficient.

4. Simulation Environments
4.1. Simulation Setup

Fuzzy PID control offers the advantage of adaptivity as it can dynamically adjust
the controller’s parameters based on fuzzy rules. Therefore, we chose the fuzzy PID
control strategy as the baseline to compare with the SAC-PID control strategy. Figure 3
depicts the co-simulation model of the proposed SAC-PID control strategy and fuzzy PID
control strategy, which were implemented in AMESim and Matlab software. The main
parameters [27] used in the model are shown in Table 1, and the co-simulation step is 1 ms.
As shown in Figure 3a, the AMESim hydraulic system model consists of a quantitative
pump model, a single-acting hydraulic cylinder model with load, a servo motor model,
and two piston rod displacement and velocity measurement sensors. Figure 3b shows that
the Simulink model consists of a PID controller, a co-simulation interface, and the SAC
strategy model. As shown in Figure 3c, the inputs of the fuzzy controller are the tracking
error and the derivative of the tracking error; the output of that is the input parameters of
the PID controller.
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Table 1. Simulation parameters.

Parameter Value Parameter Value

Pump displacement 5e−6 m3/rev Actuator stroke 0.2 m
Motor speed 1420 rev/min Rod diameter 0.05 m

Servo valve’s natural frequency 65 Hz Piston diameter 0.1 m
Servo valve’s input signal ±10 V Load mass 100 Kg

Servo valve’s max flow 4 L/min Relief valve’s opening pressure 15 MPa

Table 2 presents the hyperparameters used in the SAC-PID control strategy [23,31].
The figures below illustrate the desired trajectory signals, SAC-PID, PID, and fuzzy PID
control response and tracking error e(t) curves. Specifically, SPID represents the response
and tracking error of SAC-PID, while PID and FPID denote the response and tracking errors
of PID control and fuzzy PID control, respectively. Tracking error e(t) = xp(t)− xd(t),
where xp(t) is desired trajectory signals, and xd(t) is tracking response signals.

Table 2. Training hyperparameters setting.

Parameter Value

Nonlinearity ReLU
Optimizer Adam

Learning rate (λQ and λπ) 0.001
Discount rate (γ) 0.99

Size of the replay buffer 1× 106

Numbers of the hidden layers (all networks) 128

The fuzzy PID control serves as a comparison experiment with SPID control in this
study. The fuzzy rules utilized in the fuzzy PID control are presented in Table 3 [9], and
they are e (tracking error), de (derivative of tracking error), NB (negative big), NM (negative
middle), NS (negative small), ZO (zero), PS (positive small), PM (positive middle), and
PB (positive big). The values of e, de, KP, KI , and KD are constrained within the range of
e ∈ (−1, 1), de ∈ (−1, 1), KP ∈ (60, 120), KI ∈ (1, 20), and KD ∈ (0.1, 0.6), respectively.

Table 3. Fuzzy rules for FPID control.

de/e NB NM NS Z PS PM PB

NB NB NB NB NM NM NS Z
NM NB NB NM NS NS Z PS
NS NB NM NS NS Z PS PM
Z NM NS NS Z PS PS PM

PS NM NS Z PS PS PM PB
PM NS Z PS PS PM PB PB
PB Z PS PM PM PB PB PB

4.2. Training Samples Setup

The whole simulation process is divided into two phases: the training phase and the
testing phase. For each training episode (lasting 4 s), we randomly selected tracking signals
in Table 4 and randomly assigned values to parameters such as k, t0, a, and b in the given
range. Table 4 displays the signals trained during a single training session for the SAC-PID

control strategy. The ramp signals are denoted as y =

{
kt t ≤ t0
kt0 t > t0

, with k taking integer

values from one to eight and reaching a stable segment at a randomly selected time between
one to three seconds. The sinusoidal signal samples are denoted as y = a sin(bπ ∗ t), with
a being a random number between 0.5 to 8 and b being a random number between 0.2 to 2.



Machines 2023, 11, 593 9 of 15

Table 4. Design of training samples.

Sample Types Training Samples

Random signals
Ramp y =

{
kt t ≤ t0
kt0 t > t0

k ∈ [1, 8], k ∈ N, t0 ∈ [1, 3]

Sinusoidal y = a sin(bπt) a ∈ [0.5, 8], b ∈ [0.2, 2]

Signals with disturbance
Pressure drop y = 2 sin(0.5πt) P =

{
14 t ≤ t0
Z t > t0

Z ∈ [4, 10], t0 ∈ [1, 3]

Transient force y = 2 sin(0.5πt) F =

{
0 t /∈ (t0, t0 + 0.02)
Z t ∈ (t0, t0 + 0.02)

Z ∈ [5, 15], t0 ∈ [1, 3.5]

To enhance the tracking performance of the SAC-PID control strategy under varying
system parameters and external disturbances, we devised two types of training samples
with interference. The first type involves a sudden drop in hydraulic system pressure from
14 Mpa to a random value between 4 Mpa to 10 Mpa. The second type involves a random
transient force of 5 KN to 15 KN randomly appearing for 0.02 s between 1 and 3.5 s.

5. Simulation Results
5.1. The Tracking Response of Random Signals Input

Figure 4 shows the training process of the SAC-PID control strategy using random
tracking trajectories, with the average reward value stabilizing after 100 episodes. The
average reward curve demonstrates a consistent upward trend, signifying a stable train-
ing process.
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Figure 4. Training process using random signals.

In the testing phase we use the trained model. Specifically, the parameters of the
trained model cannot be changed, and the upper-level controller does not explore in the
testing process. During the test, the PID control parameters are set to KP = 83, KI = 12,

KD = 0.2 when tracking random ramp signals y =

{
2t t ≤ 3
6 t > 3

(S1.1), y =

{
4t t ≤ 3
12 t > 3

(S1.2),

y =

{
6t t ≤ 3
18 t > 3

(S1.3), and y =

{
8t t ≤ 3
24 t > 3

(S1.4), respectively.

The performance of SAC-PID in tracking S1.2 was evaluated, and the results are
illustrated in Figure 5. In the simulation, the PID control resulted in significant hysteresis
with a maximum overshoot of 0.022 mm and a relatively slow convergency. In contrast, the
fuzzy PID control produces a minor overshoot of approximately 0.071 mm and 6e−4 mm
oscillation in steady-state. Otherwise, the maximum overshoot of SAC-PID control is
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approximately 0.046 mm, which is much smaller than that of fuzzy PID and PID control. The
corresponding integral of time and absolute error (ITAE) values when tracking S1.1–S1.4
using the three control methods are presented in Table 5, which indicates that the control
performance of SAC-PID control is significantly higher than that of fuzzy and PID control.
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Table 5. ITAE values for PID, fuzzy PID, and SAC-PID when tracking different ramp signals.

Ramp Signals/
Control Strategies PID Fuzzy PID SAC-PID

S1.1 116.82 6.81 3.94
S1.2 255.64 10.22 7.57
S1.3 336.23 14.82 11.67
S1.4 446.84 28.63 28.34

During the test, the PID control parameters are set to KP = 83, KI = 12, KD = 0.2
when tracking random sinusoidal signals y = sin(5π ∗ t/4) (S2.1), y = 2 sin(π ∗ t) (S2.2),
y = 3 sin(3π ∗ t/4) (S2.3), and y = 4 sin(π ∗ t/2) (S2.4), respectively.

The simulation responses and tracking errors of the sinusoidal signal input (S2.2) are
depicted in Figure 6, indicating that the tracking error of the SAC-PID control is reduced
by 95.1% compared to the PID control and 64.7% compared to the fuzzy PID control. The
corresponding ITAE values when tracking S2.1–S2.4 are presented in Table 6, indicating
that the SPID control strategy has the best control performance when tracking random
sinusoidal signals.

Table 6. ITAE values for PID, fuzzy PID, and SAC-PID when tracking different sinusoidal signals.

Sinusoidal Signals/
Control Strategies PID Fuzzy PID SAC-PID

S 2.1 268.71 54.77 16.97
S 2.2 427.51 71.14 22.53
S 2.3 482.68 62.55 21.79
S 2.4 437.08 36.90 12.98
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5.2. The Tracking Response of Sinusoidal Signals Input with Sudden Pressure Drop

During the test, the PID control parameters are set to KP = 83, K I = 12, KD = 0.2
when tracking sinusoidal signals y = 2 sin(0.5πt) with varying system parameters

P =

{
14 t ≤ 1
10 t > 1

(W1.1), P =

{
14 t ≤ 1.5
8 t > 1.5

(W1.2), P =

{
14 t ≤ 2
6 t > 2

(W1.3), and P ={
14 t ≤ 2.5
4 t > 2.5

(W1.4), respectively, where the unit of P is MPa. The training process using

sinusoidal signals with sudden system pressure drop is shown in Figure 7.
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Figure 8 presents the simulation responses and response errors of the sinusoidal signal
input with sudden pressure drop (W1.3) for the three control strategies. The simulation lasts
4 s, and the system pressure drops suddenly from 14 MPa to 6 MPa at 2.0 s. The SAC-PID
control achieves the best anti-disturbance performance in the presence of a system pressure
drop. In contrast, the PID control produces the largest overshoot while the fuzzy PID control
produces severe oscillations, indicating that the varying hydraulic servo system parameters
have a significant impact on the control performance of the system and that the SAC-PID
control strategy can effectively suppress the adverse effects of varying system parameters.
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Table 7 demonstrates that the SAC-PID control scheme outperformed the PID control and
fuzzy PID control, reducing tracking errors of at least 66.7% and 15.8%, respectively.
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Table 7. ITAE values for PID, fuzzy PID, and SAC-PID when tracking sinusoidal signals with different
pressure drops.

Pressure Drop/
Control Strategies PID Fuzzy PID SAC-PID

W 1.1 257.29 22.31 7.24
W 1.2 285.92 27.45 11.17
W 1.3 329.63 48.10 26.19
W 1.4 427.57 169.36 142.65

5.3. The Response of Sinusoidal Signals Input with External Disturbance Force

During the test, the PID control parameters are set to KP = 83, KI = 12, KD = 0.2
when tracking the sinusoidal signal y = 4 sin(0.5πt) with external disturbance tran-

sient force F =

{
0 1.3 ≤ t ≤ 1.32
5 t < 1.3 or t > 1.32

(W2.1), F =

{
0 2.3 ≤ t ≤ 2.32
10 t < 2.3 or t > 2.32

(W2.2), and

F =

{
0 3.3 ≤ t ≤ 3.32

15 t < 3.3 or t > 3.32
(W2.3), respectively, where the unit of F is kN.

Figure 9 presents the responses and response errors of the sinusoidal signal input with
external transient force (W2.2). The simulation lasts 4 s and a disturbance force (amplitude
10 kN, starting at 2.3 s and stopping at 2.32 s) is added to the load. The graph shows that
all three control strategies lead to significant chattering in the response when disturbance
forces are present in the hydraulic servo system. However, in contrast to PID and fuzzy
PID control, the SAC-PID control strategy results in minimal response oscillations and can
rapidly damp oscillations. Table 8 demonstrates that when tracking sinusoidal signals with
external disturbance force, the SAC-PID control strategy outperformed the PID control and
fuzzy PID control, reducing tracking errors by at least 87.1% and 27.1%, respectively.

When tracking the sinusoidal signal with disturbance force W2.2, the comparison of
the PID parameters of fuzzy PID and SAC-PID are shown in Figure 9, indicating that the
PID parameters of the two control strategies are adaptive updating effectively improve the
performance of the control system.
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Table 8. ITAE values for PID, fuzzy PID, and SAC-PID when tracking sinusoidal signals with external
disturbance force.

Transient Force/
Control Strategies PID Fuzzy PID SAC-PID

W 2.1 437.82 44.75 22.99
W 2.2 443.19 63.21 46.11
W 2.3 447.73 80.08 57.79

Figure 9 compares the adaptive updated PID parameters between fuzzy PID and
SAC-PID control when tracking the sinusoidal signal with disturbance force W2.2. FKP,
FKI, and FKD represent the PID parameters KP, KI , and KD of fuzzy PID control, respec-
tively, while SKP, SKI, and SKD represent the PID parameters KP, KI , and KD of SAC-PID
control, respectively. The results show that the PID parameters in both control strategies
can be automatically tuned according to the tracking signal, which enhances the control
performance of the hydraulic servo system.

Figure 10a illustrates that when the hydraulic cylinder rod extends, the KP in SAC-PID
control significantly increases compared to when the hydraulic cylinder rod retracts (from
one second to three seconds). This indicates that compared with fuzzy PID control, SAC-PID
control can effectively learn the critical characteristics of the hydraulic servo system, leading
to proactive adjustment of the KP and reducing the performance difference in tracking when
the rod extends and retracts. Figure 10b,c demonstrate that when disturbance force occurs
(start at 2.3 s), the KI and KD in SAC-PID control significantly decrease compared to fuzzy
PID control. This results in SAC-PID control exhibiting better anti-disturbance capability.
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6. Conclusions

This study proposes a novel SAC-PID control strategy to improve the control perfor-
mance of hydraulic servo systems with PID control, especially in the presence of nonlin-
earity and uncertainty. The SAC-PID control strategy comprises an upper-level controller
based on the SAC algorithm and a lower-level controller based on the PID control method.
The upper-level controller learns the hydraulic servo system’s hydraulic and disturbance
characteristics, enabling dynamic PID parameter adjustment in the lower-level controller.
The proposed control strategy can effectively suppress the adverse effects of various uncer-
tainties on the hydraulic servo system.

Simulation experiments were conducted to track random signals, sinusoidal signals
with sudden system pressure drops, and sinusoidal signals with external disturbance
forces using the SAC-PID, fuzzy PID, and PID control schemes, respectively. The results
indicate that when tracking random signals, the SAC-PID control strategy exhibits superior
performance compared to the PID and fuzzy PID control strategies, achieving an average
track error reduction of 95.6% and 44.7%, respectively. Similarly, when tracking sinusoidal
signals with internal and external disturbance, the SAC-PID control strategy outperforms
the PID and fuzzy PID control strategies, with an average track error reduction of 89.1%
and 41.7%, respectively.

Analysis of PID parameter variation during fuzzy PID and SAC-PID simulation
experiments showed that the proposed SAC-PID control strategy efficiently optimizes
PID parameters based on tracking errors and learned system characteristics, resulting in
improved tracking accuracies in hydraulic servo systems. This approach has significant
potential for enhancing hydraulic servo systems’ control accuracy and robustness in various
practical applications.
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